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Abstract. Any procedure applied to data, and any quantity derived from data, is
required to respect the nature and symmetries of the data. This axiom applies to re-
finement procedures and multiresolution transforms as well as to more basic operations
like averages. This chapter discusses different kinds of geometric structures like metric
spaces, Riemannian manifolds, and groups, and in what way we can make elemen-
tary operations geometrically meaningful. A nice example of this is the Riemannian
metric naturally associated with the space of positive definite matrices and the intrin-
sic operations on positive definite matrices derived from it. We disucss averages first
and then proceed to refinement operations (subdivision) and multiscale transforms. In
particular, we report on the current knowledge as regards convergence and smoothness.

1. Computing averages in nonlinear geometries

The line of research presented in this chapter was first suggested by a 2001 presen-
tation by D. Donoho on multiscale representations of discrete data [11]. A subsequent
Ph.D. thesis and accompanying publication appeared a few years later [48]. Multiscale
representations are intimately connected with refinement procedures (prediction opera-
tors). These are in themselves an interesting topic with applications, e.g. in computer
graphics. Iterative refinement a.k.a. subdivision in turn is based on the notion of average.
Consequently this chapter is structured into the following parts: Firstly a discussion of
averages, in particular averages in metric spaces and in manifolds. Secondly, subdivision
rules and the limits generated by them. Thirdly, multiresolution representations.

We start with the affine average w.r.t. weights aj of data points xj contained in a
vector space. It is defined by

x = avgj∈Z(aj , xj) :=
∑

ajxj , where
∑

aj = 1.(1)

In this chapter we stick to finite averages, but we allow negative coefficients. For data
whose geometry is not that of a vector space, but that of a surface contained in some
Euclidean space, or that of a group, or that of a Riemannian manifold, this affine average
often does not make sense. In any case it is not natural. Examples of such data are, for
instance, unit vectors, positions of a rigid body in space, or the 3 by 3 symmetric positive
definite matrices which occur in diffusion-tensor MRI. In the following paragraphs we
show how to extend the notation of affine average to nonlinear situations in a systematic
way. We start by pointing out equivalent characterizations of the affine average:

x = avg(aj , xj) ⇐⇒ x solves
∑
aj(xj − x) = 0(2)

⇐⇒ x = y +
∑
aj(xj − y) for any y(3)

⇐⇒ x minimizes
∑
aj‖x− xj‖2.(4)

1
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The Fréchet mean. Each of (2)–(4) has been used to generalize the notion of weighted
average to nonlinear geometries. Some of these generalizations are conceptually straight-
forward. For example, Equation (4) has an analogue in any metric space (M, dM),
namely the weighted Fréchet mean defined by

avgF (aj , xj) := arg min
x∈M

∑
aj dM(x, xj)

2.(5)

It is a classical result that in case of nonnegative weights, the Fréchet mean exists and
is unique, if M is a Hadamard metric space. This property means M is complete,
midpoints exist uniquely, and triangles are slim, cf. [1].1

The Fréchet mean in Riemannian manifolds. In a surface resp. Riemannian manifold
M, the Fréchet mean locally exists uniquely. A main reference here is the paper [39] by
H. Karcher. He considered the more general situation that µ is a probability measure
on M, where the mean is defined by

avgF (µ) = arg min
x∈M

∫
dM(x, ·)2dµ.

In this chapter we stick to the elementary case of finite averages with possibly negative
weights. The Fréchet mean exists uniquely if the manifold is Hadamard – this property
is usually called “Cartan-Hadamard” and is characterized by completeness, simple con-
nectedness, and nonpositive sectional curvature. For unique existence of avgF , we do
not even have to require that weights are nonnegative [37, Th. 6].

The Fréchet mean in the non-unique case. If the Cartan-Hadamard property is not
fulfilled, the Fréchet mean does not have to exist at all, e.g. if the manifold is not
complete (cutting a hole inM exactly where the mean should be makes it nonexistent).
If the manifold is complete, the mean exists, but possibly is not unique.

If M is complete with nonpositive sectional curvature, but is not simply connected,
there are situations where a unique Fréchet mean of given data points can still be defined,
e.g. if the data are connected by a path c : [a, b] → M with c(tj) = xj . This will
be the case e.g. if data represent a time series. Existence or maybe even canonical
existence of such a path depends on the particular application. We then consider the

simply connected covering M̃, find a lifting c̃ : I → M̃ of c, compute the Fréchet mean
avgF (aj , c̃(tj)), and project it back to M. This average does not only depend on the
data points and the weights, but also on the homotopy class of c. In fact instead of a
path, any mapping c : I →M can be used for such purposes as long as its domain I is
simply connected [37].

Finally, if M is complete but has positive sectional curvatures, a unique Fréchet
mean is only defined locally. The size of neighbourhoods where uniqueness happens has
been discussed by [15, 16, 34]. This work plays a role in investigating convergence of
subdivision rules in Riemannian manifolds, see Section 2.4.

1More precisely, for all a, b ∈ M there is a unique midpoint x = m(a, b) defined by dM(x, a) =
dM(x, b) = dM(a, b)/2, and for any a, b, c ∈ M and points a′, b′, c′ ∈ R2 which have the same pairwise
distances as a, b, c, the inequality dM(c,m(a, b)) ≤ dR2(c′,m(a′, b′)) holds.
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The exponential mapping. From the different expressions for the affine average, (2) and
(3) seem to be specific to linear spaces, because they involve the + and − operations.
However, it turns out that there is a big class of nonlinear geometries where natural
analogues ⊕ and 	 of these operations exist, namely the exponential mapping and its
inverse. We discuss this construction in surfaces resp. Riemannian manifolds, in groups,
and in symmetric spaces.

The exponential mapping in Riemannian geometry. In a Riemannian manifold M, for
any p ∈M and tangent vector v ∈ TpM, the point expp(v) is the endpoint of the geodesic
curve c(t) which starts in p, has initial tangent vector v, and whose length equals ‖v‖.
We let

p⊕ v := expp(v), q 	 p := exp−1p (q).

One property of the exponential mapping is the fact that curves of the form t 7→ p⊕tv are
shortest paths with initial tangent vector v. The mapping v 7→ p⊕v is a diffeomorphism
locally around v = 0. Its differential equals the identity.

Properties of the Riemannian exponential mapping. For complete Riemannian manifolds,
p ⊕ v is always well defined. Also q 	 p exists by the Hopf-Rinow theorem, but it does
not have to be unique. Uniqueness happens if dM(p, q) does not exceed the injectivity
radius ρinj(p) of p. In Cartan-Hadamard manifolds, injectivity radii are infinite and the
exponential mapping does not decrease distances, i.e., dM(p⊕ v, p⊕ w) ≥ ‖v − w‖TpM.
The injectivity radius can be small for topological reasons (e.g. a cylinder of small radius
which is intrinsically flat, can have arbitrarily small injectivity radius), but even in the

simply connected case, one cannot expect ρinj to exceed πK−1/2, if K is a positive upper
bound for sectional curvatures.

Further, the 	 operation and the Riemannian distance are related by

∇ dM(·, a)(x) = − a	 x
‖a	 x‖

, ∇ dM
2(·, a)(x) = −2(a	 x),(6)

if v = a 	 x refers to the smallest solution v of x ⊕ a = v. For more properties of the
exponential mapping we refer to [39] and to differential geometry textbooks like [9].

The exponential mapping in groups. In Lie groups, which we describe only in the case
of a matrix group G, a canonical exponential mapping is defined: With the notation
g = TeG for the tangent space in the identity element, we let

v ∈ g =⇒ e⊕ v = exp(v) =
∑

k≥0

1

k!
vk.

The curve t 7→ e⊕tv is the unique one-parameter subgroup of G whose tangent vector at
t = 0 is the vector v ∈ g. Again, v 7→ e⊕ v is locally a diffeomorphism whose differential
is the identity mapping.

An inverse log of exp is defined locally around e. Transferring the definition of ⊕ to
the entire group by left translation, the defining relation g ⊕ gv := g(e⊕ v) yields

p⊕ v = p exp(p−1v), q 	 p = p log(p−1q).

Addition is always globally well defined, but the difference q 	 p might not exist. For
example, in GLn, the mapping v 7→ e⊕ v is not onto. The difference exists always, but
not uniquely, in compact groups. See e.g. [2].



GEOMETRIC SUBDIVISION AND MULTISCALE TRANSFORMS 4

The exponential mapping in symmetric spaces. Symmetric spaces have the form G/H,
where H is a Lie subgroup of G. There are several definitions which are not entirely
equivalent. We use the one that the tangent spaces g = TeG, h = TeH obey the
condition that h is the +1 eigenspace of an involutive Lie algebra automorphism σ of
g.2 The tangent space g/h of G/H in the point eH ∈ G/H is naturally identified with
the −1 eigenspace s of the involution, and is transported to all points of G/H by left
translation. The exponential mapping in G is projected onto G/H in the canonical way
and yields the exponential mapping in the symmetric space.

We do not go into more details but refer to the comprehensive classic [35] instead.
Many examples of well-known manifolds fall into this category, e.g. the sphere Sn, hy-
perbolic space Hn, and the Grassmannians. We give an important example:

Example 1. The Riemannian symmetric space of positive-definite matrices. The space
Posn of positive definite n× n matrices is made a metric space by letting

d(a, b) = ‖ log(a−1/2ba−1/2)‖2 =
(∑

λ1,...,λn∈σ(a−1b)
log2 λj

)1/2
.(7)

Here ‖ · ‖2 means the Frobenius norm, and σ(m) means the eigenvalues of a matrix.
The metric (7) is actually that of a Riemannian manifold. Posn, as an open subset of

the set Symn of symmetric matrices, in each point has a tangent space TaPosn canonically
isomorphic to Symn as a linear space. The Riemannian metric in this space is defined
by ‖v‖ = ‖a−1/2va−1/2‖2.

Posn is also a symmetric space: We know that any g ∈ GLn can be uniquely written

as a product g = au, with a =
√
ggT ∈ Posn and u ∈ On. Thus Posn = G/H, with

G = GLn, H = On, and the canonical projection π(x) =
√
xxT .

The respective tangent spaces g, h of G,H are given by g = Rn×n and h = son, which
is the set of skew-symmetric n × n matrices. The involution σ(x) = −xT in g obeys
[σ(v), σ(w)] = σ([v, w]), and h is its +1 eigenspace. We have thus recognized Posn as
a symmetric space. It turns out that a ⊕ v = a exp(a−1v), where exp is the matrix
exponential function.

The previous paragraphs define two different structures on Posn, namely that of a
Riemannian manifold, and that of a symmetric space. They are compatible in the sense
that the ⊕, 	 operations derived from either structure coincide. For more information
we refer to [40, 24, 58]. Subdivision in particular is treated by [38]. ♦

Averages defined in terms of the exponential mapping. If ⊕ and 	 are defined as dis-
cussed in the previous paragraphs, it is possible to define a weighted affine average
implicitly by requiring that

x = avgE(aj , xj) :⇐⇒
∑

aj(xj 	 x) = 0.(8)

Any Fréchet mean in a Riemannian manifold is also an average in this sense, which
follows directly from (5) together with (6). Locally, avgE is well defined and unique.
As to the size of neighbourhoods where this happens, in the Riemannian case the proof
given by [15, 16] for certain neighbourhoods enjoying unique existence of avgF shows
that the very same neighbourhoods also enjoy unique existence of avgE .

2i.e., σ obeys the law σ([v, w]) = [σ(v), σ(w)], where in the matrix group case, the Lie bracket
operation is given by [v, w] = vw − wv.
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Affine averages with respect to a base point. From the different expressions originally
given for the affine average, x = y +

∑
aj(xj − y) is one we have not yet defined a

manifold analogue for. With 	 and ⊕ at our disposal, this can be done by

avgy(aj ;xj) := y ⊕
∑

aj(xj 	 y).(9)

We call this the log/exp average with respect to the base point y. It has the disadvantage
of a dependence on the base point, but for the applications we have in mind, there
frequently is a natural choice of base point. Its advantages lie in the easier analysis
compared to the Fréchet mean. One should also appreciate that the Fréchet mean is a
log/exp mean w.r.t. to a basepoint, if that basepoint is the Fréchet mean itself:

y = avgF (aj ;xj) =⇒ avgy(aj ;xj) = y ⊕
∑

aj(xj 	 y) = y ⊕ 0 = y,(10)

because of (8). This may be a trivial point, but it has been essential in proving smooth-
ness of limit curves for manifold-based subdivision processes (see Th. 11 and [29]).

The possibility to define averages w.r.t. basepoints rests on the possibility of defining
	, which has been discussed above.

2. Subdivision

2.1. Defining stationary subdivision. Subdivision is a refinement process acting on
input data lying in some setM, which in the simplest case are indexed over the integers
and are interpreted as samples of a function f : R→M. A subdivision rule refines the
input data, producing a sequence Sp which is thought of denser samples of either f itself,
or of a function approximating f .

One mostly considers binary rules, whose application “doubles” the number of data
points. The dilation factor of the rule, generally denoted by the letter N , then equals
2. We require that the subdivision rule is invariant w.r.t. index shift, which by means of
the left shift operator L can be formalized as

LNS = SL.

We require that each point Spi depends only on finitely many data points pj . To-
gether with shift invariance this means that there is s > 0 such that pi influences only
SpNi−s, . . . ,SpNi+s.

Subdivision rules are to be iterated: We create finer and finer data

p, Sp, S2p, S3p, . . . ,

which we hope approach a continuous limit (the proper definition of which is given
below).

Subdivision was invented by G. de Rham [7], who considered the process of iteratively
cutting corners from a convex polygon contained in M = R2, and asked for the limit
shape. If cutting corners is done by replacing each edge pipi+1 by the shorter edge with
vertices Sp2i = (1− t)pi+ tpi+1, Sp2i+1 = tpi+ (1− t)pi+1, this amounts to a subdivision
rule. In de Rham’s example, only two data points pi contribute to any individual Spj .

Primal and dual subdivision rules. The corner-cutting rules mentioned above are invari-
ant w.r.t. reordering indices according to . . . , 0 7→ 1, 1 7→ 0, 2 7→ −1, . . .. With inversion
U defined by (Up)i = p−i we can write this invariance as (LU)S = S(LU). An even
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simpler kind of symmetry is enjoyed by subdivision rules with obey US = SU . The
latter are called primal rules, the former dual ones. The reason why we emphasize these
properties is that they give guidance for finding manifold analogues of linear subdivision
rules.

Subdivision of multivariate data. It is not difficult to generalize the concept of subdivision
to multivariate data p : Zs → M indexed over the grid Zs. A subdivision rule S must
fulfill LNv S = SLv, for all shifts Lv w.r.t. a vector v ∈ Zs.

Data with combinatorial singularities have to be treated separately, cf. Sec. 3.4. Here
basically only the bivariate case is studied, but this has been done extensively, mostly
because of applications in Computer Graphics [43].

Linear subdivision rules and their nonlinear analogues. A linear subdivision rule acting
on data p : Z2 → Rd has the form

Spi =
∑

j
ai−Njpj .

If the sum
∑

j ai−Nj of coefficients contributing to Spi equals 1, the application of the
rule amounts to computing a weighted average:

Spi = avg(ai−Nj ; pj).(11)

Subdivision rules not expressible in this way might occur as auxiliary tools in proofs, but
are not meant to be applied to data which are points of an affine space. This is because
if
∑
ai−Nj 6= 1, then the linear combination

∑
ai−Njpj is not translation-invariant, and

the rule depends on the choice of origin of the coordinate system.
Besides, the iterated application of rules not expressible as weighted averages either

leads to divergent data Skp, or alternatively, to data approaching zero. For this reason,
one exclusively considers linear rules of the form (11). A common definition of convergent
subdivision rule discounts the case of zero limits and recognizes translation invariance
as a necessary condition for convergence, cf. [17].

For a thorough treatment of linear subdivision rules, conveniently done via S acting as
a linear operator in `∞(Zs,R) and using the appropriate tools of approximation theory,
see, e.g. [4].

In the following we discuss some nonlinear, geometric, versions of subdivision rules.
We use the various nonlinear versions of averages introduced above, starting with the
Fréchet mean in metric spaces.

• Subdivision using the Féchet mean. A natural analogue of (11) is found by replacing the
affine average by the Fréchet mean. This procedure is particularly suited for Hadamard
metric spaces and also in complete Riemannian manifolds.

• Log/exp subdivision. In a manifold equipped with an exponential mapping, an analogue
of (11) is defined by

Tpi = avgmi
(ai−Nj ; pj),

where mi is a base point computed in a meaningful manner from the input data, e.g.
mi = pbi/Nc. In case of combinatorial symmetries of the subdivision rule, it makes sense
to make the choice of mi conform to these symmetries.



GEOMETRIC SUBDIVISION AND MULTISCALE TRANSFORMS 7

p0 = p4
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p2
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Sp2i = pi

Sp2i+1 =
9
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(pi + pi+1)−

1

16
(pi−1 + pi+2)

T = π ◦ S

Figure 1. Subdivision by projection in the motion group R3 o O3. A 4-periodic sequence
pi = (ci, ui) of positions of a rigid body is defined by the center of mass ci, and an orientation
ui ∈ O3. Both components undergo subdivision w.r.t. the interpolatory four-point rule S, where
the matrix part is subsequently projected back onto O3 in an invariant manner.

• Subdivision using projections. If M is a surface embedded in a vector space and π is
a projection onto M, we might use the subdivision rule

Tpi = π(Spi).

If the intrinsic symmetries of M extend to symmetries of ambient space, then this
projection analogue of a linear subdivision rule is even intrinsic – see Example 2.

Example 2. Subdivision in the motion group. The groups On and SOn are 1
2n(n −

1)-dimensional surfaces in the linear space Rn×n. A projection onto On is furnished
by singular value decomposition, or in an alternate way of expressing it, by the polar
decomposition of Example 1:

π : GLn → On, π(g) = (ggT )−1/2g.

This projection is On-equivariant in the sense that for u ∈ On, we have both π(ug) =
uπ(g) and π(gu) = π(g)u. The same invariance applies to application of a linear subdi-
vision rule acting in Rn×n. So for any given data in On, and a linear subdivision rule
S, the subdivision rule π ◦ S produces data in On in a geometrically meaningful way, as
long as we do not exceed the bounds of GLn. Since GLn is a rather big neighbourhood
of On, this is in practice no restriction. Figure 1 shows an example. ♦

2.2. Convergence of subdivision processes. Definition of convergence. When dis-
crete data p are interpreted as samples of a function, then refined data Sp, S2p etc. are
interpreted as the result of sampling which is N times, N2 times etc. as dense as the
original. We therefore define a convergent refinement rule as follows.

Definition 3 Discrete data Skp : Zs →M at the k-th iteration of refinement determine
a function fk : N−kZs → M, whose values are the given data points: For any N -adic
point ξ, we have (Skp)Nkξ = fk(ξ), provided Nkξ is an integer. For all such ξ, the
sequence (fk(ξ))k≥0 is eventually defined and we let f(ξ) = limk→∞ fk(ξ). We say S is
convergent for input data p, if the limit function f exists for all ξ and is continuous. It
can be uniquely extended to a continuous function S∞p : Rs →M.
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Another way of defining the limit is possible if data pi,Spi, . . . lie in a vector space.
We linearly interpolate them by functions g0, g1, . . . with gk(N

−ki) = Skpi. Then the
limit of functions gk agrees with the limit of Def. 3 (which is pointwise, but in fact
convergence is usually uniform on compact sets.)

The following lemma is the basis for investigating convergence of subdivision rules in
metric spaces. The terminology is that of [21, 20].

Lemma 4 Let M be a complete metric space, and let the subdivision rule S operate
with dilation N on data p : Zs →M. We measure the density of the data by

δ(p) = sup
|i−j|≤1

dM(pi, pj),

where we use the 1-norm on the indices. S is contractive, resp. displacement-safe, if

δ(Sp) ≤ γδ(p), for some γ < 1, resp. supi∈Zs dM(SpNi, pi) ≤ λδ(p).

If these two conditions are met, any input data with bounded density have a limit S∞p,
which is Hölder continuous with exponent − log γ

logN .

Proof. Contractivity implies δ(Skp) ≤ γkδ(p). For any N -adic rational point ξ ∈ N−rZs,
the sequence fk(ξ) = (Skp)Nkξ is defined for all k ≥ r. It is Cauchy, since

dM(fk(ξ), fk+1(ξ)) ≤ λδ(Skp) ≤ λγkδ(p).

Thus the limit function S∞p ≡ f is defined for all N -adic points.
Consider now two N -adic points ξ, η. Choose k such that N−(k+1) ≤ |ξ − η| ≤ N−k.

For all j ≥ k, approximate ξ resp. η by N -adic points aj , bj ∈ N−jZs, such that none
of |aj − a|, |bj − b|, |aj − aj+1| |bj − bj+1| exceeds sN−j . One can choose ak = bk.
The sequence aj is eventually constant with limit ξ, and similarly the sequence bj is
eventually constant with limit η. Using the symbol (∗) for “similar terms involving bj
instead of aj”, we estimate

dM(f(ξ), f(η)) ≤
∑

j≥k
dM(fj(aj), fj+1(aj+1)) + (∗)

≤
∑

dM(fj(aj), fj+1(aj)) + dM(fj+1)(aj), fj+1(aj+1)) + (∗).

Using the contractivity and displacement-safe condition, we further get

dM(f(ξ), f(η)) ≤ 2
∑

j≥k
λδ(Sjp) + sδ(Sj+1p)

≤ 2(λ+ sγ)δ(p)
∑

j≥k
γj ≤ Cδ(p) γk

1− γ
.

The index k was chosen such that k ≤ − log |ξ − η|/ logN , so in particular γk ≤
γ− log |ξ−η|/ logN . We conclude that

dM(f(ξ), f(η)) ≤ C ′γ− log |ξ−η|/ logN = C ′|ξ − η|− log γ/ logN .

Thus f is continuous with Hölder exponent − log γ
logN on the N -adic rationals, and so is the

extension of f to all of Rs. �
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The scope of this lemma can be much expanded by some obvious modifications.

• Input data with unbounded density d(p). Since points Spj only depend on finitely many
pi’s, there is m > 0 such that pi only influences SpNi+j with |j| < m. By iteration, pi
influences S2pN2i+j with |j| < Nm+m, and so on. It follows that pi influences the value
S∞p(i + ξ) of the limit function only for |ξ| < m

N + m
N2 + · · · = m

N−1 . We can therefore
easily analyze the restriction of the limit function to some box by re-defining all data
points away from that box in a manner which makes d(p) finite.

• Partially defined input data. If data are defined not in all of Zs but only in a subset,
the limit function is defined for a certain subset of Rs. Finding this subset goes along
the same lines as the previous paragraph – we omit the details.

• Convergence for special input data. In order to check convergence for particular input
data p, it is sufficient that the contractivity and displacement-safe conditions of Lemma 4
hold for all data Skp constructed by iterative refinement from p. A typical instance of this
case is that contractivity can be shown only if δ(p) does not exceed a certain threshold
δ0. It follows that neither does δ(Skp), and Lemma 4 applies to all p with δ(p) ≤ δ0.

• Powers of subdivision rules. A subdivision rule S might enjoy convergence like a
contractive rule without being contractive itself. This phenomenon is analogous to a
linear operator A having norm ‖A‖ ≥ 1 but spectral radius ρ(A) < 1, in which case
some ‖Am‖ < 1. In that case we consider some power Sm as a new subdivision rule with
dilation factor Nm. If Sm is contractive with factor γm < 1, Lemma 4 still applies, and
limits enjoy Hölder smoothness with exponent − log γm

logNm = − log γ
logN .

Example 5. Convergence of linear subdivision rules. Consider a univariate subdivision
rule S defined by finitely many nonzero coefficients aj via (11). S acts as a linear operator

on sequences p : Z → Rd. The norm ‖p‖ = supi ‖pi‖Rd induces an operator norm ‖S‖
which obeys ‖Sp‖ ≤ ‖S‖‖p‖. It is an exercise to check ‖S‖ = maxi

∑
j |ai−Nj |. Equality

is attained for suitable input data with values in {−1, 0, 1}.
With (∆p)i = pi+1 − pi we express the density of the data as δ(p) = sup ‖∆pi‖.

Contractivity means that sup ‖∆Spi‖ ≤ γ sup ‖∆pi‖ for some γ < 1.
Analysis of this contractivity condition uses a trick based on the generating functions

p(z) =
∑
pjz

j and a(z) =
∑
ajz

j . Equation (11) translates to the relation (Sp)(z) =
a(z)p(zN ) between generating functions, and we also have ∆p(z) = (z−1 − 1)p(z). The
trick consists in introducing the derived subdivision rule S∗ with coefficients a∗j which
obeys S∗∆ = N∆S. The corresponding relation between generating functions reads

a∗(z)∆p(zN ) = N(z−1 − 1)a(z)p(zN ) ⇐⇒ a∗(z)(z−N − 1) = N(z−1 − 1)a(z)

⇐⇒ a∗(z) = Na(z)zN−1
z − 1

zN − 1
= NzN−1

a(z)

1 + z + · · ·+ zN−1
.

This division is possible in the ring of Laurent polynomials, because for all i,
∑

j ai−Nj =

1. The contractivity condition now reads sup ‖∆Spi‖ = 1
N sup ‖S∗∆pi‖ ≤ 1

N ‖S
∗‖ sup ‖∆pi‖,

i.e., the contractivity factor of the subdivision rule S is bounded from above by 1
N ‖S

∗‖.
The “displacement-safe” condition of Lemma 4 is fulfilled also, which we leave as an
exercise (averages of points pi are not far from the pi’s).
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The above computation leads to a systematic procedure for checking convergence: we
compute potential contractivity factors 1

N ‖S
∗‖, 1

N2 ‖S2∗‖, and so on, until one of them
is < 1. The multivariate case is analogous but more complicated [19, 17, 4]. ♦
Example 6. Convergence of geodesic corner-cutting rules. Two points a, b of a complete
Riemannian manifold M are joined by a shortest geodesic path t 7→ a ⊕ tv, v = b 	 a,
t ∈ [0, 1]. The difference vector v and thus the path are generically unique, but do not
have to be, if the distance between a and b exceeds both injectivity radii ρinj(a), ρinj(b).
The point x = a⊕tv has dM(a, x) = t dM(a, b), dM(b, x) = (1−t) dM(a, b). It is a Fréchet
mean of points a, b w.r.t. weights (1− t), t.

With these preparations, we consider two elementary operations on sequences, namely
averaging At and corner cutting St,s:

(Atp)i = pi ⊕ t(pi+1 	 pi), (Stsp)j =

{
pi ⊕ t(pi+1 	 pi) if j = 2i,

pi ⊕ s(pi+1 	 pi) if j = 2i+ 1.

The distance of Atpi from Atpi+1 is bounded by the length of the broken geodesic path
which connects the first point with pi+1 and continues on to the second; its length is
bounded by δ(p). Similarly, the distance of successive points of the sequence Stsp, for
0 ≤ t < s ≤ 1 is estimated by max(1− (s− t), s− t)δ(p). It follows immediately that a
concatenation of operations of this kind is a subdivision rule where Lemma 4 applies, if
at least one St,s with 0 < s − t < 1 is involved. Any such concatenation therefore is a
convergent subdivision rule in any complete Riemannian manifold. A classical example
are the rules S(k) = (A1/2)

k ◦ S0,1/2, which insert midpoints,

S(1)p2i = pi, S(1)p2i+1 = pi ⊕
1

2
(pi+1 	 pi),

and then compute k rounds of averages. E.g.,

S(2)p2i = S(1)p2i ⊕ 1
2(S(1)p2i+1 	 S(1)p2i) = pi ⊕ 1

4(pi+1 	 pi),

S(2)p2i+1 = S(1)p2i+2 ⊕ 1
2(S(1)p2i+2 	 S(1)p2i+1) = pi ⊕ 3

4(pi+1 	 pi).

The rule S(2) (Chaikin’s rule, see [5]) is one of de Rham’s corner cutting rules. In the

linear case, S(k) has coefficients aj = 1
2k

(
k
j

)
, apart from an index shift. Its limit curves

are the B-spline curves whose control points are the initial data pj [45].
The corner-cutting rules discussed above are well defined and convergent in any

Hadamard metric space – those spaces have geodesics in much the same way as Riemann-
ian manifolds. Subdivision rules based on geodesic averaging (not necessarily restricted
to values t, s ∈ [0, 1]) have been treated by [51, 54, 21, 20]. We should also mention that
adding a round A1/2 to a subdivision increases smoothness of limit curves, which was
recently confirmed in the manifold case [14]. ♦
Example 7. Convergence of interpolatory rules. A subdivision rule S with dilation
factor N is called interpolatory if SpNi = pi, i.e., the old data points are kept and new
data points are inserted in between. In the linear case, a very well studied subdivision
rule of this kind is the four-point rule proposed by Dyn, Gregory and Levin [18]. We let
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p, S(2)p p, (S(2))5p

Figure 2. Geodesic corner-cutting rules are among those where convergence is not difficult to
show. These images show Chaikin’s rule S(2), with the original data in red, and the result of
subdivision as a yellow geodesic polygon.

Sp2i = pi and

Sp2i+1 = −ωpi−1 + (12 + ω)pi + (12 + ω)pi+1 − ωpi+2

=
pi + pi+1

2
− ω

(
pi−1 −

pi + pi+1

2

)
− ω

(
pi+2 −

pi + pi+1

2

)
.

In the special case ω = 1
16 , the point Sp2i+1 is found by evaluating the cubic Lagrange

polynomial interpolating pi−1, . . . , pi+2, which accounts for the high approximation order
of S. There is in fact a whole series of interpolatory rules based on the idea of evaluating
Lagrange interpolation polynomials (the Dubuc-Deslauriers subdivision schemes, see [8]).
S is a binary “dual” subdivision rule with combinatorial symmetry about edges. Thus

it makes sense to define a Riemannian version of S by means of averages w.r.t. geodesic
midpoints of pi, pi+1 as base points, cf. Equ. (9). Using mpi,pi+1 = pi ⊕ 1

2(pi+1 	 pi), we
let

Tp2i = pi, Tp2i+1 = mpi,pi+1 ⊕
(
− ω(pi−1 	mpi,pi+1)− ω(pi+2 	mpi,pi+1)

)
.

The distance of successive points Tp2i and Tp2i+1 is bounded by half the geodesic dis-
tance of pi, pi+1 plus the length of the vector added to the midpoint in the previous for-
mula. This yields the inequality δ(Tp) ≤ 1

2δ(p) + 2|ω|32δ(p) = (12 + 3|ω|)δ(p). Lemma 4
thus shows convergence, if |ω| < 1/6.

We cannot easily extend this “manifold” four-point rule to more general metric spaces.
The reason is that we used the linear structure of the tangent space. A general discussion
of univariate interpolatory rules is found in [50]. ♦

2.3. Probabilistic interpretation of subdivision in metric spaces. O. Ebner in
[22, 23] gave a probabilistic interpretation of subdivision. This goes as follows. Consider
a linear subdivision rule as in (11), namely

Spi =
∑

j
ai−2jpj = avg(ai−2j ; pj), where ai ≥ 0,

∑
j
ai−2j = 1,(12)
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acting on data p : Zs → Rd. Consider a stochastic process J0, J1, . . . defined as the
random walk on Zs with transition probabilities

P (Jn+1=j | Jn=i) = ai−2j .

Then the expected value of pJn+1 , conditioned on Jn = j is given by

E (pJn+1 | Jn=j) = Spj ,(13)

by definition of the expected value. Now the expectation E (X) of an Rd-valued random
variable X has a characterization via distances: E (X) is that constant c ∈ Rd which is
closest to X in the sense of E (d(X, c)2)→ min. A similar characterization works for the
conditional expectation E (X|Y ) which is the random variable f(Y ) closest to X in the
L2 sense. These facts inspired a theory of random variables with values in Hadamard
metric spaces developed by K.-T. Sturm [46, 47]. The minimizers mentioned above can
be shown to still exist if Rd is replaced by M.

Since the way we compute subdivision by Fréchet means is compatible with the
distance-based formula for expected values, Equation (13) holds true also in the case
that both the expectation and the subdivision rule are interpreted in the Hadamard
space sense. On that basis, O. Ebner could show a remarkable statement on conver-
gence of subdivision rules:

Theorem 8 [23, Th. 1] Consider a binary subdivision rule Tpi = avgF (ai−2j ; pj) with
nonnegative coefficients ai. It produces continuous limits for any data pj in any Hadamard
spaceM if and only if it produces a continuous limit function when acting on real-valued
data.

Sketch of proof. With the random walk (Ji)i=0,1,... defined above, (13) directly implies

(Tnp)J0 = E (Tn−1pJ1 | J0) = E (E (Tn−2pJ2 | J1) | J0) = . . .

= E (. . .E (E (pJn | Jn−1) | Jn−2) . . . | J0).(14)

Unlike for Rd-valued random variables, there is no tower property for iterated condition-
ing, so in general (Tnp)J0 6= E (pJn |J0). That expression has a different interpretation:
T is analogous to the linear rule S of (12), which is nothing but the restriction of the
general rule T to data in Euclidean spaces. Its n-th power Sn is a linear rule of the form

(Snq)i =
∑
a
[n]
i−2njqj , and we have

E (qJn | J0) = (Snq)J0 , if S acts linearly on data q : Zs → Rd.(15)

This follows either directly (computing the coefficients of the n-th iterate Sn corresponds
to computing transition probabilites for the n-iterate of the random walk), or by an
appeal to the tower property in (14).

Sturm [46] showed a Jensen’s inequality for continuous convex functions Ψ,

Ψ
(
E (. . . (E (pJn | Jn−1) . . . | J0)

)
≤ E

(
Ψ(pJn) | J0

)
.
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We choose Ψ = dM(·, x) and observe that qJn = dM(pJn , x) is a real-valued random
variable. Combining Jensen’s inequality with (14) and (15) yields

dM(Tnpi, x) ≤
∑

k
a
[n]
i−2nk dM(pk, x), (for any x)

dM(Tnpi, T
npj) ≤

∑
k,l
a
[n]
i−2nka

[n]
j−2nl dM(pk, pl) (by recursion).

To continue, we need some information on the coefficients a
[n]
i . For that, we use the limit

function φ : Rs → [0, 1] generated by applying T (or rather, S), to the delta sequence.

By construction (see Lemma 4), |a[n]j −φ(2−nj)| → 0 as n→∞. These ingredients allow
us to show existence of n with Tn contractive. �

As a corollary we get, for instance, that subdivision with nonnegative coefficients works
in Posn in the same way as in linear spaces, as far as convergence is concerned. Since
Posn is not only a Hadamard metric space, but even a smooth Riemannian manifold,
also the next section will yield a corollary regarding Posn.

2.4. The convergence problem in manifolds. The problem of convergence of sub-
division rules in manifolds (Riemannian manifolds, groups, and symmetric spaces) was
at first treated by means of so-called proximity inequalities which compare linear rules
with their analogous counterparts in manifolds. This approach was successful in study-
ing smoothness of limits (see Section 3 below), but less so for convergence. Unless
subdivision rules are of a special kind (interpolatory, corner-cutting , . . .) convergence
can typically be shown only for “dense enough” input data, with very small bounds on
the maximum allowed density. On the other hand numerical experiments demonstrate
that a manifold rule analogous to a convergent linear rule usually converges. This dis-
crepancy between theory and practice is of course unsatisfactory from the viewpoint
of theory, but is not so problematic from the viewpoint of practice. The reason is the
stationary nature of subdivision — if δ(p) is too big to infer existence of a continuous
limit S∞p, we can check if δ(Skp) is small enough instead. As long as S converges, this
leads to an a-posteriori proof of convergence.

More recently, convergence of subdivision rules of the form Spi = avgF (ai−Nj ; pj) in
Riemannian manifolds has been investigated along the lines of Lemma 4. This work
is mainly based on the methods of H. Karcher’s seminal paper [39]. So far, only the
univariate case of data p : Z→M has been treated successfully, cf. [53, 37, 36].

There are two main cases to consider. In Cartan-Hadamard manifolds (curvature ≤ 0)
the Fréchet mean is well defined and unique also if weights are allowed to be negative
[37, Th. 6]. Subdivision rules are therefore globally and uniquely defined. We have the
following result:

Prop. 9 [37, Th. 11] Consider a univariate subdivision rule Spi = avgF (ai−Nj ; pj) act-
ing on sequences in a Cartan-Hadamard manifold M. Consider also the norm ‖S∗‖ of
its linear derived subdivision rule according to Example 5. If

γ =
1

N
‖S∗‖ < 1,

then S meets the conditions of Lemma 4 (with contractivity factor γ) and produces
continuous limits.
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1
16

(−1, 0, 9, 1, 9, 0,−1) 1
32

(−1,−1, 21, 13, 13, 21,−1,−1)
δ(p) < 0.31 δ(p) < 0.4

Figure 3. Subdivision rules Spj = avgF (aj−2i; pi) based on the Fréchet mean operating on
sequences on the unit sphere. The images visualize the interpolatory 4-point rule (left) and a
rule without any special properties. We show the coefficient sequence aj and the bound on δ(p)
which ensures convergence.

This result is satisfying because it allows us to infer convergence from a condition
which is well known in the linear case, cf. [17]. If 1

N ‖S
∗‖ ≥ 1, we can instead check if

one of 1
Nn ‖S∗n‖, n = 2, 3, . . . is smaller than 1. If this is the case, then the manifold

subdivision rule analogous to the linear rule Sn converges.

Subdivision in Riemannian manifolds with positive curvature. Recent work [36] deals
with spaces of positive curvature, and initial results have been achieved on the unit
sphere, for subdivision rules of the form Spi = avgF (ai−2j ; pj). Figure 3 shows two
examples. One aims at finding a bound δ0 such that for all data p with δ(p) < δ0, S acts
in a contractive way so that Lemma 4 shows convergence.

Rules defined in a different way are sometimes much easier to analyze. E.g. the
Lane-Riesenfeld subdivision rules defined by midpoint insertion, followed by k rounds of
averaging, can be transferred to any complete Riemannian manifold as a corner-cutting
rule and will enjoy continuous limits, see Example 6. Similarly, the interpolatory four-
point rule can be generalized to the manifold case in the manner described by Example 7,
and will enjoy continuous limits. The generalization via the Fréchet mean (Fig. 3) on
the other hand, is not so easy to analyze. The approach by [36] is to control δ(Sp) by

introducing a family S(t), 0 ≤ t ≤ 1, of rules where S(0) is easy to analyze, and S(1) = S.
If one manages to show δ(S(0)p) < γ1δ(p) and ‖ ddtS

(t)pi‖ ≤ Cδ(p), then the length of

each curve t 7→ S(t)pi is bounded by Cδ(p), and

δ(Sp) ≤ sup
i

dM(Spi, S
(0)pi) + δ(S(0)p) + sup

i
dM(Spi+1, S

(0)pi+1)

≤ (γ1 + 2C)δ(p).

Contractivity is established if γ1 + 2C < 1, in which case Lemma 4 shows convergence.
The bounds mentioned in Fig. 3 have been found in this way. Estimating the norm of
the derivative mentioned above involves estimating the eigenvalues of the Hessian of the
right hand side of (5).
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The state of the art regarding convergence of refinement schemes. Summing up, con-
vergence of geometric subdivision rules is treated in a satisfactory manner for special
rules (interpolatory, corner-cutting), for rules in special spaces (Hadamard spaces and
Cartan-Hadamard manifolds), and in the very special case of the unit sphere and univari-
ate rules. General manifolds with positive curvature have not been treated. Multivariate
data are treated only in Hadamard metric spaces and for subdivision rules with nonneg-
ative coefficients. In other situations, we know that convergence happens only for “dense
enough” input data, where the required theoretical upper bounds on δ(p) are very small
compared to those inferred from numerical evidence.

3. Smoothness analysis of subdivision rules

For linear subdivision rules, the question of smoothness of limits can be considered
as largely solved, the derived rule S∗ introduced in Example 5 being the key to the
question if limits are smooth. Manifold subdivision rules do not always enjoy the same
smoothness as the linear rules they are derived from. The constructions mentioned in
Section 2 basically yield manifold rules whose limits enjoy C1 resp. C2 smoothness if
the original linear rule has this property, but this general statement is no longer true
if C3 or higher smoothness is involved. Manifold rules generated via Fréchet means
or via projection [26, 59] retain the smoothness of their linear counterparts. Others,
e.g. constructed by means of averages w.r.t. basepoints in general do not. This is to
be expected, since the choice of basepoint introduces an element of arbitrariness into
manifold subdivision rules. The following paragraphs discuss the method of proximity
inequalities which was successfully employed in treating the smoothness of limits.

3.1. Derivatives of limits. A subdivision rule S acting on a sequence p in Rd converges
to the limit function S∞p, if the refined data Skp, interpreted as samples of functions fk
at the finer grid N−kZ, approach that limit function (see Definition 3):

(S∞p)(ξ) ≈ fk(ξ) = (Skp)Nkξ,

whenever Nkξ is an integer. A similar statement holds for derivatives, which are ap-
proximated by finite differences. With h = N−k, we get

(S∞p)′(ξ) ≈ fk(ξ + h)− fk(ξ)
h

= Nk((Skp)Nkξ+1 − (Skp)Nkξ)

= (∆(NS)kp)Nkξ = (S∗k∆p)Nkξ.

Here S∗ is the derived rule defined by the relation S∗∆ = N∆S, see Ex. 5. For the r-th
derivative of the limit function we get

(S∞p)(r)(ξ) ≈ (∆r(N rS)kp)Nkξ = ((S∗∗
r times︷ ︸︸ ︷···∗)k∆rp)Nkξ.

These relations, except for references to derived rules, are valid even if S does not act
linearly. S could be a manifold rule expressed in a coordinate chart, or it could be acting
on a surface contained in Rd.

If S does act linearly, one proves that S has C1 smooth limits, if S∗ has continuous
ones, and in that case (S∞p)′ = S∗∞∆p. To treat higher order derivatives, this statement
can be iterated. For multivariate data pi, i ∈ Zs, the situation is analogous but more
complicated to write down. For the exact statements, see [17, 4].
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3.2. Proximity inequalities. Smoothness from proximity. Manifold subdivision rules
were first systematically analyzed with regard to derivatives by [51]. The setup is a
linear rule S and a nonlinear rule T both acting on data contained in the same space Rd.
T could be a manifold version of S, with Rd being a coordinate chart of the manifold;
or T could act on points of a surface contained in Rd. Then S, T are in proximity, if

supi ‖Spi − Tpi‖ ≤ Cδ(p)2.(16)

This formula is motiviated by a comparison of the shortest path between two points
within in a surface (which is a geodesic segment), with the shortest path in Euclidean
space (which is a straight line). These two paths differ by exactly the amount stated in
(16). Two statements were shown in [51]:

(1) Certain manifold subdivision rules T derived from a convergent linear rule S
obey the proximity inequality (16) whenever data are dense enough (i.e., δ(p) is
small enough).

(2) in that case, if limit curves of S enjoy C1 smoothness, then T produces continuous
limit curves for data with d(p) small enough; and all continuous limit curves enjoy
C1 smoothness.

To demonstrate how proximity inequalities work, we prove a convergence statement like
the ones given by [54, Th. 1] or [51, Th. 2+3] (with slightly different proofs).

Prop. 10 Assume the setting of Equ. (16), with a subdivision rule T being in proxim-
ity with a linear subdivision rule S. We also assume 1

N ‖S
∗‖ < 1.3 Then T produces

continuous limit curves from data p with δ(p) small enough.

Proof. Generally supi ‖pi − qi‖ ≤ K =⇒ δ(p) ≤ δ(q) + 2K. Thus (16) implies

δ(Tp) ≤ δ(Sp) + 2Cδ(Tp)2 ≤ 1

N
‖S∗‖δ(p) + 2Cδ(p)2.

Choose ε > 0 with λ := 1
N ‖S

∗‖+ 2Cε < 1. If δ(p) < ε, then T is contractive:

δ(Tp) ≤ (
1

N
‖S∗‖+ 2Cδ(p))δ(p) ≤ λδ(p).

By recursion, δ(T k+1p) ≤ λδ(T kp). As to the displacement-safe condition of Lemma 4,
recall from Example 5 that S has it. For T , observe that

‖TpNi − pi‖ ≤ ‖TpNi − SpNi‖+ ‖SpNi − pi‖ ≤ Cδ(p)2 + C ′δ(p) ≤ (εC + C ′)δ(p).

Now Lemma 4 shows convergence. �

The convergence of vectors Nk∆T kp to derivatives of the limit function T∞p is proved in
a way which is analogous in principle. The method was extended to treat C2 smoothness
by [49], using the proximity condition

supi ‖∆Spi −∆Tpi‖ ≤ C(δ(p)δ(∆p) + δ(p)3).

A series of publications treated C2 smoothness of Lie group subdivision rules based
on log/exp averages [52, 31], the same in symmetric spaces [53], C1 smoothness in the
multivariate case [25], higher order smoothness of interpolatory rules in groups [27,
62], and higher order smootheness of projection-based rules [26, 59]. The proximity

3implying convergence of the linear rule S. N is the dilation factor, S∗ is the derived rule, cf. Ex. 5.
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conditions involving higher order smoothness become rather complex, especially in the
multivariate case.

Smoothness equivalence. If a manifold subdivision rule T is created on basis of a linear
rule S, it it interesting to know if the limit functions of T enjoy the same smoothness
as the limits of S. For C1 and C2 smoothness, T can basically be constructed by any
of the methods described above, and it will enjoy the same smothness properties as S
(always assuming that convergence happens, and that the manifold under consideration
is itself as smooth as the intended smoothness of limits). This smoothness equivalence
breaks down for Ck with k ≥ 3.

A manifold subdivision rule based on the log/exp construction, using averages w.r.t.
basepoints,

Tpi = avgmi
(ai−Nj ; pj),

does not enjoy Ck smoothness equivalence for k ≥ 3 unless the base points mi obey
a technical condition which can be satisfied e.g. if they themselves are produced by
certain kinds of subdivision [60, 29]. Necessary and sufficient conditions for smoothness
equivalence are discussed by [13]. We pick one result whose proof is based on this method
(using (10) for a “base point” interpretation of Fréchet means):

Theorem 11 [29, Th. 4.3] Let S be a stable4 subdivision rule Spi = avg(ai−Nj; pj)

acting on data p : Zs → Rd, which is convergent with Cn limits. Then all continuous
limits of its Riemannian version Tpi = avgF (ai−Nj; pj) likewise are Cn.

We should also mention that proximity conditions relevant to the smoothness analysis
of manifold subdivision rules can take various forms, cf. the “differential” proximity
condition of [30, 13, 12].

Finally we point out a property which manifold rules share with linear ones: For any
univariate linear rule S which has Ck limits, the rule Ak1/2 ◦ S has limits of smoothess

Cn+k, where A1/2 is midpoint-averaging as described by Ex. 6. It has been shown in
[14] that an analogous statement holds true also in the manifold case, for a general class
of averaging operators.

3.3. Subdivision of Hermite data. Hermite subdivision is a refinement process acting
not on points, but on tangent vectors, converging to a limit and its derivative simulta-
neously. In the linear case, data (p, v) : Z → Rd × Rd undergo subdivision by a rule S
which obeys basic shift invariance SL = LNS. The interpretation of pi as points and vi
as vectors leads to

S
(
p
v

)
i

=

( ∑
j ai−Njpj +

∑
j bi−Njvj∑

j ci−Njpj +
∑

j bi−Njvj .

)
, where

{∑
j ai−Nj = 1,∑
j ci−Nj = 0.

(17)

4“Stable” means existence of constants C1, C2 with C1‖p‖ ≤ ‖S∞p‖∞ ≤ C2‖p‖ for all input data
where ‖p‖ := supi ‖pi‖ is bounded. Stable rules with Cn limits generate polynomials of degree ≤ n,
which is a property used in the proof.
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(p0, v0)

(p1, v1)

(p2, v2)

f

Figure 4. Left: Hermite data (pi, vi) in R2 and the result of one round subdivision by a linear
Hermite rule S. Center: Limit curve f (f ′ is not shown). Right: Hermite data (pi, vi) in the
group SO3, and the limit curve generated by a group version of S. Points pi ∈ SO3 and tangent
vectors vi ∈ Tpi

SO3 are visualized by means of their action on a spherical triangle. These figures
appeared in [42] (reprinted with permission).

S is invariant w.r.t. translations, which act via p 7→ p+ x on points, but act identically
on vectors. Iterated refinement creates data Sk

(
p
v

)
converging to a limit f : R→ Rd,(

f(ξ)

f ′(ξ)

)
= lim

k→∞

(
1

0

0

Nk

)
Sk
(
p

v

)
Nkξ

, whenever Nkξ ∈ Z.

We say that S converges, if the limit (f, f ′) exists and f enjoys C1 smoothness, with f ′

then being continuous. A manifold version of S, operating on data(
p
v

)
: Z→ TM, i.e., vi ∈ TpiM,

faces the difficulty that each vi is contained in a different vector space. One possibility
to overcome this problem is to employ parallel transport ptqp : TpM → TqM between
tangent spaces. In Riemannian manifolds, a natural choice for ptqp is parallel transport
w.r.t. the canonical Levi-Civita connection along the shortest geodesic connecting p and
q, cf. [9]. In groups, we can simply choose ptqp as left translation by qp−1 resp. the
differential of this left translation. Then the definition

S
(
p
v

)
=
(
q
w

)
with

{
qi =mi⊕

(∑
j ai−Nj(pj 	mi) +

∑
j bi−Nj ptmi

pj vj
)

wi = ptqimi

(∑
j ci−Nj(pj 	mi) +

∑
j di−Nj ptmi

pj vj
)

is meaningful (provided the base point mi is chosen close to pbi/Nc). In a linear space,

this expression reduces to (17). C. Moosmüller could show C1 smoothness of limits of
such subdivision rules, by methods in the spirit of Section 3.2, see [41, 42].

3.4. Subdivision with irregular combinatorics. A major application of subdivision
is in Computer Graphics, where it is ubiquitously used as a tool to create surfaces from a
finite number of handle points whose arrangement is that of the vertices of a 2D discrete
surface. That surface usually does not have the combinatorics of a regular grid.

Two well known subdivision rules acting on such data are the Catmull-Clark rule and
the Doo-Sabin rule, see [3, 6]. Such subdivision rules create denser and denser discrete
surfaces which are mostly regular grids but retain a constant number of combinatorial
singularities. This implies that the limit surface is locally obtained via Definition 3, but
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with a nontrivial overlapping union of several such limits as one approaches a combina-
torial singularity. A systematic way of analyzing convergence and smoothness was found
by U. Reif [44], see also the monograph [43]. There is a wealth of contributions to this
topic, mostly because of its relevance for Graphics.

A. Weinmann in [55, 57, 56] studied intrinsic manifold versions of such subdivision
rules. They are not difficult to define, since the linear subdivision rules which serve as
a model are defined in terms of averages. We do not attempt to describe the methods
used for establishing convergence and smoothness of limits other than to say that a
proximity condition which holds between a linear rule S and a nonlinear rule T even-
tually guarantees that in the limit, smoothness achieved by S carries over to T — the
perturbation incurred by switching from a linear space to a manifold is not sufficient to
destroy smoothness. Figure 5 illustrates a result obtained by [55].

4. Multiscale transforms

4.1. Definition of intrinsic multiscale transforms. A natural multiscale represen-
tation of data, which does not suffer from distortions caused by the choice of more or less
arbitrary coordinate charts, is required to be based on operations which are themselves
adapted to the geometry of the data. This topic is intimately connected to subdivision,
since upscaling operations may be interpreted as subdivision.

A high-level introduction of certain kinds of multiscale decompositions is given by
[33]. We start with an elementary example.

Example 12. A geometric Haar decomposition and reconstruction procedure. Consider
data p : Z→M, and the upscaling rule S and downscaling rule D,

(. . . , p0, p1, . . .)
S7−→ (. . . , p0, p0, p1, p1, . . .)

(. . . , p0, p1, . . .)
D7−→ (. . . ,mp0,p1 ,mp1,p2 , . . .), where ma,b = a⊕ 1

2
(b	 a).

The use of ⊕ and 	 refers to the exponential mapping, as a means of computing differ-
ences of points, and adding vectors to points. D is a left inverse of S but not vice versa:

Figure 5. Here data pi in the unit sphere Σ2 and Pos3-valued data qi are visualized by plac-
ing the ellipsoid with equation xT qix = 1 in the point pi ∈ Σ2. Both data undergo iterative
refinement by means of a Riemannian version S of the Doo-Sabin subdivision rule. For given
initial data p, q which have the combinatorics of a cube, the four images show Sjp and Sjq,
for q = 1, 2, 3, 4 (from left). The correspondence (Skp)i 7→ (Skq)i converges to a C1 immersion
f : Σ2 → Pos3 as k →∞. These figures appeared in [55] (reprinted with permission).
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SDp 6= p in general. However, if we store the difference between p and SDp as detail
vectors q:

(. . . , q0, q1, . . .) = (. . . , p0 	mp0,p1 , p2 	mp2,p3 , . . . )

then the reconstruction procedure

p2i = mp2i,p2i+1 ⊕ qi, p2i+1 = mp2i,p2i+1 	 qi
recovers the information destroyed by downsampling. ♦

More systematically, we have employed two upscaling rules S,R and two downscaling
rules D,Q which obey

SL = L2S, RL = L2R, DL2 = LD, DQ2 = LQ

(L is left shift). We have data p(j) at level j, j = 0, . . . ,M , where we interpret the data
at the highest (finest) level as given, and the data at lower (coarser) level computed by

downscaling. We also store details q(j) at each level:

p(j−1) = Dp(j), q(j) = Q(p(j) 	 Sp(j−1)).(18)

We require that upscaled level j − 1 data and level j details can restore level j data:

p(j) = Sq(j−1) ⊕Rq(j).(19)

Generally, S, D compute points from points, so they are formulated via averages:

Spi = avg(ai−2j ; pj), Dpi = avg(a2i−j ; pj).

In Example 12, averages are computed w.r.t. base points pbi/2c for S resp. pi for D, and

coefficients aj and bj vanish except a0 = a1 = 1, b0 = b1 = 1
2 .

The downscaling operator Q acts on tangent vectors vi = pi 	 (SDp)i ∈ TpiM, so it
has to deal with vectors potentially contained in different vector spaces. In our special
case, Q simply forgets one half of the data:

(Qp)i = p2i.

Finally, the upscaling operator R takes the vectors stored in q(j) and converts them
into vectors which can be added to upscaled points Sp(j−1). Thus R potentially has
to deal with vectors contained in different tangent spaces. In our special case, the

points (Sp(j−1))2i (Sp(j−1))2i+1 both coincide with p
(j−1)
i , and that is also the point

p(j)

Q(id	SD)

{{
D
��

q(j) p(j−1)

Q(id	SD)

{{
D
��

q(j−1) p(j−2)

q(j−1)

⊕R(·) ##

p(j−2)

S
��

q(j)

⊕R(·) ##

p(j−1)

S
��

p(j)

Figure 6. The decomposition and re-
construction chains of operations in
a geometric multiscale decomposition
based on upscaling and downscaling
S,D for points, and upscaling and
downscaling R,Q for detail vectors.
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where the detail coeffient q
(j)
i is attached to. We therefore might be tempted to write

(Rq)2i = qi, (Rq)2i+1 = −qi. This simple rule however does not take into account
that along reconstruction, data and details could have been modified, and no longer fit
together. We therefore use parallel transport to move the vector to the right tangent
space, just in case:

(Rq)2i = pt(p
(j−1))i(qi), (Rq)2i+1 = −(Rq)2i.

The symbol pt(p
(j−1))i(qi) refers to transporting qi to a tangent vector attached to

(p(j−1))i, see Section 3.3.
The operations S,R,D,Q must be compatible, in the sense that reconstruction is

a left inverse of downscaling plus computing details. While in the linear case, where
S,D,R,Q are linear operators on `∞(Rd), one usually requires QR = id and QS = 0 as
well as SD + RQ = id, in the geometric case we must be careful not to mix operations
on points with operations on tangent vectors. We therefore require

SDp⊕ (RQ(p	 SDp)) = p.(20)

Example 13. Interpolatory wavelets. Consider an interpolatory subdivision rule S

with dilation factor 2, i.e., Sp2i = pi, and the forgetful downscaling operator p
(j−1)
i =

(Dp(j))i = p
(j)
2i . If we store as details the difference vectors between SDp and p for odd

indices, the data points p2i+1 can be easily reconstructed:

p
(j−1)
i = p

(j)
2i , q

(j)
i = p

(j)
2i+1 	 Sp

(j−1) (decomposition),

p
(j)
2i = p

(j−1)
i , p

(j)
2i+1 = (Sp(j−1))2i+1 ⊕ q(j)i (reconstruction).

This procedure fits into the general scheme described above if we we let Q = DL (L is
left shift) and define the upscaling of details by (Rq)2i = 0, (Rq)2i+1 = qi. To admit the
possibility that before reconstruction, data and details have been changed, we define

(Rq)2i = 0 ∈ TxM, (Rq)2i+1 = ptx(q
(j)
i ) ∈ TxM, where x = Sp

(j−1)
2i+1 ,

in order to account for the possibility that q
(j)
i is not yet contained in the “correct”

tangent space. The decimated data p(j−1) together with details q(j) (j ≤ M) may be
called a geometric interpolatory-wavelet decomposition of the data at the finest level
p(M). That data itself comes e.g. from sampling a function, cf. [10]. ♦

Definability of multiscale transforms without redundancies. The previous examples use
upscaling and downscaling operations which are rather simple, except that in Example 13
one may use any interpolatory subdivision rule. It is also possible to extend Example
12 to the more general case of a midpoint-interpolating subdivision rule S, which is a
right inverse of the decimation operator D. In [33] it is argued that it is highly unlikely
that in the setup described above, which avoids redundancies, more general upscaling
and downscaling rules will manage to meet the compatibility condition (20) needed for

perfect reconstruction. In the linear case, where all details q
(j)
i are contained in the

same vector space, (20) is merely an algebraic condition on the coefficents involved in
the definition of S,D,Q,R which can be solved. In the geometric case, the usage of
parallel transport makes a fundamental difference.
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4.2. Properties of multiscale transforms. Charcterizing smoothness by coefficient
decay. One purpose of a multiscale decomposition of data is to read off properties of

the original data. Classically, the faster the magnitude of detail coefficients q
(j)
i decays

as j →∞, the smoother the original data. A corresponding result for the interpolatory
wavelets of Example 13 in the linear case is given by [10, Th. 2.7]. To state a result
in the multivariate geometric case, let us first introduce new notation for interpolatory
wavelets, superseding Example 13.

We consider an interpolatory subdivision rule S acting with dilation factor N on data
p : Zs → M. We define data p(j) at level j as samples of a function f : Rs → M, and
construct detail vectors similar to Example 13:

p
(j)
i = f(N−ji), q(j) = p(j) 	 Sp(j−1), p(j) = Sp(j−1) ⊕ q(j).(21)

This choice is consistent with the decimation operator Dpi := pNi. The difference to
Example 13 is firstly that here we allow multivariate data, and secondly that we do not

“forget” redundant information such as q
(j)
Ni = 0.

The result below uses the notation Lip γ for functions which are Ck with k = bγc
and whose k-th derivatives are Hölder continuous of exponent γ−k. The critical Hölder
regularity of a function f is the supremum of γ such that f ∈ Lip γ.

Theorem 14 [32, Th. 8] Assume that the interpolatory upscaling rule S, when acting
linearly on data p : Zs → R, reproduces polynomials of degree ≤ d and has limits of critial
Hölder regularity r.

Consider a continous function f : Rs →M, and construct detail vectors q(j) at level
j for the function x 7→ f(σ · s) for some σ > 0 (whose local existence is guaranteed for
some σ > 0).

Then f ∈ Lipα, α < d implies that detail vectors decay with supi ‖q
(j)
i ‖ ≤ C ·N−αj as

j →∞. Conversely, that decay rate together with α < r implies f ∈ Lipα. The constant
is understood to be uniform in a compact set.

The manifold M can be any of the cases we defined ⊕ and 	 operations for. Of
course, smoothness of f : Rs →M is only defined up to the intrinsic smoothness of M
as a differentiable manifold. An example of an upscaling rule S is the four-point scheme
with parameter 1/16 mentioned in Example 7, which reproduces cubic polynomials and
has critical Hölder regularity 2, cf. [18].

The proof is conducted in a coordinate chart (it does not matter which), and uses
a linear vision of the theorem as an auxiliary tool. It further deals with the extensive
technicalities which surround proximity inequalities in the multivariate case.

It is worth noting that A. Weinmann in [56] succeeded in transferring these ideas
to the combinatorially irregular setting. The results are essentially the same, with the
difference that one can find upscaling rules only up to smoothness 2− ε.

Stability. Compression of data is a main application of multiscale decompositions, and
it is achieved e.g. by thresholding or quantizing detail vectors. It is therefore important
to know what effect these changes have when reconstruction is performed. What we
bascially want to know is whether reconstruction is Lipschitz continuous. In the linear
case the problem does not arise separately, since the answer is implicitly contained in
norms of linear operators. For the geometric multiscale transforms defined by upscaling
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operations S,R and downscaling operations D,Q according to (20), this problem is

discussed by [33]. Consider data p(j) at level j with p(j−1) = Dp(j) such that δ(p(j)) ≤
Cµj , for some µ < 1. Consider recursive reconstruction of data p(j) from p(0) and details
q(1), . . . , q(j) according to Equation (19). Then there are constants Ck such that for

modified details q̃(j), leading to modified data p̃(j), we have the local Lipschitz-style
estimate

supi ‖p
(0)
i − p̃

(0)
i ‖ ≤ C1, supi ‖q

(k)
i − q̃

(k)
i ‖ ≤ C2µ

k

=⇒ supi ‖p
(j)
i − p̃

(j)
i ‖ ≤ C3

(
supi ‖p

(0)
i − p̃

(0)
i ‖+

∑j

k=1
supi ‖q

(k)
i − q̃

(k)
i ‖

)
.

It refers to a coordinate chart of the manifold M (it does not matter which).

Approximation Order. For an interpolatory upscaling operator S, and data pi ∈ M
defined by sampling, pi = f(h · i), we wish to know to what extent the original function
differs from the limit created by upscaling the sample. We say that S has approximation
order r, if there are C > 0, h0 > such that for all h < h0

supx dM(S∞f(x/h), f(x)) ≤ C · hr.

It was shown by [61] that a manifold subdivision rule has in general the same approxi-
mation order as the linear rule we get by restricting S to linear data.

This question is directly related to stability as discussed above: Both f and S∞p can
be reconstructed from samples p(j), if h = N−j : Detail vectors q(k), k > j, according to
(21) reconstruct f , whereas details q̃(k) = 0 reconstruct S∞p. Stability of reconstruction

and knowledge of the asymptotic magnitude of details q
(k)
i , k > j directly corresponds to

approximation order. On basis of this relationship one can again show an approximation
order equivalence result, cf. [28].

Conclusion. The preceding pages give an account of averages, subdivision, and multi-
scale transforms defined via geometric operations which are intrinsic for various geome-
tries (metric spaces, Riemannian manifolds, Lie groups, and symmetric spaces). We
reported on complete solutions in special cases (e.g. convergence of subdivision rules in
Hadmard metric spaces) and on other results with much more general scope as regards
the spaces and subdivision rules involved, but with more restrictions on the data they
apply to.
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