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ABSTRACT. We study error propagation through implicit geometric problems by lin-
earizing and estimating the linearization error. The method is particularly useful for
quadratic constraints, which turns out to be no big restriction for many geometric
problems in applications.

1. INTRODUCTION

Geometric constraint solving is a term of Computer-Aided Design and means the
problems which arise when the location of geometric objects (points, lines, . . . ) is
described via geometric relations (distances, angles, . . . ) between them. The issues
crucial for engineering applications are solvability of constraint problems and their
sensitivity to errors [15]. Many methods have been proposed for geometric constraint
solving: based on dependency graphs [4, 21, 9, 20, 23], rule-based [5, 10, 11, 29] and
numerical ones [19, 22], and methods based on symbolic computing [10, 11, 17]. See
also the survey article [14].

From the many works on geometric constraints with a view towards applications we
mention the book [8], which extensively deals with distance constraints, and the paper
[27].

In this paper we are concerned with the second of the two problems mentioned
above, i.e., with the propagation of errors through implicit constraints. Based on the
concept of tolerance zone [14, 16, 24, 26, 30], we show how to handle error propaga-
tion through implicit constraints in a way independent of solvability. The scope of this
paper in so far exceeds CAD applications as systems of geometric constraints whose
mere solution presents a challenge do not occur very often in practice.

We assume that a certain number of geometric objects is given imprecisely – each
of them is only known to be contained in a certain tolerance zone. Other geometric
objects are located via constraints, and we want to give tolerance zones for them. This
is done by linearizing the system of constraints and estimating the linearization error.
For each configuration, this works only up to a certain maximum size of tolerance
zones, dependent on the particular instance of the constraint problem we wish to an-
alyze, on the number of objects and constraints involved, and on the behavior of the
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constraints’ derivatives. In engineering applications, the maximum size of indecom-
posable constraint problems (see Section 2.2) usually is small, and we shall see that
the maximum sizes of tolerance zones in our examples are well above the tolerances
used in, say, mechanical engineering. The phenomenon that a tolerance analysis of a
particular instance of a constraint problem yields unusually small maximal tolerance
zones is then due to the fact that this instance is ill-conditioned (see Examples 10 and
11).

Estimating the linearization error in the way presented below is most efficient if the
constraints are quadratic polynomials. The reason for this is that these constraints are
reproduced exactly by their second order Taylor expansion. As it is hard to think of
geometric relations which are not expressible via quadratic polynomials, this means
that for many applications estimating the norms of second derivatives in a certain re-
gion as described in Section 5.3 can be replaced by computing those norms once.

The concept of tolerance zone in a certain way generalizes interval arithmetic. An
interval may be seen as a tolerance zone of a real number, whose location on the
real axis is known to lie in some interval. If the coordinates of a geometric object,
like a point in R

3, are known to lie in intervals, then the coordinate vector of that
geometric object is contained in a certain box which is the product body of those
intervals. So using boxes as tolerance zones for geometric objects is the same as using
interval arithmetic for these objects’ coordinates. One reason why we consider more
general tolerance zones is that they can be made invariant with respect to the action
of transformation groups acting on geometric objects. Another reason is that tolerance
zones, being more general by definition, automatically yield bounds which are at least
as tight as those obtained for intervals. A short discussion of these topics can be also
found in the introduction to [30].

2. GEOMETRIC CONSTRAINTS

2.1. Definitions and Coordinatization. We consider two kinds of geometric entities:
the fixed variables p1, p2, . . . , and the moving variables q1,q2, . . . They can be real
numbers, points or lines, for instance. We assume that certain equations ci(p1, p2, . . . ,
q1, q2, . . .) = 0 (the constraints) have to hold true, and we assume that knowledge of
the fixed variables together with the constraints determines the moving variables not
necessarily uniquely, but locally so.

We assume that all geometric entities under consideration are coordinatized in some
way:

Example 1. In the Euclidean plane we introduce a Cartesian coordinate system such
that a point is represented by two real numbers (ξ ,η). The line with equation n1ξ +
n2η + d = 0 is represented by coordinates (n1,n2,d) which obey the side condition
n2

1 +n2
2 = 1. ♦
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The coordinates of the fixed variables pi are put together in a list “x”, and likewise
the list “y” comprises the list of coordinates of the variables qi:

x = (x1, . . . ,xr1
︸ ︷︷ ︸

p1

,xr1+1, . . . ,xr1+r2
︸ ︷︷ ︸

p2

, . . . ,xn)

y = (y1, . . . ,ys1
︸ ︷︷ ︸

q1

,ys1+1, . . . ,ys1+s2
︸ ︷︷ ︸

q2

, . . . ,ym).
(1)

The system of constraints then is a twice continuously differentiable function

F : R
n ×R

m → R
m : F(x1, . . . ,xn,y1, . . . ,ym) = (c1(x,y), . . . ,cm(x,y)),(2)

where each component ci(x,y) represents a constraint. Solving the constraint problem
means finding x,y such that F(x,y) = 0.
Remark: In (2) the number of constraints equals the number of variable coordinates.
In general, if the Jacobian of F with respect to y1, . . . ,ym has maximal rank, there
are exactly m constraints needed to determined m variables locally. If there are more
than m constraints, the solvability of the system is due to a nontrivial relation between
the constraints, and some constraints may be deleted in order to have the same set of
solutions locally.

In case the Jacobian does not have full rank, it is possible that less than m equations
determine m variables. For algebraic and analytic equations, such a singularity happens
either for all x, or for almost no x. In fact, any system of constraints can be turned
into one which is always singular, by simply considering the equation ∑ci(x,y)

2 = 0
instead of F(x,y) = 0. Such problems may be considered ill-posed. In view of the
‘almost no’ statement above, we consider only systems of constraints whose number
equals the number of variable coordinates. ♦
Example 2. If ci represents a distance constraint regarding two points, one fixed, and
one moving, then it has the form ci(x,y) = (x j − yk)

2 +(x j+1 − yk+1)
2 − d. Here the

fixed and the moving point under consideration are represented by the coordinates
(x j,x j+1) and (yk,yk+1), respectively. An incidence constraint concerning a point and
a line, both moving, has the form ci(x,y) = yiyk + yi+1yk+1 + yk+2. The fact that the
coordinates (yk,yk+1,yk+2) of a line must obey the side condition y2

k + y2
k+1 −1 = 0 is

taken into account by adding just this equation as one further constraint. ♦
2.2. Graphable Constraint Problems and Decomposability. If each constraint in-
volves exactly two of the given variables, a graph with vertices p1, p2, . . . , q1, q2, . . .
is defined in the obvious way, with one edge per constraint. Additional edges are those
between any two fixed variables. A constraint which involves only one variable is
shown as a loop in the graph.

Such a graph may contain information on the generic solvability of a constraint
problem: Constraint graphs have been used in order to decompose the problem of solv-
ing a given system of constraints (i.e., to find the qi’s, if the p j’s are given) into smaller
subproblems (see the introductory references which refer to graph-based methods). In
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FIGURE 1. Constraint graphs for Examples 3, 4, and 5 (from left to
right). The edges which connect fixed variables are indicated by double
lines.

this paper we are not concerned with this topic, which in Computer-Aided Design is
a very important one, considering the sheer size of constraint problems which occur.
This paper is relevant for applications in so far as it presents a method for the toler-
ance analysis of non-trivial indecomposable constraint problems. We give three simple
examples.
Example 3. The points p1 = (x1,x2), p2 = (x3,x4), and q1 = (y1,y2) in the Euclidean
plane R

2 are connected by two distance constraints ci(x,y) = ‖pi−q1‖2−d2
i (i = 1,2).

This problem is graphable and depicted in Figure 1. ♦
Example 4. Here p1, p2, p3 are lines in the Euclidean plane, and q1,q2,q3 are points.
The constraints are incidence of pi and qi (i = 1,2,3) and known distances for q1, q2,
and q3. The corresponding graph is shown by Figure 1. We mention this particular set
of geometric constraints here because q1,q2,q3 can be found with ruler and compass
from p1, p2, p3, in contrast to the underlying graph being called ‘not ruler-and-compass
constructible’ in [20]. The reader should be warned that in this area terminology can
sometimes be misleading. ♦
Example 5. Normalized Plücker coordinates for lines in R

3 as defined e.g. in [25]
consist of six numbers u1, . . . ,u6 which fulfill the relations u2

1 +u2
2 +u2

3 = 1 and u1u4 +
u2u5 + u3u6 = 0. The condition that the two lines with coordinates (u1, . . . ,u6) and
(v1, . . . ,v6) meet each other is expressed by u1v4 +u2v5 +u3v6 +u4v1 +u5v2 +u6v3 =
0. The right hand graph of Figure 1 corresponds to the constraint problem with four
fixed lines p1, . . . , p4 and one moving line q1 which is to meet all of them. ♦
Remark: Constraints which involve more than two variables can be split up by in-
troducing new variables, thus making the constraint problem graphable. This is not
relevant for tolerance analysis as presented in this paper, but may help with visualiza-
tion and allow application of graph-based algorithms. ♦
Remark: The special case of distance constraints between points of R

d is that of a
framework. This problem is very well studied and has a long history, beginning with
[6]. Here it is known that for almost all x,y the rank of the Jacobian of F is the same,
and that for such x,y, the framework is either both infinitesimally rigid and rigid, or
both infinitesimally flexible and flexible. The graph is consequently called rigid or



TOLERANCES IN GEOMETRIC CONSTRAINT PROBLEMS 5

flexible. There might however be singular realizations of the underlying graph as an
infinitesimally flexible, but rigid, framework. The possibility that a framework is flex-
ible but infinitesimally rigid is known not to occur. For these notions and results, see
[1, 2, 7]. For the Euclidean plane, a graph-theoretical characterization of rigid graphs
is known [18]. The analogous problem for Euclidean three-space is still unsolved,
however. ♦

3. TAYLOR EXPANSION

Our method of computing and estimating tolerance zones consists of linearization
and estimating the second order remainder terms. We first define some notation con-
cerning the Taylor expansion of the function F defined by (2).

3.1. Linear and Bilinear Mappings: Notation. We use the symbols U,V,W for lin-
ear spaces and L(U,W ) for the linear space of linear mappings of U to W . Further we
use the symbol B(U,V,W ) for the linear space of bilinear mappings of U ×V to W .
We use the notation

α ·u, β [u,v],(3)

to indicate that we apply α to u and β to the pair (u,v). The reason for this is that we
have linear and bilinear mappings which depend on some variables, like “α(u)”, and
we want to avoid confusion.

Subscripts indicate coefficients of vectors in U,V,W with respect to some previ-
ously defined standard bases. Then we say that α ∈ L(U,W ) and β ∈ B(U,V,W ) have
coefficients αri and βri j, if

[α ·u]r = ∑
i

αriui, β [u,v]r = ∑
i, j

βri juiv j.(4)

There are natural isomorphisms φ : B(U,V,W ) → L(U,L(V,W )) and ψ : B(U,V,W )
→ L(V,L(U,W)) defined by

β [u,v] = β φ (u) · v, β [u,v] = β ψ(v) ·u.(5)

Obviously, the coefficients of β φ (u) and β ψ(v) are computed via

[β φ (u)]r j = ∑
i

uiβri j, [β ψ(v)]ri = ∑
j

v jβri j.(6)

3.2. Taylor Expansion of the constraints. The function F of (2) takes as argument
a vector of R

n×R
m, which we symbolically denote by (x,y), with x ∈ R

n and y ∈ R
m.

For all (u,v) and (h,k) ∈ R
n ×R

m, there is θ ∈ [0,1] such that

F(u+h,v+ k) = F(u,v)+F,x(u,v) ·h+F,y(u,v) · k

+
1
2

F,xx(u+θh,v+θk)[h,h]+F,xy(u+θh,v+θk)[h,k](7)

+
1
2

F,yy(u+θh,v+θk)[k,k].
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The symbols F,x, . . . denote linear and bilinear mappings as follows:

F,x ∈ L(Rn,Rm), F,y ∈ L(Rm,Rm),(8)
F,xx ∈ B(Rn,Rn,Rm), F,xy ∈ B(Rn,Rm,Rm), and F,yy ∈ B(Rm,Rm,Rm),

such that the coefficients in the sense of (4) of F,x and F,y are given by the partial
derivatives ∂ cr/∂ xi and ∂ cr/∂ yi, respectively; and analogously the coefficients of F,xx,
of F,xy and of F,yy are given by ∂ 2cr/∂ xi∂ x j, by ∂ 2cr/∂ xi∂ y j, and by ∂ 2cr/∂ yi∂ y j. For
the general theory of derivatives we refer the reader e.g. to [3, Section X.4].

4. LOCAL SOLUTIONS AND TOLERANCE ZONES

Suppose that we are given a solution (u,v) of the constraint problem F , which means
that F(u,v) = 0. A local solution of the tolerance problem which extends the solution
(u,v) is a function G, defined in a connected neighborhood U of u such that

G : U → R
m, G(u) = v and for all x in U : F(x,G(x)) = 0.(9)

It follows from the inverse function theorem that such a local solution exists if

F,y(u,v) is nonsingular,(10)

and that it is essentially unique. Tolerance analysis means that we allow the fixed enti-
ties p1, p2, . . . to vary in respective tolerance zones P1,P2, . . . , and ask for the possible
locations of y = (q1,q2, . . .). The most general meaning of ‘possible’ is that we seek
all solutions of the equation

F(x,y) = 0, such that x ∈ X := P1 ×P2 × . . . ,(11)

where the symbol P1 ×P2 × . . . means the set of vectors x such that each single pi is
contained in the corresponding Pi. It is usually not useful to ask this general question,
but to restrict oneself to local solutions as defined above, i.e., we would like to compute

G(X), (X = P1 ×P2 × . . .).(12)

We define the functions G( j) as those coordinates of G, which belong to the geometric
object q j. Then a tolerance zone for the geometric entity q j, if the fixed entities are
allowed to vary in the domains Pi, is given by

Q j = G( j)(X).(13)

We have not yet specified which sets P to allow as tolerance zones of a geometric entity
p ∈ R

r. The most general definition is that of a subset of R
r which contains p, and in

this paper we require that P is connected and bounded. It is useful to imagine tolerance
zones as nicely shaped sets which are not too big. Of course, when actually computing
with tolerance zones we restrict ourselves to sets which are computationally tractable.
Example 6. Consider points p1 = (x1,x2) = (0,0), p2 = (x3,x4) = (60,0), q1 =

(y1,y2) in the Euclidean plane and the distance constraints c1(x,y) = (x1 − y1)
2 +

(x2 − y2)
2 − 2900, c2(x,y) = (x3 − y1)

2 + (x4 − y2)
2 − 4100. A solution is given by

q1 = (20,50). We want to find the tolerance zone Q1, if tolerance zones P1, P2 are
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P1 P2

Q1

P1 P2

q1 +G(1,1)
,x · (P1 − p1)

+G(2,1)
,x · (P2 − p2)

FIGURE 2. Exact and linearized tolerance zones for Examples 6 and 7.

given (Figure 2). It is easy to see that in our example the boundary of Q1 consists of
circular arcs. The result is shown in Figure 2, left. ♦

5. LINEAR TOLERANCE ANALYSIS AND THE LINEARIZATION ERROR

5.1. Linearizing Local Solutions. The Taylor expansion of a local solution reads

v = G(u), v+ k = G(u+h) ⇒ v+ k = v+G,x(u) ·h+
1
2

G,xx(u+θh)[h,h].(14)

We combine (7) and (14) and get

0 = F,x(u,v) ·h+F,y(u,v) · k +o(2), k = G,x(u) ·h+o(2) for all h

=⇒ G,x(u) = −F,y(u,v)−1F,x(u,v).(15)

Equation (15) is the basis of linear tolerance analysis. The first order approximation
Glin of a local solution is given by

Glin(u+h) = G(u)+G,x(u) ·h.(16)

Instead of computing tolerance zones of the moving variables q1,q2, . . . via (12) or
(13), we use Glin and get linearized tolerance zones Q̄ j of the moving variables q j, and
a total linearized tolerance zone Ȳ of y:

Ȳ = Glin(X) = G(u)+G,x(u) · (X −u), Q̄ j = q j +G( j)
lin (u) · (X −u).(17)

The partition of vectors x and y into blocks which correspond to geometric objects pi
and q j according to (1), defines a partition of the matrix G,x into block matrices G(i, j)

,x .
Then (17) becomes

Q̄ j = G( j)
lin (X) = q j +∑

i
G(i, j)

,x · (Pi − pi).(18)

This Minkowski addition of the sets G(i, j)
,x · (Pi − pi) is particularly simple to compute

if they are at most two-dimensional and convex [12].
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Example 7. We continue Example 6 and compute

G,x =
[

G(1,1)
,x

∣
∣
∣G(2,1)

,x

]

=
1

30

[

10 25 20 −25
8 20 −8 10

]

.(19)

The resulting linearized tolerance zone is shown by Figure 2, right. Both G(1,1)
,x and

G(2,1)
,x are singular, and G(i,1)

,x · (Pi − pi) is a straight line segment. It follows that Q̄1 is
a parallelogram. ♦
Remark: The matrix G(i, j)

,x corresponds to the movement of the point q j, if all points
pk except the point pi are fixed. Therefore the straight line segment G(i,1)

,x · (Pi − pi) of
Example 7 is orthogonal to the vectors q1 − pi.

A constructive method of finding those straight line segments and the matrices G(i, j)
,x

for this and other examples is mentioned e.g. in [33] in connection with finding veloc-
ities of points in moving kinematic chains. It is based on orthogonality relations as
the one mentioned above, but fails if the indecomposable parts of the underlying graph
become too big. ♦
Remark: The infinitesimal rigidity of frameworks referred to in an earlier remark is
characterized by the regularity condition (10). ♦
5.2. Computing Norms of Linear and Bilinear Mappings. For the convenience of
the reader we repeat some facts concerning definition and computation of norms of
linear and bilinear operators. They are needed for estimating the linearization error.
We assume that α ∈ L(U,W ), β ∈ B(U,V,W ), and that the linear spaces U,V,W are
equipped with norms. Then

‖α‖ := sup
‖u‖≤1

‖α ·u‖, ‖β‖ := sup
‖u‖,‖v‖≤1

‖β [u,v]‖.(20)

Thus also L(U,W ), L(V,W ), and B(U,V,W ) become normed spaces. It is not difficult
to show that with respect to these norms,

‖β φ‖ = ‖β ψ‖ = ‖β‖(21)

(φ and ψ are the natural isomorphisms defined in Section 3.1). The examples in this
paper are such that U , V and W are real vector spaces of finite dimension and the
norms in U,V,W are Lp norms with p = 1,2,∞. The reason for using the 2-norm is its
geometric significance; the reason for using the ∞-norm is that computations become
simple; and the reason for using the 1-norm is that also here the unit sphere is a convex
polyhedron (like for the ∞-norm), so some computations are not difficult either.

The actual computation of ‖α‖ is well known for the cases of the 1-, 2-, and ∞-
norms (cf. [13]). In general, if the unit sphere SU in U is a convex polyhedron with
vertices xi, then for all α ∈ L(U,W ),

‖α‖ = max
i

‖α · xi‖,(22)

for any norm in W . It is therefore not difficult to compute the norm of a bilinear
mapping β , if SU is a convex polyhedron: We may use (21) and compute the norm of
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β ψ with respect to the norms of U and L(V,W ). Analogously, if the unit sphere SV of
V is a convex polyhedron, we may compute ‖β‖ as the norm of β φ with respect to the
norms in V and L(U,W ).

This method does not work if both U and V are equipped with the 2-norm. In that
case we additionally use the ∞-norm in W . It is clear that

‖β‖2,2,∞ = max
r

max
‖u‖,‖v‖≤1

|βr[u,v]|,(23)

where βr is the r-th component function of β . It follows that ‖β‖2,2,∞ is the maximum
singular value of the matrices βri j, r fixed. A case not covered so far is that also W is
equipped with the 2-norm, i.e., the problem of computing ‖β‖2,2,2. In that case we use
the estimate

‖β‖2,2,2 ≤
√

dimW‖β‖2,2,∞.(24)

5.3. Estimating the Linearization Error. The linearization error is the difference
between an exact local solution G and the linearized one, Glin. In the following com-
putation we use (7), but drop the arguments “(u,v)” and “(u+θh,v+θk)”.

F(u,v) = 0, v+ k = G(u+h), v+ klin = Glin(u+h) ⇒

0 = F(u+h,v+ k) = F,x ·h+F,y · k +
1
2

F,xx[h,h]+F,xy[h,k]+
1
2

F,yy[k,k]

⇒ k− klin = −1
2

F−1
,y (F,xx[h,h]+2F,xy[h,k]+F,yy[k,k]) .

It follows that

‖k− klin‖ ≤
1
2
‖F−1

,y ‖
(

‖F,xx‖ ‖h‖2 +2
∥
∥F,xy

∥
∥ ‖h‖ ‖k‖+

∥
∥F,yy

∥
∥ ‖k‖2

)

.(25)

When computing norms, recall that (8) describes domain and range of each of the
operators which occur in (25).
Definition 1. Suppose that the three vector spaces R

n,Rm and R
m used in the definition

of F by (2) are equipped with norms, and suppose further that in looking for solutions
of the given tolerance problem F(u,v) = 0 we restrict ourselves to (u,v) contained in
such a subset of R

n ×R
m, where there are estimates

‖F,xx(u,v)‖ ≤ α , ‖F,xy(u,v)‖ ≤ β , ‖F,yy(u,v)‖ ≤ γ , (α2 +β 2 + γ2 > 0),(26)

with respect to the norms chosen previously. Then we define

∆(s, t) :=
1
2
(α s2 +2β st + γ t2).(27)

Remark: Upper bounds as required by (26) are particularly simple to give if F is a
quadratic function, because then F,xx, F,xy, and F,yy depend neither on x nor on y.

If F is linear, then the norms ‖F,xx‖, . . . are zero and linearization is exact. For our
purposes it is essential that ∆(s, t) is non-zero if s, t > 0. Therefore we require that
α2 +β 2 + γ2 > 0. ♦
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Example 8. We continue Examples 6 and 7. Table 1 shows ∆(s, t) for different choices
of norms. The starred figures are upper bounds, cf. Equation (24). ♦

A tolerancing concept for geometric constraint problems based on linearization must
provide information under what circumstances the linearization error can be bounded.
This is done by the following two results:
Lemma 1. Consider a solution (u,v) of the constraint problem F(x,y) = 0, and as-
sume that ∆(s, t) is defined according to Definition 1. We assume that there is a local
solution G and its linearization Glin which extend (u,v), such that v + k = G(u + h)
and v+ klin = Glin(u+h). Then the linearization error is bounded by

‖k− klin‖ ≤ ‖F,y(u,v)−1‖ ·∆(‖h‖,‖k‖).(28)

Proof: This follows directly from (25) and (27). �

Theorem 1. Under the same assumptions as in Lemma 1, let

Cmax =
‖G,x(u)‖

‖F,y(u,v)−1‖ ·∆(1,2‖G,x(u)‖) .(29)

Choose C < Cmax and let C′ = ‖G,x(u)‖C. Then if ‖h‖ ≤C, the local solution v+ k =
G(u+h) obeys the inequalities

‖k‖ < 2C′, ‖k− klin‖ ≤ ‖F,y(u,v)−1‖ ·∆(C,2C′) < C′.(30)

Proof: First we give a condition on C such that

C′′ := ‖F,y(u,v)−1‖ ·∆(C,2C′) < C′.(31)

This is easily seen to be equivalent to

C2 ‖F,y(u,v)−1‖ ∆
(
1,2‖G,x(u)‖

)
< C ‖G,x(u)‖,(32)

and so in turn is equivalent to the condition C < Cmax. It is our aim to show that the
inequality ‖h‖< C implies that either ‖k‖ ≥ 2C′ or ‖k‖ ≤C′+C′′. Then by (31), there
is a certain region, bounded by the spheres of radius C′ +C′′ and 2C′, which contains
no vector k. As G was supposed to be a local solution, and the sphere ‖h‖ ≤ C is
connected, the local value of k must remain inside the sphere of radius C′ +C′′. This
implies the statement of the theorem.

So we assume that ‖k‖ < 2C′. According to Lemma 1, the linearization error is
bounded by C′′. By definition of klin, we have

‖k‖ ≤ ‖klin‖+‖k− klin‖ ≤ ‖G,x(u)‖‖h‖+C′′ ≤C′ +C′′.(33)

This concludes the proof. �

Remark: The estimates given here can be sharpened a little without much effort:
Theorem 1 gives an upper bound of the following form: ‖h‖ < C implies that ‖klin‖ ≤
C′ and ‖k− klin‖ ≤C′′. We get the relation

‖k− klin‖ ≤ ‖F−1
,y ‖∆(‖h‖,‖k‖) ≤ ‖F−1

,y ‖∆(C,C′ +C′′) =: C′′′ < C′′.(34)

by applying Lemma 1 a second time. ♦
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P1 P2

Q1 ⊆ Glin(P1 ×P2)

+C′′S1

FIGURE 3. The framework of Example 9 and a detail of Example 10.
The concentric circles have the radii 2C′, C′ +C′′, and C′.

TABLE 1. Numerical data for Examples 8 (left) and 11 (right).

‖u‖ ‖v‖ ‖F‖ 100∆(s, t)
∞ ∞ ∞ 3.3 s2 +3.3 st +3.3 t2

∞ 1 ∞ 4.0 s2 +2.0 st +2.0 t2

∞ 1 2 4.8 s2 +2.2 st +2.2 t2

1 2 ∞ 1.7 s2 +1.7 st +1.7 t2

2 2 2 1.7?s2 +1.7?st +1.7?t2

‖u‖ ‖v‖ ‖F‖ Cmax

∞ ∞ ∞ 1.03 ·10−2

∞ 1 ∞ 0.39 ·10−2

∞ 1 2 0.59 ·10−2

1 2 ∞ 2.65 ·10−2

2 2 2 1.79 ·10−2

6. EXAMPLES AND IMPLEMENTATION ISSUES

Example 9. Figure 3 illustrates the statement of Theorem 1, when applied to the
framework of Example 6. We have chosen the 1-, 2-, and ∞-norms for u, v, and
F(u,v). Computing ∆ and Cmax presents no problems, as the constraints are quadratic.

The tolerance zones P1,P2 have been selected such that their product P1×P2 is con-
tained in a ball of radius C < Cmax. Then Theorem 1 applies. The concentric circles
shown in the picture have the radii 2C′, C′ +C′′, and C′. We can see clearly that the
linearized tolerance zone of Q1 (the parallelogram) is contained in the circle of radius
C′, and we know that the linearization error is bounded from above by C′′. Hence, the
tolerance zone Q1 must be contained in an outer offset of radius C′′ of the linearized
tolerance zone and, at the same time, in the circle of radius C′ +C′′. ♦
Example 10. The constraint problem of Example 6 has two symmetric solutions. For
each solution q1, also q1’s reflection in the line p1 p2 is one. It follows from Theorem 1
that the ball of radius ‖G,x‖Cmax (which is the maximum size of the moving variables’
tolerance zone such that Theorem 1 applies), must not intersect its own reflection.
By changing the constraints as to allow solutions near the line p1 p2, this causes the
phenomenon that Cmax becomes smaller as the solution q1 approaches its reflection,
and the tolerance problem becomes ill-conditioned. ♦
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p1 p2

q1

q2

q3

q4

FIGURE 4. Linearized tolerance zones (scaled by a factor of 60) for
a framework with respect to the 2-, ∞- and ∞-norms. Some values of
Cmax are given in Table 1.

Q1

Q2

Q3 Q3 (enlarged)

A1

A2

A3

FIGURE 5. Visualization of tolerance zones of radius Cmax = C and
‖G,x‖Cmax before and after constraint balancing (Example 12).

Example 11. The choice of norms for u, v, and F(u,v) influences the value of Cmax.
Table 1 shows this dependence for the hexagonal framework of Figure 4. We have
chosen C = 0.6Cmax and computed the tolerance zones with respect to the 2, ∞, and
∞-norms. The tolerance zones are scaled by a factor of 60 for better visualization.
Note that the C′′-offsets of the linearized tolerance zones have to be taken with respect
to the ∞-norm.

This example of an indecomposable constraint graph is unlikely to occur in CAD.
The reason why maximum tolerance zones are much smaller than in Example 9 (Fig-
ure 2) is the size of the problem.

It is well known that this framework is singular (i.e., F,y(u,v) is singular), if and only
if the six points p1, p2, q1, q2, q3, q4 are contained in an algebraic curve of degree two,
which includes conics and pairs of lines. This is true in general for planar frameworks
where the constraint graph is bipartite, cf. [32, 31, 28]. If the points q j are close to a
conic section, then the corresponding values for Cmax become even smaller. ♦



TOLERANCES IN GEOMETRIC CONSTRAINT PROBLEMS 13

TABLE 2. Comparison between unbalanced and balanced constraint
equations (Example 12).

‖u‖ ‖v‖ ‖F‖ Cmax Cb
max Cb

max/Cmax

∞ ∞ 1 0.302 ·10−2 1.365 ·10−2 4.51
∞ 2 2 0.355 ·10−2 1.569 ·10−2 4.41
1 ∞ 1 0.769 ·10−2 4.054 ·10−2 5.27
1 1 ∞ 0.867 ·10−2 2.046 ·10−2 2.35
1 2 ∞ 1.669 ·10−2 4.116 ·10−2 2.46
2 2 ∞ 1.277 ·10−2 3.545 ·10−2 2.77

Obviously the local solutions do not change if we multiply some constraints by fac-
tors, but the computation of Cmax is affected by it. In Examples 9 and 11, all constraints
are of the same type. This is not true for Example 4, where we have both distance and
incidence constraints. It is not clear a priori how equations which express different
geometric relations are to be scaled so as not to badly influence the computations. As
this scaling does not change G, ‖G,x(u)‖ remains the same, and therefore so does the
ratio C′/C in Theorem 1. This means that balancing might enlarge the region of va-
lidity of the theorem without deteriorating the ratio of the tolerance zones of fixed and
moving entities. The dependence of Cmax on the scaling of equations is not easy to
analyse in general.
Remark: For a list of geometric constraint problems, the dependence of Cmax on the
normalization of constraints has been analysed by means of varying the unit length for
measuring coordinates. It turned out that Cmax often is optimal or nearly optimal either
for a specific choice of unit length, or for all unit lengths smaller than a given value.
The unit lengths in question are not difficult to compute. Unfortunately there is no
general theory available at present. ♦
Example 12. We continue Example 4 and compute tolerance zones for the straight
lines pi and the points q j. In Figure 5, the maximal regions of validity of Theorem 1
for a balanced and an unbalanced constraint system are visualized.

We use the ∞-norm for the fixed variables and choose tolerance zones P1, P2, P3 in
the coordinate space R

3 for lines such that P1 ×P2 ×P3 is contained in a ball of radius
Cmax. Here Pi is chosen as an ∞-sphere of radius 0.99Cmax.

The choice of constraints as in Example 2 is not optimal. For this specific problem, it
seems reasonable that Cmax will be maximal if the coefficients in the various constraint
equations are of the same magnitude. This is indeed the case, as numerical experiments
show. Figure 5 shows the area A j traced out by the lines of Pj – it is filled in white
before and in black after balancing. The corresponding tolerance zones Q j are shown
as small white and bigger hatched disks. Some data for both the balanced and the
unbalanced case is presented in Table 2. ♦
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P1
P2

Q1

l ξ

η

FIGURE 6. Tolerance zones for Example 13.

Example 13. We present an example with nonquadratic constraints and consider the
following problem (Figure 6): Given is a Cartesian coordinate frame, defined by its
origin p1 = (x1,x2) and a point p2 = (x3,x4) on one axis. This frame defines the
position of a certain curve (here, a sine curve). The point q1 is found by intersecting
this curve with a fixed line l. We assume that p1 and p2 are given imprecisely by their
respective tolerance zones and we are interested in a tolerance zone of q1 on l.

In Figure 6, the tolerance zones Pi and Q1 for the points pi and q1 are visualized (the
latter by a pair of parallel lines as it is only one-dimensional). The bilinear mapping
F,yy is not constant and its norm has to be estimated. ♦

7. CONCLUSION

We have studied the propagation of errors in the form of tolerance zones through
implicit constraints. The usage of tolerance zones generalizes interval arithmetic in
the sense that intervals are tolerance zones of real numbers. The method works by
linearization and giving upper bounds for the linearization error. Depending on the
problem, there is a maximum size of tolerance zone for which this method is applica-
ble. Computing this radius of validity and the linearization error requires upper bounds
on the constraints’ second derivatives in the form of bilinear mappings. It turns out that
such bounds are found easily if the constraints are quadratic, which for geometric con-
straints is very often the case.
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