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Abstract

The paper presents a geometric investigation of collision-

free 3-axis milling of surfaces. We consider surfaces with a

global shape condition: they shall be interpretable as graphs

of bivariate functions or shall be star-shaped with respect

to a point. If those surfaces satisfy a local millability crite-

rion involving curvature information, it is proved that this

implies globally gouge-free milling. The proofs are based

on general o�set surfaces. The results can be applied to

tool-motion planning and the computation of optimal cut-

ter shapes.

INTRODUCTION AND FUNDAMENTALS

Although NC machining as one of the key manufactur-

ing technologies has received a lot of attention both from

the technological and algorithmic point of view, the math-

ematical foundations of this �eld have seen comparatively

little progress. Collision-free tool path planning is mostly

based on time-consuming interference checking algorithms,

since mathematical results which would simplify this task

are not available. The need for theoretical research on the

mathematical foundation of 3-axis machining of sculptured

surfaces has recently been pointed out by Choi, Kim and

Jerard (1997).

As a contribution in this direction, the present paper

deals with a geometric study of collision-free 3-axis milling

of surfaces. Considering the accessibility of the design sur-

face � with the tool, it seems to be justi�ed to restrict our

study at �rst to those surfaces � which can be interpreted

as \function graphs". This means that we can �nd at least

one parallel projection, where all projection rays intersect

the surface in at most one point, without being tangent to
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it. If such a projection direction is given by the z-axis of a

Cartesian (x; y; z)-coordinate system, the design surface �

may be written as z = f(x; y), i.e., as graph of a bivariate

function f , de�ned over some domain D in the (x; y)-plane

�. The z-direction will also be identi�ed with the axis di-

rection of the cutting tool.

During the milling process, the cutting tool is spinning

around its axis. At a �xed axis location, it generates a sur-

face of revolution �, which will be called the cutter. During

3-axis milling, the axis of the cutter does not change its

direction, which shall be the z-direction. Moreover, we as-

sume the cutter to be a strictly convex C

2

surface. Strict

convexity means that its tangent planes touch the surface

just at one point; here we require in addition that all points

are elliptic surface points. For concepts from elementary

di�erential geometry, see (do Carmo, 1976). We will later

allow curvature discontinuities and even tangent plane dis-

continuities along some coaxial circles of the cutter.

In order to mill a surface �, the cutter has to touch �

in all positions of a milling course. If the cutter touches �

at the point p, we denote this position of the cutter by �(p).

Since the design surface is graph of a bivariate function, the

part of the cutter that becomes active at some instant may

also be written as graph of a function. In an initial position

� of the cutter, this function shall be z = s(x; y). This

initial position is de�ned by the condition that a previously

�xed reference point r of the cutter axis is situated at the

origin. Both surfaces � and � shall be oriented such that

their normals have positive z-coordinate. The position r(p)

of the reference point at cutter position �(p) will be called

cutter location point. We de�ne a mapping � : � 7! �,

which shall map a point p 2 � to the unique point �(p) 2 �,

whose oriented surface normal is parallel to the oriented

normal of � at p. Then translation of � by the vector
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p� �(p) transforms � into �(p).

If x = (x; y; z) is a point, we denote its projection

(x; y; 0) onto the (x; y)-plane � by
e
x. Also, the projection

of the mapping � onto � is denoted by e� :
e
p 7!

g

�(p). We

say that the surface � is locally millable with � at p, if and

only if (i) there is a neighbourhood of p such that � and the

convex hull of �(p) (cutter seen as a solid) have no point in

common in this neighbourhood except p; and (ii) that the

two surfaces �(p);� do not have second order contact at

p. This is not necessary for a locally collision free position,

but checking local collision would require a higher order

analysis if we allowed second order contact. For the sake

of e�cient algorithms, we therefore make this restriction,

which is negligible from the practical point of view.

A surface � is said to be globally millable with �, if

and only if for all points p of � the corresponding cutter

�(p) does not intersect the interior of the solid which lies

below �. In this case no gouging can occur. For smooth �

and � this means for example that they must not intersect

transversally in a curve. The existence of points where they

touch each other is allowed.

Local millability at all points is obviously a necessary

condition for global millability, but it is not su�cient in

general. We will study conditions under which local milla-

bility implies global millability. Note that local millability

needs to be checked anyway. We will see in the following

section that this test can be performed e�ciently by look-

ing at curvatures, whereas checking for global millability

is much more time consuming. There is one known special

case for such a global millability result, namely if cutter and

design surface are convex (Pottmann, 1997). It is a minor

extension of a theorem of W. Blaschke (1956), which says

that a sphere � can roll freely inside a closed convex C

2

surface �, if and only if the radius of the sphere does not

exceed the smallest principal curvature radius (reciprocal

value of principal curvature) of �.

LOCAL MILLABILITY

Since our approach to gouge-free milling is based on

local millability, we need to discuss this criterion in detail.

We will split the discussion according to the smoothness of

cutter and design surface.

Second Order Di�erentiability

Let us �rst study the case where design surface and

cutter are G

2

in CAGD terminology (Hoschek and Lasser,

1993). This is equivalent to f and s being C

2

. We will

always assume that the cutter is milling the surface from its

upper side, i.e., the side which the positive z-axis is pointing

to. Now, the second directional derivatives of the function

s are positive everywhere. Thus, local millability at p =

(x; y; f(x; y)) means that the second directional derivatives

of f at x are less than the corresponding second directional

derivatives of s at e�(x). The second directional derivative

f

;vv

of f in direction v (kvk = 1) is computed with the

matrix of second partial derivatives, the Hessian H

f

of f ,

H

f

=

�

f

xx

f

xy

f

xy

f

yy

�

;

as

f

;vv

= v

T

�H

f

� v:

For local millability, all second directional derivatives of

s are greater than the corresponding second directional

derivatives of f , i.e.,

v

T

�H

s

� v� v

T

�H

f

� v > 0:

We have now deduced the fact that local millability is equiv-

alent to the matrix M = H

s

� H

f

being positive de�nite

(Marciniak, 1991). It is well known that this is equivalent

to

detM > 0; and s

xx

� f

xx

> 0: (1)

Here, f

xx

and s

xx

are the second partial derivatives of f

and s with respect to x. The condition s

xx

� f

xx

> 0 can

be replaced by f

;vv

> 0 for an arbitrary direction v.

If detM > 0 and s

xx

� f

xx

< 0; the two surfaces � and

�(p) also do not intersect locally except at p, but � locally

is contained in the convex hull of �(p) and thus interferes

with the cutter as a solid.

If detM < 0 at some point, the matrix M = H

s

� H

f

de�nes an inde�nite quadratic form x

T

�M � x: Such a form

has two independent null directions v

1

; v

2

. For those, the

directional derivatives of s and f agree. The corresponding

cutter �(p) and the design surface � possess two di�erent

tangents t

1

; t

2

in the common tangent plane at p, whose

normal curvatures of both surfaces agree (by Meusnier's

theorem). In other words, their Dupin indicatrices in the

tangent plane intersect in 4 points. The line segments which

join them with p are the tangents t

1

, t

2

. It is well known

that locally the surfaces intersect transversally in two regu-

lar curves which intersect at p, having tangents t

1

, t

2

there.

Parametrized Surfaces

Instead of working with second order directional deriva-

tives one can compare (by Meusnier's theorem) the signed

Euclidean normal curvatures at corresponding points p 2 �

and �(p) 2 �. We do not elaborate this, but make an impor-

tant comment on the use of (1). In practical applications,

one cannot assume that the surface � is given as graph of a

known bivariate function f . More likely, one will have some
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parametrization f(u

1

; u

2

) = (x(u

1

; u

2

); y(u

1

; u

2

); z(u

1

; u

2

)).

We would like to compute the Hessian H

g

of the func-

tion g, which is de�ned by the condition that both f and

(x; y; g(x; y)) de�ne the same surface. It can be computed

with well known formulae from isotropic di�erential geom-

etry of surfaces (Sachs, 1990). There, the desired second

directional derivatives have the meaning of normal curva-

tures. We just state the result (which could also be veri�ed

directly without knowledge of isotropic geometry). De�ne

e

f := (x(u

1

; u

2

); y(u

1

; u

2

); 0) and the isotropic counterparts

to the coe�cients of the �rst and second fundamental form

via

G

ij

:=

e

f

;i

�

e

f

;j

; H

ij

:=

det(f

;1

; f

;2

; f

;ij

)

det(

e

f

;1

;

e

f

;2

)

:

Here, :

;i

denotes partial di�erentiation with respect to u

i

.

Because of the partial reduction to

e

f, these formulae are

computationally somewhat less expensive than the corre-

sponding formulae of Euclidean surface theory. A direction

vector u = ( _u

1

; _u

2

) in the (u

1

; u

2

)-parameter domain de�nes

a tangent vector t = f

;1

_u

1

+ f

;2

_u

2

of the surface. Given its

projection v =

e

t, we can reconstruct u and then the corre-

sponding isotropic normal curvature

�

I

n

(v) =

H

11

_u

2

1

+ 2H

12

_u

1

_u

2

+H

22

_u

2

2

G

11

_u

2

1

+ 2G

12

_u

1

_u

2

+ G

22

_u

2

2

=

u

T

�H � u

u

T

�G � u

: (2)

Let P = (

e

f

;1

;

e

f

;2

). Then G = P

T

� P and v = P � u.

If the parametrizations f(u) = (f

1

(u); f

2

(u); f

3

(u)) and

(x; y; g(x; y)) describe the same surface, the isotropic nor-

mal curvatures of a tangent must be the same, when com-

puted with (2) in both ways. This leads to (v

T

�H

g

�v)=(v

T

�

v) = (u

T

�H � u)=(u

T

�G � u), which implies

H

g

= (P

�1

)

T

�H � P

�1

: (3)

Now we have computed the Hessian of �. Analogously, we

can compute the Hessian of the cutter �, and then we are

able to apply (1).

Remark

To visualize the test for local millability, we may use

the isotropic Dupin indicatrices in the x; y-plane. At the

point m =
e
p they are de�ned by

i

�

: (x �m)

T

�H

f

� (x�m) = 1;

i

�

: (x �m)

T

�H

s

� (x�m) = 1: (4)

These are obviously radial diagrams with center m for

1=

p

f

;vv

and 1=

p

s

v;v

, radially plotted over the correspond-

ing directions v = (x�m)=kx�mk. Due to our assumptions,

the indicatrix of the cutter � is always a real ellipse. A tan-

gent direction of the design surface, however, yields a real

point on i

�

only for a positive second directional deriva-

tive. Note that nonpositive directional derivatives are not

interesting anyway, since they are always exceeded by the

corresponding second directional derivative of the cutter.

The indicatrix of � is either the empty set (p elliptic or

parabolic and �, � locally at di�erent sides of the tangent

plane � ; or p 
at), a real ellipse (p elliptic and both �, �

locally at the same side of � ), a pair of parallel lines (p

parabolic and both surfaces locally at the same side of � )

or a hyperbola (p hyperbolic). Let us de�ne the interior of

i

�

as the open set of the plane with boundary i

�

, which

contains the center m. (For an empty i

�

, the interior then

is the entire plane R

2

). Then, we have local millability if

and only if i

�

lies in the interior of i

�

.

Alternatively, we can use the Euclidean Dupin indica-

trices. Note that these indicatrices have to be de�ned by

signed normal curvatures, where the positive sign is given

by the direction of the normal vector of the surface.

Piecewise Curvature Continuity

In practical applications, the design surface is often just

C

1

, but composed of patches of higher smoothness. We will

therefore extend our investigation to surfaces which are C

1

and composed of C

2

patches and refer to them as C

1

, piece-

wise C

2

surfaces. At a point p, at which k patches meet,

there are usually k di�erent curvature behaviours. Local

millability is de�ned by local millability for all k patches.

For such a cutter it is possible to use criterion (1) to check

local millability. At a contact point, every patch of the cut-

ter has to be in locally millable position against every patch

of the design surface.

Edges

Let us �rst study edges of the design surface, which

shall be curves e, where two patches are meeting with dif-

ferent tangent planes. In order to apply the previous meth-

ods to surfaces with edges, we smooth them, for example

with pipe surface parts of radius � (as in the construction of

blending surfaces in geometric design (Hoschek and Lasser,

1993)) and then let � tend to zero.

Choose a point p in an edge e, which has two di�erent

tangent planes �

1

; �

2

, which belong to two adjacent surfaces

�

1

and �

2

. They shall be represented by z = f

i

(x; y),

i = 1; 2. Let us pick any direction v in the (x; y)-plane,

which points from the �

1

-side to the �

2

-side of the edge

tangent's projection (Given by the unit tangent vector e).

Let us compute the di�erence

� := f

2

v

� f

1

v

:

of derivatives. Because v; e are inearely independent, we

have � 6= 0. Two di�erent cases have to be distinguished:
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1. � > 0: In this case, any �-pipe surface smoothing the

edge would have at least a region of positive second

directional derivatives across the edge whose inverses

(curvature radii) tend to 0 for �! 0. This means that

the edge can never be millable with a smooth cutter

and there will necessarily occur an uncut (often called

a \concave uncut" in the NC machining literature (Choi

et al., 1997)). Throughout this paper, we will therefore

assume that for those edges admissible blend surfaces

are constructed or uncut is allowed. Thus, we may ex-

clude these edges from further considerations.

2. � < 0: Now, the critical second directional derivatives

are negative, such that there is a chance to mill such an

edge with a smooth cutter. To check for millability at

p, the following has to be done: De�ne a set of admis-

sible tangent planes at p, for which the �rst directional

derivative f

v

lies between f

1

v

and f

2

v

.

For any admissible oriented tangent plane one has to

consider the point of the cutter � with a parallel ori-

ented tangent plane. We may view � as a multi-valued

correspondence between parallel oriented surface ele-

ments (points plus oriented tangent planes) of � and

�.

Then, these points f�(p)g, lying on the contour of �

for parallel projection in direction of the edge tangent,

are just the �-images of the design surface elements,

de�ned by the admissible tangent planes at p. More-

over, for any of those tangent planes, we can compute

a normal curvature of � at p in direction of the edge

tangent (Meusnier's theorem). Millability at p then

requires that these normal curvatures are less than

the corresponding normal curvatures of the cutter at

points of �(p). Analogously, one can work with sec-

ond directional derivatives f

e;e

(isotropic counterpart

of Meusnier's theorem (Sachs, 1990)):

f

e;e

= ��:

Here, � is the Euclidean curvature of the projection

ee of the edge at
e
p. With z = g(x; y) as osculating

plane of the edge curve at p, z = f(x; y) as admissible

tangent plane there, and n as unit normal vector of ee,

� is de�ned by

� := g

n

� f

n

:

Now, millability at p requires

s

e;e

> f

e;e

(5)

for all admissible tangent planes � at p. For arbitrary

cutter shapes, this test of local millability at a point of

an edge is computationally as expensive as testing local

Figure 1: Regions (dark) of � which correspond to edges of

the cutter

millability of a smooth surface along a curve segment.

It is simple, however, for the frequently applied ball

cutters, where one will compare Euclidean normal cur-

vatures. If the Euclidean curvature of the edge curve is

less than the normal curvature of the ball cutter, local

millability is guaranteed.

Analogously, we may allow edges of the overall strictly con-

vex cutter. Along such an edge, which must be a coaxial

circle c, we have two di�erent coaxial tangent cones. The

points of the design surface, at which the tangent planes

are parallel to those of these cones, are two isophotes for

z-parallel projection (see Fig. 1). They lie on the boundary

of the design surface region, at which the cutting edge c

becomes active. If the design surface is smooth, we already

know how to test for local millability.

Finally, assume that we have an admissible surface el-

ement (p; � ) on an edge of the design surface (with � < 0)

and the extended mapping � leads to a point �(p) on a cut-

ter edge c. Now, only in the case of parallel edge tangents at

p and �(p) a millability test has to be made: it is required

that (5) holds.

Example

A circular cutting edge c occurs for a 
at end mill. This

cutter shape is contained in our study if the 
at part (circu-

lar disk de�ned by c) does not become active during milling.

If there are points of the design surface with tangent plane

4



Figure 2: Design surface � (bottom), cutter � and general

o�set surface � (top)

orthogonal to the cutter axis, we may use an auxiliary cut-

ter, where the circular disk is covered by a spherical cap

and apply our results. The sphere radius can be arbitrarily

large, which gives an arbitrarily good approximation to the

actual cutter.

GENERAL OFFSET SURFACES

Consider the touching positions �(p) of the cutter for

all points p of the design surface �. Then, the set of cutter

location points r(p) (reference point positions) is a surface

�, which shall be referred to as general o�set surface of �

with respect to � (see Fig. 2). A parametrization of � using

�'s surface parameters x = (x; y) 2 D � R

2

is given by

g(x; y) = (x; f(x)) � (e�(x); s(e�(x))): (6)

>From this, we easily see that oriented tangent planes at

corresponding points of �;� and � are parallel. Moreover,

the general o�set appears as Minkowski sum of the oriented

surfaces � and ��. The symbol�� is used for the re
ected

cutter, which may be described by (�x;�y;�s(x; y)) in the

sense of (Pottmann, 1997). This extension of the Minkowski

sum of two domains is also referred to as convolution sur-

face (see (Lee et al., 1998), where the curve case is treated

and trimming of the convolution curve to the boundary of

the classical Minkowski sum is studied). General o�set sur-

faces have �rst been introduced by Brechner (1992) and

studied more carefully from a di�erential geometric and al-

gebraic point of view by Pottmann (1997). Here we will

need a close relation between local millability and regularity

of general o�set surfaces. This result has so far been for-

mulated only within the framework of relative di�erential

geometry (Pottmann, 1997) and therefore we will present

here an elementary derivation and extensions to practical

situations. Again we will �rst treat the case of second order

di�erentiability and later weaken this assumption.

C

2

Surfaces

Let us parametrize the active part of � by the �rst

partial directional derivatives of s,

u = (u; v); u =

@s

@x

=: s

x

; v =

@s

@y

=: s

y

:

This is possible locally because the Jacobian matrix of the

parameter transform equals the Hessian H

s

, which is in-

vertible. If the function s is only C

1

, but piecewise C

2

,

this is also possible because the strict convexity of � forces

strict monotonicity of the partial derivatives. The resulting

parametrization shall be

s(u) = (s

1

(u); s

2

(u); s

3

(u)):

Then, the general o�set is

g(x; y) = (x; y; f(x; y)) � s(u(x; y))

with u(x; y) = (f

x

(x; y); f

y

(x; y)): (7)

The projection of this surface onto �, i.e.,

e
g(x) = x �

e
s(u) = (x� s

1

(u); y � s

2

(u))

with u(x) = (f

x

(x); f

y

(x)); (8)

is a mapping from D to R

2

, whose Jacobian matrix is com-

puted by the chain rule as

J

eg

(x) = I � J

es

(u(x)) �H

f

(x):

Here, I denotes the 2� 2 identity matrix. Di�erentation of

the identities x = s

1

(s

x

; s

y

); y = s

2

(s

x

; s

y

) with respect to

x; y yields

I = J

es

(u(x)) �H

s

(x):

Since � is strictly convex, the Hessian H

s

is invertible and

we arrive at the important relation

J

eg

(x) = I �H

�1

s

(x) �H

f

(x): (9)

If a tangent plane of the general o�set is well de�ned, it is

parallel to the corresponding tangent planes of � and � and

therefore it can never be parallel to the z-axis. This means
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that a singularity of the o�set surface � at some point is

characterized by a singular Jacobian J

eg

. Note that we are

speaking of local singularities which must be re
ected in

singular parametrizations; we are not yet speaking of self-

intersections. At a local singularity there exists a nonzero

vector v 2 R

2

with J

eg

� v = o, i.e.,

H

s

� v = H

f

� v: (10)

This can nicely be interpreted geometrically when using

curvature theory of surfaces. Conjugate surface tangents

of � belong to vectors v;w in the parameter domain with

w

T

�H

f

�v = 0 and analogously for �. Thus, at corresponding

points p and �(p) of � and � there exist parallel tangents

whose conjugate directions are the same. Of course also the

corresponding signed normal curvatures agree.

It is also clear thatH

s

v = H

f

v implies v

T

H

s

v = v

T

H

f

v,

so we have equality of the second directional derivatives

f

;vv

and s

v;v

. Any regular surface can locally be written as

graph of a function, and we have not used the fact that � is

a surface of revolution yet. Therefore, we have proved the

following characterization of the existence of a local singu-

larity, which uses only terms of Euclidean geometry, and is

invariant against translations and rotations of the surfaces

� and �.

Theorem 1 The general o�set surface of a regular C

2

sur-

face � with respect to a strictly convex C

2

surface � pos-

sesses a singularity at a point belonging to associated points

p 2 � and �(p) 2 �, if and only if there is a tangent vector

v, whose signed normal curvature and conjugate direction

are the same for both surfaces � and �.

We want to show that local millability implies

det J

eg

> 0: (11)

For a proof, we use the fact detH

s

> 0 to see that

sign det J

eg

= sign detH

s

sign det(I �H

�1

s

�H

f

)

= sign det(H

s

�H

f

) = sign detM:

Local millability implies detM > 0, which proves (11).

Note, however, that (11) does not characterize local mill-

ability. It characterizes a position where the two surfaces

�(p) and � do not intersect locally, except at p.

We nicely recognize the situation which implies the sin-

gularities of the general o�set (Theorem 1) as limit case

between local interference of the two surfaces and a locally

intersection free position of the surfaces. In the \singular

position", the two Dupin indicatrices touch each other in

two points whose joining line segment's direction vector is

given by the vector v of Theorem 1.

Example

Let us have a look at ball cutters, where the active part

� of the cutter is part of a sphere with radius R. Here,

the general o�sets are the classical o�sets, which have been

treated extensively in the CAD literature (see e.g. (Chen

and Ravani, 1987; Hoschek and Lasser, 1993)). Theorem 1

is now equivalent to the well known fact that a singularity

of the o�set belongs to a surface point one of whose signed

principal curvature radii equals R. Local millability means

that all signed normal curvatures of � are less than 1=R.

Curvature Discontinuities and Edges

We have seen that a general o�set surface of a locally

millable C

2

surface with respect to a C

2

cutter is free of

local singularities. Let us now discuss locally millable sur-

faces and cutters, which may have curvature discontinuities

and edges (C

0

, piecewise C

2

surfaces).

Since the tangent planes of a general o�set � are par-

allel to both the corresponding tangent planes of � and �,

the tangent planes of � are well de�ned also for a C

1

, piece-

wise C

2

surface �. With (11) there cannot occur edges of

regression along the curves where the patches of the o�set

are joined, because this behaviour would stem from a sign

change in the Jacobian determinant. Singularities inside the

patches are already excluded by Theorem 1. Analogously,

we can consider a C

1

, piecewise C

2

cutter and get a further

segmentation of the general o�set according to the patch

boundaries of the cutter. Again, this does not introduce

local singularities.

Moreover, we may include everywhere locally millable

edges in the design surface. This is easiest to see as follows.

Construct Euclidean o�set surfaces �

d

and �

d

of � and � at

distance d, on the positive (upper) side of these surfaces. At

points of an edge, use all admissible tangent planes for o�set

point construction; thereby one constructs a pipe surface

smoothly blending the o�sets to the adjacent surfaces. At

a touching position of � and �(p) at p, also the o�sets

�

d

;�

d

(p) touch each other, namely at p + dn (n being the

unit normal vector at p). Therefore, the general o�set of

� with respect to � agrees with the general o�set of �

d

with respect to �

d

. If we choose d so small that the cutter

remains smooth, both surfaces are smooth and thus the

general o�set is smooth by the considerations above. The

same holds if the cutter has edges and the design surface

has none; then we use o�sets on the other side.

This, however does not work at edge-edge contacts.

Here, if the tangents of the two edges are not parallel, the

general o�set surface locally equals the surface

f(u; v) = e

1

(u) � e

2

(v) + const.

where e

1

(u) is a parametrization of the edge in � and e

2

(v)
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is a parametrization of the edge in �. Such a surface ob-

viously is smooth if both edges are. On the other hand, it

is easy to �nd an example of a non-smooth general o�set

surface, if the edge tangents are parallel (consider a design

surface which is a surface of revolution).

We have arrived at a fundamental tool for the study of

global millability.

Theorem 2 Let � be a regular C

0

, piecewise C

2

surface,

which is locally millable with a strictly convex C

0

, piecewise

C

2

cutter �. If at edge-edge contacts the edge tangents are

not parallel and the edges are smooth, then the general o�set

surface of � with respect to � is free of singularities.

Let us point out again that the singularities are local

ones in the sense of di�erential geometry, such as edges

of regression and the vertex of a cone. Handling self-

intersections of the general o�sets is more complicated and

tied to global millability, which will be investigated in the

next section.

GLOBAL MILLABILITY CONDITIONS

Surfaces Representable as Graphs of Bivariate Functions

Let � be a surface, which is represented as graph of a

compactly supported C

0

, piecewise C

2

function f : R

2

! R.

This situation occurs frequently in die and mould machin-

ing, where 3-axis milling is mostly employed. Of course,

only part of the plane will be realized in practice, but this

is not important in our context. We can now prove our �rst

global result.

Theorem 3 Let � be a surface, which is represented as

graph z = f(x; y) of a compactly supported, C

0

, piecewise

C

2

function f : R

2

! R. If � is everywhere locally millable

with a strictly convex C

0

, piecewise C

2

cutter � with z-

parallel axis, then � is globally millable with �.

Proof: At �rst, let us treat the case of C

1

surfaces � and

�. We enclose the support of f in a su�ciently large disk

D � R

2

and call the resulting surface patch again �. During

milling of the surface, the cutter is always in contact with

the surface �. Due to our assumptions on �, the cutter

can start at a gobally interference-free position (touching

at a maximum of f or at a point su�ciently far away from

the support of f). Before it reaches a position which has a

global interference, it touches � in at least 2 di�erent points

p and q. This means that the reference point on the cutter

axis twice is situated at the same point d of the general o�set

surface �, which it is generating. Since the tangent planes

of �(p) = �(q) at p and q cannot be parallel, this shows

that the general o�set has two di�erent tangent planes at d

and therefore a self-intersection.

This, however, cannot be the case: The mapping from

points on � to the corresponding points on � has a projec-

tion onto the x; y-plane, which is the mapping
e
g : D ! D

given by (8). Note that the image ofD under
e
g isD, since at

points x outside the support of f , the cutter is touching the

x; y-plane and thus the reference point lies on the z-parallel

line through x, i.e.,
e
g(x) = x. Obviously, if we take D suf-

�ciently large, no other projection of a reference point po-

sition can be outside D. Through each point x 2 D we can

draw a z-parallel line and place the axis of the cutter there.

Moving the cutter along that line from a non-interfering po-

sition above � in negative z-direction, we must somewhere

reach a position where it touches �. This means that any

point x 2 D occurs as projection of a reference point po-

sition and
e
g : D ! D is a surjective, C

1

mapping with

det J

eg

> 0 everywhere.

Because of compactness of D and the absence of sin-

gular values (cf. (Milnor, 1965)) the number of points in

the preimage
e
g

�1

(x) is constant, and therefore equal to 1,

which implies that
e
g is indeed bijective and � is free of self-

intersections.

In the presence of edges, we construct �-pipe surfaces

to smoothly round o� design surface and cutter and obtain

global millability. By equation (6), the error introduced

onto the cutter position by smoothing tends to zero for �!

0. Thus, even in the presence of edges no gouging can occur.

2

A surjective, regular C

1

mapping
e
g : R

2

! R

2

is bi-

jective, if and only if kxk ! 1 implies k
e
g(x)k ! 1 (see

(Dieudonn�e), x16.28). This leads to the following result.

Theorem 4 Theorem 3 also holds, if f : R

2

! R has a

bounded gradient, krfk < A, and if the cutter, represented

as graph z = s(x; y) possesses gradients of s, whose norms

exceed A.

Proof: The assumptions on the gradients (which of course

have to be applied to each patch) make sure that there are

tangent planes of the cutter which are steeper than all tan-

gent planes of the design surface. Again, it is su�cient to

treat the C

1

case. As above, we prove that
e
g is surjective

and regular. Let us consider the circle on the cutter along

which the gradients of s have norm A; then all parts of the

cutter \above" this circle (of radius R) never become active.

Even for a cutter that reaches to in�nity (we will see later

that this may be a useful thing for practical considerations

concerning 5-axis machining), the distance between the pro-

jections of the cutter location point and the touching point

is bounded by R,

k
e
g(x)� xk � R:
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Therefore, we have the above mentioned condition for a

bijective map g and again see that the surface is globally

millable. 2

Note that theorem 4 applies to a surface with a planar

extension which is not normal to the cutter axis (could also

be proved like theorem 4). More generally, the theorem is

applicable if a bounded surface has an extension such that

the assumptions hold. It is, however, not always possible

and, even if posible, in general quite hard to construct such

an extension. The problem with boundaries is the follow-

ing: Even if the general o�set is free of self-intersections,

i.e., there are no positions where the cutter touches the de-

sign surface at two di�erent points, there might be positions

�(p) which collide with the boundary and thus gouging at

a region adjacent to the boundary occurs.

Therefore, when dealing with boundaries we make the

following assumption, which is useful from the practical

point of view. Consider a graph surface z = f(x; y) over

some connected, bounded domain D. We now append at

the boundary curve of the surface a z-parallel cylindrical

surface in negative z-direction. As an example, the exten-

sion may be part of the boundary of the �nal workpiece

(solid). This surface plus its extension shall be millable by

the cutter.

At this point, it is necessary to say more about the

cutter. We have so far focussed only on the active part of

it. It may be extended by a coaxial right circular cylindri-

cal shaft, which does not become active during milling, but

holds the tool. Thus, this extension cannot cause any trou-

ble in applications for the kind of design surfaces, which we

are treating here.

Boundary milling in our sense requires a cutter which

has vertical tangent planes. It does not matter, if the actual

cutter is not like this. In order to apply our previous con-

siderations, embed it into such a cutter, which is extended

in positive z-direction by a right circular cylinder of radius

�. We now say that our surface boundary c is locally mil-

lable, if the introduced edge is locally millable. Note that

the cylindrical extension of the cutter has to mill locally

the cylindrical extension of the surface. In the projection

to the x; y-plane this is a local interference check between

the boundary curve ec of D and a circle

e

d of radius �, touch-

ing D from the outside. Thus, the curvature of ec has to

be greater than �1=�. Obviously, we can allow millable

(convex) vertices in the boundary of D.

In order to mill the whole piece without gouging, the

(outer) o�set of ec at distance �, which shall be closed by

circular arcs at boundary vertices, needs to be free of self-

intersections. We will now show that local millability plus

Figure 3: Milling a surface with boundary

this global condition are su�cient for gouge-free milling. A

picture of this can be seen in Fig. 3.

Theorem 5 Let � be a surface, which may be written as

graph z = f(x; y) of a C

0

, piecewise C

2

function f : D ! R

over a connected domain D � R

2

with C

0

, piecewise C

2

boundary. Moreover, we assume a strictly convex C

0

, piece-

wise C

2

cutter � with z-parallel axis, which is extended by a

cylindrical surface of radius �. If the boundary of D has an

outer o�set at distance �, which is free of self-intersections,

and if �, including its boundary, is everywhere locally mil-

lable with �, it is also globally millable with �.

Proof: It is su�cient to consider the edge-smoothed sur-

faces. Now, gouge-free milling is guaranteed if the general

o�set is free of self-intersections. As in the previous proofs

of surjectivity we see that
e
g maps the connected compact

domain D onto the compact and connected domain D

�

,

bounded by the outer o�set of D at distance �.

We want to prove that the parametrization of � is reg-

ular everywhere. In the interior of D it is because of local

millability. In the cylindrical part, the regularity of the

outer o�set curve implies the regularity of �. For a bound-

ary point p there is a neighbourhood U � � of p and a plane

�

1

such that the surface, including the cylindrical part, has

a graph representation over U . Local millability has been

characterized by the Euclidean curvatures of � and � and

remains invariant when changing the base plane. So the

regularity of � in a neighbourhood of p follows from local

millability inside D and from the existence of the outer o�-

set curve in the cylindrical part, as before.

The mapping
e
g : D ! D

�

now is the projection of �'s

parametrization to �, and therefore is continuous and sur-

jective. In the interior of D it is C

2

and regular. When

restricted to the boundary, it is bijective. Now
e
g is a cov-
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Figure 4: Milling of a star-shaped closed surface and

`shadow' of cutter

ering map, whose restriction to the boundary is injective,

which implies the bijectivity of
e
g and the global millability

of �. 2

Star-shaped Surfaces

A connected compact domain D � R

3

will be called

star-shaped with respect to a point c 2 D, if all line seg-

ments [c; p] with p in the boundary of D are contained in

the interior of D (see Fig. 4). Its closed boundary shall be

called a star-shaped surface, if it consists of C

2

patches, and

all radial lines emanating from c intersect it transversally.

This implies that the surface may be viewed as graph of a

positive real-valued function f , de�ned on the unit sphere

S

2

. Each point s 2 S

2

is mapped to the point c + f(s) � s.

We are interested in milling the surface from the outside

(exterior of D). At �rst, we assume the cutter � to be a

compact, strictly convex surface (needs not necessarily be

a surface of revolution), which is undergoing a translatory

motion in 3-space. We prove the following result on the

generated o�set:

Theorem 6 Let both � and � be C

0

, piecewise C

2

sur-

faces, where � is star-shaped and � is strictly convex and

compact. If � is locally millable with � from the outside,

the corresponding general o�set is free of self-intersections.

Proof: We may assume smooth surfaces and place the ref-

erence point r in the interior of �. Let us project the map-

ping between points p 2 � and the corresponding points

r(p) 2 � radially onto S

2

and call it f. Obviously, f is sur-

jective. At a touching position, the cutter �(p) and c lie at

di�erent sides of the tangent plane at p, and thus the line

cr(p) is never tangent to � at r(p). With local millability

this implies regularity of f. S

2

is a compact manifold and

f : S

2

! S

2

is regular and surjective. Therefore, f is a cover-

ing map (cf. (Dieudonn�e)). Because of simple connectedness

of S

2

it is bijective, and � must be free of self-intersections.

Another argument is the following: Shrinking � gives

a homotopy of f to the identity map. Equ. 11 shows that f

is orientation-preserving and there are only regular values.

Therefore the oriented mapping degree counts the number

of pre-images of points. This number is a homotopy invari-

ant and therefore equals 1. The second argument is better

than the previous one because it does not appeal to the

simple connectedness of the sphere, which actually is not

essential. 2

We did not speak about global millability yet, because this

question also involves the position of the axis of the cutter

and the rest of the machinery holding the cutter, which in

practical applications of course is present all the time. Let

us mention just one application in this direction. Think

of 5-axis milling with a ball cutter (hemisphere extended

by a circular cylinder) and let us ask, where the axis of

the tool can be placed. At a position �(p) of the cutting

sphere, we consider the half-cone with vertex c that touches

�(p) and trim away the part between c and the circle along

which it touches the sphere. The remaining part of the

cone and the part of the sphere which is visible from p,

bound a region S � R

3

. Its points lie in the \shadow" of

the sphere for a light source at c (see Fig. 4). It is not

hard to see that a tool position which lies in this shadow

region has no collisions with the design surface. To check for

possible tool positions, one needs not use that actual cutter.

Instead we can work with the largest sphere that can mill

the surface from the outside. Its radius is 1=�

max

, where

�

max

is the largest positive principal curvature of � (when

we orient the surface � with normals pointing to the outer

side). For a convex design surface and this orientation, all

normal curvatures are nonpositive and the largest sphere

degenerates to a plane.

Another application of theorem 6 concerns its planar

counterpart.

Corollary 1 Let D be a star-shaped planar domain with a

C

0

, piecewise C

2

boundary curve c, and let r be the radius

of a circle that can locally mill D from the outside. Then,

all exterior o�set curves of D at distance d � r are free of

singularities and self-intersections.

Proof: We extend D � z = 0 to a spatial domainD which

is formed by points x + �(0; 0; 1) for all points x 2 D and

� 2 [0; 1]. This cylindrical solid is star shaped with center

c+(0; 0; 0:5) and millable with any sphere of radius � r. Its

o�set at distance d � r contains part of a cylinder erected

over the o�set of c, which, by theorems 2 and 6 is free of

singularities and self-intersections. 2
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Figure 5: O�set of a star-shaped planar domain

One can prove this result directly in the plane, because

the winding number of the analogue to
e
g is easily found to

be 1, and now regularity and surjectivity implies bijctivity.

is useful in connection with theorem 5: For a star-shaped

D the check for self-intersections of its o�set at distance

� is not necessary. This is illustrated in Figure 5, which

shows the o�set to the maximumdistance for which no self-

intersection occurs.

APPLICATIONS AND FUTURE RESEARCH

For three-axis milling of surfaces, representable as func-

tion graphs, we may construct an optimal cutter as follows.

Let I be the interval of all inclination angles of the tangent

planes of �, measured against the cutter's axis direction.

For an �

i

2 I, we analyze the curvature behaviour at the

surface points with tangent plane inclination angle �

i

and

compute a region in the tangent plane of the cutter, in which

the Dupin indicatrix has to lie in order to guarantee local

millability. This shall be done for a su�cient number of

values �

i

. The meridian curve of the cutter, de�ned as in-

tersection with a plane through the axis, shall be described

as a function z = m(r) of the axis distance r. Then, for an

admissible r and � (or equivalently m

0

(r)), the indicatrix

region allows us to compute a lower bound for the second

Figure 6: Protecting cutter

derivative m

00

(r). This gives an inequality

m

00

(r) � F (r;m

0

(r)); (12)

on which the computation of an optimal cutter can be

based. This will be discussed in another paper.

Even if an optimal cutter is not available in practice,

it can serve as an auxiliary cutter in connection with the

following principle of the protecting cutter: if a surface can

be globally milled with a cutter �, it can also be milled with

any cutter �, which can mill � from inside (see Fig. 6).

If � extends to in�nity, we may even change the axis di-

rection of � and get information for tool-motion planning

for 5-axis machining. Moreover, we may determine how far

one can safely go with a 
at end mill. More generally, us-

ing a protecting cutter we can apply our results to cutter

shapes which do not ful�l the requirements of our millabil-

ity criteria. Thus, we have reduced collision tests against

complicated surfaces to those against a convex surface of

revolution. For parallel or intersecting rotation axes of ac-

tual and protecting cutter, this is just a planar problem.

We also plan to investigate other global millability re-

sults in the future. In this paper, we have treated surfaces

which are graphs over the plane or the sphere. Other base

surfaces seem to be useful as well.

In applications, the �nal design surface is not produced

in one stage. Therefore, it seems to be interesting to in-

vestigate millability with respect to varying design surfaces
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with increasing detail. For that, we can use a multiresolu-

tion approximation with surfaces

z = f

i

(x; y); i = 1; : : : ; N:

The approximation shall proceed from above, i.e.,

f

i+1

(x) � f

i

(x) (13)

and N shall belong to the surface of the �nal part. For

increasing i, we have more detail, higher curvatures and

decreasing optimal cutter sizes. One easy way to include

the restriction (13) in a multiresolution analysis (MRA) is

to do the MRA without the restriction and then adding

appropriate small constants to the f

i

. The constants are

easily `milled away' in the next milling step. In this way,

the optimization can simultaneously treat the whole milling

procedure.
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