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Abstract. We consider the problem of variational interpolation
of subsets of Euclidean spaces by curves such that the L2 norm of
the second derivative is minimized. It is well known that the result-
ing curves are cubic spline curves. We study geometric boundary
conditions arising for various types of subsets such as subspaces,
polyhedra, and submanifolds, and we indicate how solutions can
be computed in the case of convex polyhedra.

1. Introduction and previous work

Cubic B-spline curves are frequently used for interpolation in Com-
puter-Aided Geometric Design. One reason is that their definition
and handling is rather simple, but they are flexible enough to allow
interpolation with C2 curves. The following is a well known property
of the C2 B-spline curves: If points x0, . . . , xn ∈ Rd and real parameter
values u0 < · · · < un are given, then there is a unique piecewise cubic
C2 curve c(u) which assumes the values c(ui) = xi (i.e., it interpolates
the points xi), and which has the additional property that the second
derivatives c′′(u0) and c′′(un) vanish. This cubic interpolant is at the
same time the unique interpolant curve which minimizes the functional

F (c) =

∫
‖c′′(u)‖2du(1)

in some well-defined class of curves defined below (cf. [12]).
In the present paper we study a generalization of this problem: the

variational interpolation of subsets X0, . . . , Xn of Euclidean space Rd.
These subsets can be viewed as tolerance zones of points, and the vari-
ational interpolant of these subsets may be interpreted as interpolation
of points within precisely defined error bounds. It turns out that the
solution, to this problem, if it exists, is again a piecewise cubic curve.

An even more general problem is minimization of a functional of the
above type with the same interpolation conditions, but with variable
parameter values u0 < · · · < uN .
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Previous work on these topics includes [3, 4, 5, 6], where a functional
of the form ∫

‖c(m)(t)‖2dt(2)

is minimized, where c ranges in the Sobolev space L
(m)
2 ([0, 1],Rd) of Rd-

valued curves wich satisfy the interpolation conditions c(j)(ui) ∈ Kij,
for certain subsets Kij. The more general problem mentioned above is
also discussed in these papers. The main results concern existence of
a solution, and ‘optimality conditions’ which allows one to recognize
solutions among the set of piecewise cubic interpolants. The solution
curves are interpreted as smoothing splines, and the optimality condi-
tions involve the smoothing spline weights.

The present paper deals with two topics: One is geometrically char-
acterizing of interpolants of affine subspaces and of smooth submani-
folds Xi, possibly with boundary, which make the functional F of Equ.
(1) stationary. The other is description and computation of the set of
minimizing interpolants, if the subsets Xi to be interpolated are affine
subspaces or polyhedra.

2. Definitions

We write f ∈ AC([a, b]) for an absolutely continuous function f :
[a, b] → Rd. As usual we identify functions which are equal almost
everywhere, so that we can write, for instance f ∈ L2. Recall that
f ∈ AC([a, b]) implies that f is differentiable almost everywhere, and
that f(x)− f(a) =

∫ x

a
f ′(t)dt (see e.g. [11]).

We assume that we are given real parameter values u0 < · · · < un,
and let I = [u0, un]. We consider the linear space C of curves defined
by

c ∈ C ⇐⇒ c : I → Rd, c′ ∈ AC(I), c′′ ∈ L2(I).(3)

If X0, . . . , Xn are subsets of Rd, then we are looking for those curves
c ∈ C which assume values c(ui) ∈ Xi for i = 0, . . . , n, and among
them, for those which minimize the functional

F (c) =

∫ un

u0

‖c′′‖2.(4)

We refer to them as minimizing interpolants of the subsets X0, . . . , Xn.
Further, we look for curves which make the functional (4) stationary
(if the subsets in question are smooth) without necessarily minimizing
it.

The property of cubic C2 B-splines mentioned at the beginning could
be expressed now by saying that the minimizing interpolant of points
x0, . . . , xn is the piecewise cubic C2 curve with c′′(u0) = c′′(un) = 0 and
c(ui) = xi.
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3. Variational Interpolation of Subsets

3.1. Affine subspaces of Rd. We first study the case that the subsets
X0, . . . , Xn are affine subspaces, such as points, lines, and planes. We
use the notation

∆u0
f = lim

u↘u0

f − lim
u↗u0

f(5)

for the jump of a piecewise continuous function at u = u0.

Lemma 1. Assume that X0, . . . , Xn are affine subspaces of Rd, and
assume further that a curve c ∈ C has the property c(ui) ∈ Xi for
i = 0, . . . , n. If c satisfies the following three conditions:

(a) The restrictions c|[ui, ui+1] are polynomial of degree ≤ 3;

(b) c is C2 with c′′(u0) = c′′(un) = 0;

(c) ∆ui
c′′′ is orthogonal to Xi for i = 1, . . . , n − 1. The vectors

c′′′(u0), c
′′′(un) are orthogonal to X0, Xn, respectively;

then c minimizes the functional F in C, and all interpolating minimiz-
ers are of this form.

Proof. We endow C with the inner product

〈c, c̄〉 =

∫ un

u0

〈c′′(u), c̄′′(u)〉du, so F (c) = 〈c, c〉.(6)

The scalar product 〈c′′, c̄′′〉 is to be taken in the Euclidean vector space
Rd. We have

〈c̄, c̄〉 − 〈c, c〉 = 2〈c, c̄− c〉+ 〈c̄− c, c̄− c〉(7)

for all c, c̄ ∈ C. 〈 , 〉 is positive semi-definite, so 〈c, c̄ − c〉 = 0 implies
that F (c̄) ≥ F (c), and 〈c, c̄− c〉 > 0 implies that F (c̄) > F (c).

We assume that c̄ interpolates X0, . . . , Xn in the same way as c does.
We let V (u) = c̄(u)−c(u) and compute 〈c, c̄−c〉 by integration by parts
in the intervals [u0, u1], [u1, u2], . . . and summing up:

〈c, c̄− c〉 =

∫
〈c′′(u), V ′′(u)〉du

=

∫
〈c′′′′, V 〉du+ 〈c′′(un), V

′(un)〉 − 〈c
′′(u0), V

′(u0))〉

+〈c′′′(u0), V (u0)〉 − 〈c
′′′(un), V (un)〉+

n−1∑

i=2

〈∆ui
c′′′, V (ui)〉.(8)

As V (ui) is parallel to Xi, conditions (a)–(c) immediately imply that
〈c, c̄− c〉 = 0, which shows the sufficiency of (a)–(c).

Any other minimizer c̄ must satisfy 〈c − c̄, c − c̄〉 = 0, because
otherwise we would have F (c̄) > F (c). This condition implies that∫
‖(c̄− c)′′‖ = 0, that is, (c− c̄)′′ = 0 almost everywhere. As (c− c̄)′ ∈

AC([u0, un]), we have (c − c̄)′(u) − (c − c̄)′(u0) =
∫ u

u0
(c − c̄)′′ = 0. It
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follows that c − c̄ is an inhomogeneous linear function. Consequently,
c′′ = c̄′′, and c̄ satisfies (a)–(c) if and only if c does. ¤

We consider the subspace P3 of C which is defined by

c ∈ P3 ⇐⇒ c ∈ C2([u0, un]), and c|[ui, ui+1] is(9)

polynomial of degree ≤ 3 for i = 0, . . . , n− 1.

Recall that a cubic curve c is uniquely determined by its values and
derivatives at two different parameter values. If c ∈ P3, then c, c′,
c′′ are continuous, so every cubic segment leaves exactly d degrees of
freedom for its successor. Therefore,

dimP3 = 4d+ (n− 1)d = (n+ 3)d.(10)

We now derive a partial result concerning the existence and uniqueness
of the variational interpolant.

Lemma 2. We use the notation of Lemma 1. Assume that Xi = pi+Ui

are affine subspaces of Rd parallel to linear subspaces Ui. It might
happen that there exist a0, a1 ∈ Rd, not both zero, such that

a0 + uia1 ∈ Ui, (i = 0, . . . , n).(11)

If this is not the case, then the variational interpolation problem is
uniquely solvable within the class C, and satisfies (a)–(c) of Lemma 1.
Especially, the minimizing interpolant is in P3.

Proof. We show that conditions (a)–(c) of Lemma 1 are satisfied by a
unique curve in P3. We use the fact that a system of (dimP3) linear
equations is uniquely solvable if and only if 0 is the only solution of the
corresponding homogeneous system.

The interpolation conditions c(ui) ∈ Xi, the orthogonality conditions
(b), and the end conditions (c) represent

n∑

i=0

(d− dimXi),

n∑

i=0

dimXi, 2d(12)

inhomogeneous linear equations for the curve c ∈ P3, respectively.
The total number of equations is (n + 3)d = dimP3. If we replace
the spaces Xi by Ui, we get the corresponding homogeneous system of
linear equations.

We have to show that c(u) = 0 is the only minimizing interpolant
of the subspaces U0, . . . , Un. A possible minimizing interpolant c must
satisfy F (c) = F (0) = 0, which implies that c is piecewise linear (the
argumentation is the same as in the proof of Lemma 1).

As c is C2, it is actually of the form c(u) = a0 + ua1, with a0, a1 ∈
Rd. This means that a0 + uia1 ∈ Ui, which was forbidden by our
assumptions. ¤
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Figure 1. Minimizing interpolant of the lines Xi.

Example 1. Fig. 1 (cf. [10], p. 301) shows the unique variational inter-
polant of lines Xi. These lines are generator lines u = ui of a ruled
surface of the form

s(u, v) = l(u) + vr(u).(13)

In this example l is a linearly parametrized line. The variational inter-
polation must, of course, reproduce this line. The curve s also shown
in Fig. 1 is the striction curve. This is a Euclidean differential invari-
ant of ruled surfaces. A definition which does not need any further
notions of differential geometry is that the striction curve is the locus
of points where the generator lines u = c = const. are closest to their
‘neighbours’ u = c+∆u as ∆u→ 0 (see [10], pp. 264 and 285).

An explicit system of linear equations describing the variational in-
terpolation of lines in Euclidean three-space is given in [10], p. 300f.
Sec. 5.4.3 of [10] discusses the variational interpolation of ruled surfaces,
and shows a possible solution which contains variational interpolation
of lines by a curve as a subproblem.

3.2. Reduction to the cubic case. Lemma 2 includes the follow-
ing well known elementary result as a special case: The variational
interpolation problem within C for points p0 = X0, . . . , pn = Xn is
uniquely solvable. There is exactly one curve c ∈ P3 with c(ui) = pi

and c′′(u0) = c′′(un) = 0. This curve will be denoted by

I(p0, . . . , pn).(14)

A very similar (and well known) result is the following: For all points
p0, . . . , pn ∈ Rd, and vectors w0, wn ∈ Rd, there exists a unique C2

piecewise cubic curve c ∈ P3 with c(ui) = pi (i = 0, . . . , n) and c′(u0) =
w0, c

′(un) = wn. It will be denoted by

Ĩ(p0, . . . , pn;w0, wn).(15)

Both I and Ĩ are found by solving a linear system of equations whose
matrix depends on the knot values ui, but not on the points pi or the
vectors w0, wn. Thus we have
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Lemma 3. The mappings I : (Rd)n+1 → P3 and Ĩ : (Rd)n+3 → P3 are
linear.

We reduce the problem of interpolating within the class C to the
problem of interpolating within the class P3. Obviously, if X1, . . . , Xn

are subsets of Rd, and c is a curve in C with c(ui) ∈ Xi, then

F (c) ≥ F (I(c(u0), . . . , c(un))), and(16)

inf{F (c) | c ∈ C, c(ui) ∈ Xi} = inf{F (c) | c ∈ P3, c(ui) ∈ Xi}(17)

We consider the set V = (Rd)n+1 (which is the (n + 1)-fold product
of the affine space Rd with itself) and define a quadratic form in V by
letting

q(p0, . . . , pn) = F (I(p0, . . . , pn)).(18)

By (16), finding a minimizing interpolant of subsets X0, . . . , Xn is
equivalent to minimizing the function q on X0 × · · · ×Xn.
Remark: From the structural viewpoint, Rd is here considered as an

affine space, and (Rd)n+1 is a product of n + 1 copies of this affine
space. A translation x 7→ x + a of Rd gives rise to a transformation
(x0, . . . , xn) 7→ (x0 + a, . . . , xn + a) of V . The quadratic form q is
invariant with respect to the group of these transformations, because
F is invariant with respect to translations.

3.3. Submanifolds of Euclidean space. We are going to investigate
interpolants of curves and surfaces, i.e., submanifolds, which make the
functional F stationary without necessarily minimizing it. The answer
will be an infinitesimal condition involving the first three derivatives
of the curve. A characterization of an actual (global) minimum is
not possible with conditions of that type: it must use the shape of
the sets Xi (e.g., being convex or being a subspace). An infinitesimal
characterization of local minima is possible and uses higher derivatives.
Thus, for the sake of generality, we consider the local situation only,
and for the sake of simplicity, we are content with a first order analysis.

More precisely, we call a bivariate smooth function cv(u) an admis-
sible variation of c if it is defined for v in a neighbourhood of 0 and
u ∈ [u0, uN ], if c0 = c and the interpolation condition cv(ui) ∈ Xi is
satisfied for all v and i = 0, . . . , n. Then c makes F stationary if for all
admissible variations the derivative

d

dv
F (cv)

v=0
= 0.(19)

Theorem 4. Assume that X0, . . . , Xn are smooth submanifolds of Rd.
A curve in P3 makes the functional F stationary within the set of P3-
interpolants of X0, . . . , Xn if and only if the following conditions are
satisfied:
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(a) ∆ui
c′′′ is orthogonal to the tangent space Tc(ui)Xi for i = 1, . . . ,

n− 1, and c′′′(u0), c
′′′(un) are orthogonal to Tc(u0)Xi, Tc(un)Xi,

respectively.
(b) c′′(u0) = c′′(un) = 0, i.e., c = I(c(u0), . . . , c(n)).

Proof. Consider an admissible variation cv(u) of c within P3, and let
V (u) = ∂cv(u)/∂v

∣∣
v=0

. We use integration by parts to compute

1

2

dF (cv)

dv v=0
= 〈V ′(un), c

′′(un)〉 − 〈V
′(u0), c

′′(u0)〉 − 〈V (un), c
′′′(un)〉

+ 〈V (u0), c
′′′(u0)〉+

n−1∑

i=1

〈∆ui
c′′′, V (ui)〉.(20)

Obviously, if (a) and (b) are satisfied, F is stationary at c = c0. To
show the converse, we argue as follows:

For a given c = c0, we try to find a variation cv(u) with V (ui) = 0,
but V ′(u0) = c′′(u0) and V ′(un) = c′′(un). Then the derivative of
F (cv) will be positive unless c′′(u0) = c′′(un). To find cv, we choose
curves w0(v) and wn(v) in Rd, such that dw0/dv(0) = c′′(u0), and
dwn/dv(0) = c′′(un). We let

cv = Ĩ(c(u0), . . . , c(un);w0(v), wn(v)).(21)

By construction, cv has the desired properties, and its existence shows
that necessarily c′′(u0) = c′′(un) = 0, if c is to make F stationary.

To show (a), we choose curves pi(v) in Xi (i = 0, . . . , n), such that
p0(0) = c(u0), . . . , pn(0) = c(un), and such that the tangent vectors
dp0/dv(0), . . . , dpn/dv(0) equal the orthogonal projections of the vec-
tors c′′′(u0), ∆u1

c′′′, . . . ,∆un−1
c′′′, c′′′(un) onto the respective tangent

spaces Tc(ui)Xi. Finally, we let

cv(u) = I(p0(v), . . . , pn(v)).(22)

By (b), c0 = c, so cv is actually an admissible variation. By construc-
tion, dF (cv)/dv is nonzero unless (a) is satisfied. This concludes the
proof. ¤

This result on the jump of the third derivative yields a geometric
interpretation of the conditions given in the section ‘optimality con-
ditions for fixed data sites’ of [4] and the condition in [6]. These two
papers give conditions on the weights of the solution curves when in-
terpreted as smoothing splines.

Theorem 5. An interpolant c of X0, . . . , Xn makes F stationary in
the class C if and only if c ∈ P3 and c makes F stationary within P3.

Proof. If c 6∈ P3, then we consider the curve c̄ = I(c(u0), . . . , c(un)).
Clearly, F (c) > F (c̄). Consider the admissible variation cv(u) =
(1 − v)c(u) + vc̄(u). The mapping v 7→ F (cv) is the restriction of the
positive semidefinite quadratic form F to a straight line (and therefore
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a quadratic function). It does not assume its minimum at v = 0, so
we have dF (cv)/dv 6= 0 for v = 0. This implies the ‘if’ part of the
statement.

The ‘only if’ part is shown as follows: Assume that c ∈ P3, and that
c makes F stationary within P3. For an admissible variation cv of c
within C, consider c̄v = I(cv(u0), . . . , cv(un)). By Th. 4, c0 = c̄0, so c̄v

is an admissible variation of c within P3. Now

dF (c̄v)

dv
(0) = 0, F (cv) ≥ F (c̄v) =⇒

dF (cv)

dv
(0) = 0.(23)

¤

3.4. Submanifolds with boundary. We now consider the case that
X0, . . . , Xn are submanifolds with boundary. These are defined as sub-
sets of Rd, which are locally diffeomorphic to polyhedra contained in
real vector spaces of varying dimensions. The r-dimensional facets of
those polyhedral correspond, via these local diffeomorphisms, to r-di-
mensional boundary components of Xi. Such boundary components
are submanifolds with boundary themselves. The points in the inte-
rior of the above mentioned polyhedra correspond, by definition, to
interior points of Xi (the set of interior points being a smooth subman-
ifold without boundary). By construction, all points of Xi are interior
points of some boundary component, if for the sake of consistency we
define that 0-dimensional submanifolds contain only interior points. In
order to make the tangent space of a point unique, we require that
the tangent space TpXi of a point p ∈ Xi is the tangent space (in the
ordinary sense) of that r-dimensional boundary component the point
p is an interior point of.

Theorem 6. Assume that X1, . . . , Xn are submanifolds with boundary,
and that the remaining assumptions are as in Th. 4. The results of both
Th. 4 and Th. 5 remain valid if we adopt the definition of tangent space
given above.

Proof. If c is an interpolant of X0, . . . , Xn, and cv(u) its admissible
variation, consider the vector field V (u) as defined in the proof of
Th. 4. If c(ui) is a boundary point and V (ui) 6∈ Tc(ui)Xi, then the
curve v 7→ cv(ui) leaves Xi in all neighbourhoods of 0. Admissible
variations therefore have the property that

V (ui) ∈ Tc(ui)Xi.(24)

In order to show Th. 4, we note that we can replaceXi by that boundary
component X̃i which contains c(ui) as an interior point: The derivative
of F (cv) depends on the vectors V (ui) only, and for all admissible
variations cv(u) there is an admissible variation which has the same

vectors V (ui), and where the curve cv(ui) is entirely contained in X̃i.
This shows that Th. 4 remains valid. The proof of Th. 5 does not need
any changes. ¤



VARIATIONAL INTERPOLATION OF SUBSETS 9

���

�	�

��

���

���

��


Figure 2. Variational interpolation of rectangles Xi in
the Euclidean plane.

Example 2. We use Fig. 2 to describe the effects of Th. 6: The bold
curve c(u) variationally interpolates the rectangles X0, . . . , Xn. If c(ui)
is contained in the interior of the rectangle Xi, Th. 6 says that there
is no jump in c′′′(ui) at all (only the zero vector is orthogonal to the
entire plane). This implies that the two cubic segments which meet at
c(ui) are parts of the same cubic curve.

If c(ui) is contained in an edge, the jump in c′′′ is orthogonal to
that edge. If c(ui) is a vertex of Xi, then no restriction is imposed
on ∆c′′′(ui) by Th. 6 (all vectors are orthogonal to the zero subspace
Tc(ui)X).

4. Existence and uniqueness of the minimizing interpolant

4.1. Generalities. Existence of solutions to the more general varia-
tional interpolation problem for subsets with non-fixed knot values ui

has been discussed in [3] and [5]. It is shown there that a solution ex-
ists of the subsets to be interpolated are closed and a certain number
of them are bounded. Here we consider the existence and uniqueness
problem from a slightly different (and more elementary) point of view,
and with special attention to subspaces and polyhedra (which do not
have to be bounded).

We have already seen that minimizing F within C amounts to min-
imizing q within the product space V = (Rd)n+1 (which implies im-
mediately that the minimization problem is solvable whenever the
sets Xi are compact). The scalar product 〈 , 〉 in the product space
V = (Rd)n+1 defined by the quadratic form q is positive semidefinite.



10 JOHANNES WALLNER, HELMUT POTTMANN

Recall that in this case the radical

V ⊥ = {v ∈ V | 〈v, x〉 = 0 ∀x ∈ V },(25)

coincides with the set of isotropic vectors

q−1(0) = {v ∈ V | 〈v, v〉 = 0}.(26)

Lemma 7. The radical V ⊥ consists of vectors (p0, . . . , pn) of the form
pi = a0 + uia1, where a0, a1 ∈ Rd. dimV ⊥ = 2d.

Proof. q(p) = 0 means that the cubic minimizing C2 interpolant of the
points p0, . . . , pn is linearly parametrized. ¤

The scalar product 〈 , 〉 becomes well-defined and positive definite
in the factor space V/V ⊥, if we define 〈a+ V ⊥, b+ V ⊥〉 = 〈a, b〉. Then
the projection v 7→ v + V ⊥ of V onto the factor space V/V ⊥ does not
change scalar products. Likewise projections parallel to V ⊥ onto any
complementary subspace (all of them are isometric to V/V ⊥) do not
change scalar products. Fix any of these projections and call it π. We
have

kerπ = V ⊥, dimπ(V ) = d(n− 1).(27)

The scalar product and quadratic form in π(V ) which are defined by
〈 , 〉 and q are denoted by the same letters. By construction, q is
positive definite in π(V ).

Lemma 8. Consider subsets X0, . . . , Xn of Rd. If π(X0 × · · · × Xn)
is closed, then the variational interpolation problem with input data
X0, . . . , Xn has a solution c. If F (c) = ρ, then the solution curves have
the form I(p0, . . . , pn), where (p0, . . . , pn) ranges in the set q

−1(ρ) ∩
(X0 × · · · ×Xn).

Proof. The closed q-unit balls in π(V ) are compact, so q has a minimum
ρ on any closed set. ¤

4.2. Examples.

Theorem 9. If X0, . . . , Xn are affine subspaces, the variational inter-
polation problem is solvable. Assume that Xi = pi + Ui, with linear
subspaces Ui. Let

W = V ⊥ ∩ (U0 × · · · × Un)(28)

= {(x0, . . . , xn) | ∃ a0, a1 ∈ Rd : xi ∈ Ui, xi = a0 + a1ui}.

Then the minimizing variational interpolants of X0, . . . , Xn have the
form I(x0, . . . , xn), where (x0, . . . , xn) ranges in an affine subspace par-
allel to W .

Proof. π(X0× · · · ×Xn) is an affine subspace and therefore closed. By
Lemma 8, the problem is solvable. As the proof of Lemma 2 shows, the
solution depends on solving a system of linear equations. We already
know that this system is solvable. The solution of the corresponding
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homogeneous system is described in the proof of Lemma 2. By Lemma
7, which explicitly describes V ⊥, this solution is given by W . ¤

Example 3. Th. 9 is illustrated in Fig. 3 (cf. [10], p. 301). Straight lines
Xi = pi + Ui are arranged such that the one-dimensional subspaces
Ui are spanned by vectors a0 + uia1, with some a0, a1 ∈ R3. Here
a0, a1 are unique up to a common scalar multiple. This implies that
the intersection V ⊥ ∩ (U0 × · · · × Un) mentioned in the theorem has
dimension one, and there is a one-parameter linear family of minimizing
interpolants.

�����������

�
���

Figure 3. A one-parameter family ci of minimizing in-
terpolants of lines Xi The lines are taken from a smooth
ruled surface which contains the curve l.

Corollary 10. If X0, . . . , Xn are polyhedra (with finitely many faces,
possibly unbounded), the variational interpolation problem is solvable.

Proof. π(X0 × · · · ×Xn) is a polyhedron and therefore closed. ¤

4.3. Convex polyhedra and intervals. Convex polyhedra are de-
fined as the convex hulls of a finite number of points and closed rays.
They are closed subsets of Rd, and their products and projections are
again convex polyhedra.

Theorem 11. If X0, . . . , Xn are convex polyhedra, the variational in-
terpolation problem has a solution c = I(p0, . . . , pn) with pi ∈ Xi. All
solutions are of the form I(x0, . . . , xn), where

(x0, . . . , xn) ∈ ((p0, . . . , pn) + V ⊥) ∩ (X0 × · · · ×Xn).(29)

Proof. The existence of c has already been stated by Cor. 10. To de-
scribe the set of solutions, we use Lemma 8. Let ρ = F (c). If ρ = 0,
all solutions are of the form I(x0, . . . , xn) with q(x0, . . . , xn) = 0. As
q−1(0) = V ⊥, Equ. (29) follows.

If ρ 6= 0, q−1(ρ) is a cylinder with generator subspaces parallel to
V ⊥. The set q−1([0, ρ]) is convex and q−1(ρ) is its boundary. As the
set q−1([0, ρ])+V ⊥ is a strictly convex subset of V/V ⊥, other solutions
I(x0, . . . , xn) can differ from I(p0, . . . , pn) only in the way that (p0 −
x0, . . . , pn − xn) ∈ V ⊥. ¤
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Figure 4. Interpolation of convex polygons in the plane
(left) and convex polyhedra in three-space. Top view
(right, bottom) and front view (right, top).

Example 4. Fig. 4 shows examples of variational interpolation of convex
polyhedra in the Euclidean plane and in Euclidean three-space. The
bold curve is the variational interpolant. The shape of each polyhedron
is determined by a certain number of random half-spaces which touch
a given sphere.

The algorithm which was used for computing the variational inter-
polant is a very intuitive and geometric one, and can be followed in
Fig. 2. It starts with any interpolant I(p0, . . . , pn) with pi ∈ Xi and
marches, towards lower values of q. Selected intermediate interpolants
are shown as dotted curves. The minimizing interpolant is shown in
bold. It is described in [9]. In this way minimizing the function F
is done by minimizing the quadratic function q in the convex poly-
tope X0 . . . Xn — the jump conditions of Th. 4 are not used in the
computation.

5. Closed Interpolants

The topics discussed in this paper could be repeated for closed curves,
which are easier to handle in the equivalent form of periodic curves

c : R → Rd, c(t+ T ) = c(t) for all t ∈ R.(30)

For the convenience of the reader, we explicitly state some definitions
and results here.
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We start with periodic parameter values

. . . , u0, u1, . . . , un = u0 + T, un+1 = u1 + T, . . .(31)

and consider the linear spaces Cc of T -periodic curves which otherwise
have the same properties as the curves of C. The definition of F is
literally the same as given by Equ. (4). The list of subsets to be in-
terpolated is extended periodically by letting Xi+n = Xi for all i. The
definition of minimizing interpolant is obvious.

5.1. Affine subspaces. Lemma 1 concerning the variational inter-
polant of subspaces remains valid, if the special cases i = 0 and i = n
in (c) are discarded and the orthogonality condition is required to hold
for all n.

The definition of ‘P3
c ’ is postponed until later. Lemma 2 assumes

the following form:

Lemma 12. (Lemma 2, closed version) Assume that Xi = pi +Ui are
affine subspaces of Rd. If U1 ∩ · · · ∩ Un = {0}, then there is a unique
closed minimizing interpolant of X1, . . . , Xn, and it satisfies (a)–(b)
(appropriately modified) of Lemma 1.

Proof. The proof of Lemma 2 is modified in the following way: Instead
of the end conditions we have 3d ‘closure conditions’ c(u0) = c(un),
c′(u0) = c′(un), c

′′(u0) = c′′(un). Again we have (dimP3) linear equa-
tions.

We get the corresponding homogeneous system if we replaceXi by Ui

and look for closed minimizing interpolants of U1, . . . , Un. Again these
must be linear. The only closed curves among them are the constant
curves, that is, the solution is unique if U1 ∩ · · · ∩ Un = {0}. ¤

For points p1, . . . , pn there is a unique closed minimizing interpolant,
which is C2 and piecewise cubic. It is denoted by

Ic(p1, . . . , pn).

An example is shown in Fig. 5.
Lemma 3 remains true. We additionally are able to define a linear

space P3
c of closed C2 piecewise cubic curves. Clearly,

dimP3
c = nd,(32)

which is an analogue to Equ. (10).

5.2. Submanifolds. As to submanifolds of Euclidean space, part (b)
of Th. 4 has to be discarded, and the orthogonality condition of part
(a) now reads ‘∆ui

c′′′ ⊥ Tc(ui)Xi
, for i = 1, . . . , n’. In Th. 5 and Th. 6 C

and P3 have to replaced by Cc and P3
c , resp.
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5.3. Existence and uniqueness. The discussions concerning the ex-
istence and uniqueness of the minimizing interpolant in Sec. 4 are mod-
ified in a straightforward way. We define

V c = (Rd)n, qc(p1, . . . , pn) = F (Ic(p1, . . . , pn)).(33)

The quadratic form qc is positive semidefinite. It defines a scalar prod-
uct 〈 , 〉c in Vc, whose radical is given by

Lemma 13. (Lemma 7, closed version)

V ⊥c = {(p, . . . , p) | p ∈ Rd}, dimV ⊥c = d.(34)

This follows from the description of closed curves with F (c) = 0
(which turn out to be constant; see the proof of Lemma 12).

Lemma 8, which expresses the solvability of the minimization prob-
lem, remains valid. Th. 9 assumes the following form:

Theorem 14. (Th. 9, closed version) Affine subspaces Xi = pi + Ui

possess a closed minimizing interpolant. All minimizing interpolants
are translates of each other, and they are of the form Ic(x0, . . . , xn).
The set of translation vectors equals U1 ∩ · · · ∩ Un.

Proof. The proof is completely analogous to the proof of Th. 9. The
only difference is the form of V ⊥c compared to V ⊥. As V ⊥c consists of
the vectors (p, . . . , p), with p ∈ U1 ∩ · · · ∩ Un, the statement follows in
a way completely analogous to the ‘non-closed’ version. ¤

Cor. 10 (concerning the existence of a minimizing interpolant for
polyhedra) need no change. The ‘closed’ form of Th. 11 is the following

Theorem 15. (Th. 11, closed version) If X0, . . . , Xn are convex poly-
hedra, the variational interpolation problem has a solution of the form
Ic(p0, . . . , pn), with pi ∈ Xi. All solutions are translates of each other,
and have the form I(x0, . . . , xn), where xi ∈ Xi, xi − pi = p, p ∈
U1 ∩ · · · ∩ Un.

The proof is the same as for Th 11, with the obvious modifications
(V ⊥c instead of V ⊥, as in the proof of Th. 14).

6. Some Extensions and Related Topics

6.1. Variational interpolation on surfaces. The problem of mak-
ing the functional

∫
‖c′′‖2 stationary can be posed in a Riemannian

manifold. It turns out that Th. 4 is valid with the difference that the
curve segments are not piecewise cubic (which would mean c′′′′ = 0),
but satisfy the differential equation c′′′′ + R(c′, c′′)c′ = 0. Here the
prime denotes covariant differentiation and R is the Riemannian cur-
vature tensor. For a proof, see [16].

The original reason why the function F was considered in the CAGD
community was the fact that it is an easy-to-handle approximation of
the functional

∫
κ2ds, where κ is the curvature of a curve, and ds its arc

length differential. For curves on a surface, the approximation is true
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to the same extent as in Euclidean space. Unfortunately the ‘simpli-
fied’ functional does not lead to an explicit solution or to a differential
equation which is easy to handle.

���

���

���

���

Figure 5. The area traced out by Ic(X0, . . . , X3) for
rectangles Xi.

6.2. Approximation curves with prescribed error bounds. The
minimization problem

‖p0 − c(u0)‖ ≤ ρ0, . . . ‖pn − c(un)‖ ≤ ρn, F (c)→ min,(35)

with prescribed nonnegative real numbers ρi is the same as the problem
of variational interpolation considered above, with Xi = pi + ρiB

d,
where Bd stands for the closed unit ball of Rd. This is the problem
extensively discussed in [4]. A related construction which however does
not give exact error bounds is the smoothing spline (cf. [14]).

6.3. Interval interpolation. The manipulation of imprecisely defined
numbers, or more specifically, numbers which are contained in certain
intervals, is the object of study in the field of interval arithmetic (a
general reference is e.g., [8], more specific references for splines and
their connection to interval arithmetic are [1, 2, 13]).

If the numbers in question are coordinates of points, these points
are confined to rectangles, or boxes of dimension d. These in turn are
convex polyhedra. In this way some questions of interval arithmetic are
special cases of questions treated in this paper. We use the notation

xi = (x1
i , . . . , x

d
i )(36)

for coordinates of points and assume that

xj
i ∈ Ij

i , Ij
i = [aj

i , b
j
i ],(37)
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where Ij
i is the interval which contains the j-th coordinate of the i-th

point. Then we let

Xi = I1
i × · · · × Id

i .(38)

Several questions may be asked: If points p0, . . . , pn are confined to
boxes X0, . . . , Xn, what is the region traced out by all possible minimal
interpolants I(x0, . . . , xn) for xi ∈ Xi, or the same question for closed
curves Ic(x1, . . . , xn)? This question has been addressed in [15]. Fig. 5
shows an example.

Another question is which of the possible minimizing interpolants
actually minimizes the functional F . This is nothing but variational
interpolation of the boxes Xi. An example is shown by Fig. 2.

A third question is which points xi ∈ Xi maximize F (I(x0, . . . ,
xn)) = q(x0, . . . , xn). This amounts to finding the maximum of a qua-
dratic function in a polyhedron (which in this case is the product of
intervals). Fortunately the restriction of a positive semidefinite qua-
dratic form to an affine subspace does not have a maximum unless it
is constant. Thus the maximum in question is attained in a vertex of
X0 × · · · ×Xn:

max
xi∈Xi

q(x0, . . . , xn) = max
x

j
i =a

j
i ,b

j
i

q(x0, . . . , xn).(39)

It follows that the actual computation of this maximum amounts to at
most 2(n+1)d evaluations of q.
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