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Plan

To give an insight into two apparently unrelated areas:

I the theory of Hopf algebras
motivated by work of Hopf on algebraic topology and of Dieudonné
on algebraic groups, 1940’ and 1950’.

I the theory of diagonal harmonics
initiated by Garsia and Haiman in the early 1990’s in order to
understand properties of Macdonald polynomials.

Main objective: present connections among them.
We will need certain combinatorial objects: pipe dreams



Pipe dreams



Pipe dreams

Fill a triangular shape with crosses and elbows :
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A pipe dream P ∈ Π4 where ωP = [4, 3, 1, 2].

Conditions:

I pipes entering on the left exit on the top.

I two pipes cross at most once.

I the top left corner is an elbow .



Pipe dreams

Fill a triangular shape with crosses and elbows :
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A pipe dream P ∈ Π4 where ωP = [4, 3, 1, 2].

Introduced and studied by:
I S. Fomin and A. N. Kirillov. The Yang-Baxter equation, symmetric functions, and

Schubert polynomials. (FPSAC 1993)

I N. Bergeron and S. Billey. RC-graphs and Schubert polynomials.
(Experiment. Math. 1993)

I A. Knutson and E. Miller. Gröbner geometry of Schubert polynomials.
(Ann. of Math. 2005)

I . . .



Pipe dreams



Pipe dreams: why are they interesting?

1. They give a combinatorial understanding of Schubert polynomials in the
study of Schubert varieties.

2. Pipe dreams of certain families of permutations encode interesting
combinatorial-geometric objects:

triangulations multitriangulations ν-Tamari lattices

Goal

I Introduce a Hopf algebra structure on pipe dreams.

I Present some applications.



Hopf algebras



Hopf algebras

Hopf algebra: Vector space whose generators can be multiplied and
comultiplied in a compatible way. Also there is an antipode.

Example

kG : ∆(g) = g ⊗ g m(g ⊗ h) = gh.

I Polynomial rings

I Permutations

I Cohomology of Lie groups

I Universal enveloping algebra of Lie algebras

I Quantum groups

I Many more . . .



Examples: Hopf algebra on permutations

Sn: collection of permutations of [n]
kS: vector space spanned by all permutations

Theorem (Malvenuto, 1994, Malvenuto–Reutenauer, 1995)

kS may be equipped with a structure of graded Hopf algebra.

Comultiplication: sum of pairs obtained by cutting a permutation in two

∆(312) = 312⊗ ∅+ 31⊗ 2 + 3⊗ 12 + ∅ ⊗ 312

Multiplication: sum of all possible shuffles between two permutations

C. Malvenuto and C. Reutenauer. Duality between quasi-symmetric functions and the

Solomon descent algebra. (J. Algebra 1995)
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kS may be equipped with a structure of graded Hopf algebra.

Comultiplication: sum of pairs obtained by cutting a permutation in two
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Solomon descent algebra. (J. Algebra 1995)
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kS: vector space spanned by all permutations

Theorem (Malvenuto, 1994, Malvenuto–Reutenauer, 1995)

kS may be equipped with a structure of graded Hopf algebra.

Comultiplication: sum of pairs obtained by cutting a permutation in two

∆(312) = 312⊗ ∅+ 21⊗ 1 + 1⊗ 12 + ∅ ⊗ 312

Multiplication: sum of all possible shuffles between two permutations

12 · 21 = 1221 + 1221 + 1212 + 2121 + 2112 + 2112

C. Malvenuto and C. Reutenauer. Duality between quasi-symmetric functions and the

Solomon descent algebra. (J. Algebra 1995)



Examples: Hopf algebra on permutations

Sn: collection of permutations of [n]
kS: vector space spanned by all permutations

Theorem (Malvenuto, 1994, Malvenuto–Reutenauer, 1995)

kS may be equipped with a structure of graded Hopf algebra.

Comultiplication: sum of pairs obtained by cutting a permutation in two

∆(312) = 312⊗ ∅+ 21⊗ 1 + 1⊗ 12 + ∅ ⊗ 312

Multiplication: sum of all possible shuffles between two permutations

12 · 21 = 1243 + 1423 + 1432 + 4123 + 4132 + 4312

C. Malvenuto and C. Reutenauer. Duality between quasi-symmetric functions and the

Solomon descent algebra. (J. Algebra 1995)



Examples: Hopf algebra on permutations

Sn: collection of permutations of [n]
kS: vector space spanned by all permutations
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Examples: Hopf algebra on binary trees

Yn: collection of planar binary trees with n leaves
kY : vector space spanned by all planar binary trees

Theorem (Loday–Ronco, 1998)

kY may be equipped with a structure of graded Hopf algebra.

Comultiplication Multiplication

J.-L. Loday and M. O. Ronco. Hopf algebra of the planar binary trees. (Adv. Math. 1998)



A Hopf algebra on pipe dreams



Comultiplication

4n : Πn −→
n⊕

γ=0

Πγ ⊗ Πn−γ

P 7−→
∑

γ∈GD(ωP)

4γ,n−γ(P).
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The sum ranges over allowable cuts of the permutation: global descents.



Comultiplication

�4

�������

4 3 1 2

1

2

3

4

�������
=

4 3 1 2

1

2

3

4

⊗ +
2 1

1

2

⊗
1 2

1

2

+ 1

1

⊗
3 1 2

1

2

3

+ ⊗
4 3 1 2

1

2

3

4



Multiplication

Inserting a pipe dream in another:

6 3 5 4 1 2

1
2
3
4
5
6

⌧4

3 1 2

1
2
3

=

9 6 8 7 5 3 4 1 2

1
2
3
4
5
6
7
8
9



Multiplication

µr ,s : Πr ⊗ Πs −→ Πr+s

P · Q 7−→ ?⋅ � �
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Multiplication
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A Hopf algebra on pipe dreams

Πn: collection of pipe dreams of permutations in Sn

kΠ: vector space spanned by pipe dreams

Theorem (N. Bergeron–C. C.–V. Pilaud)

These operations endow kΠ with a graded Hopf algebra structure.
This Hopf algebra is free and cofree.



Hopf subalgebras



Hopf subalgebra of reversing pipe dreams

kΠrev: vector space spanned by pipe dreams of permutations n . . . 321.

Theorem (N. Bergeron–C. C.–V. Pilaud)

kΠrev is a Hopf subalgebra of kΠ.
It is isomorphic to the Loday–Ronco Hopf algebra on planar binary trees.

I dim deg n = Cn, the nth Catalan number Cn = 1
n+1

(2n
n

)
.

Bijection: replace elbows by nodes •
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Hopf subalgebra of dominant pipe dreams

A permutation ω is called dominant if its Rothe diagram is a Young
diagram located at the top-left corner.

23 4 1

Schubert polynomials of dominant permutations are specially interesting.



Hopf subalgebra of dominant pipe dreams

kΠdom: vector space spanned by pipe dreams of dominant permutations

Theorem (N. Bergeron–C. C.–V. Pilaud)

kΠdom is a Hopf subalgebra of kΠ.

I dim deg n = det

∣∣∣∣
Cn Cn+1

Cn+1 Cn+2

∣∣∣∣

Dominant pipe dreams are in bijection with pairs of nested Dyck paths.

L. Serrano and C. Stump. Maximal fillings of moon polyominoes, simplicial complexes, and
Schubert polynomials. (Electron. J. Combin. 2012)







Application to
multivariate diagonal harmonics



What is multivariate diagonal harmonics?

The story begins with the Macdonald positivity conjecture, regarding the
coefficients of the Schur function expansion of Macdonald polynomials:

Hµ(x; q, t) =
∑

ν`µ
kµν(q, t)sν(x).

Conjecture (Macdonald Positivity Conjecture, 1988)

kµν(q, t) are polynomials in q and t with non-negative coefficients.

Garsia–Haiman’s combinatorial approach:
study a representation of the symmetric group on a space ∂Dµ



Garsia–Haiman’s combinatorial approach

Theorem (The n! conjecture, Haiman 2001)

For any µ ` n, we have
dimC ∂Dµ = n!.

Theorem (Haiman 2001)

kµν(q, t) =
∑

i ,j

t iqj mult(χν , ch(Dµ)i ,j)

In particular, it is a polynomial with non-negative integer coefficients
and the Macdonald positivity conjecture holds.

For µ = (1, 1, . . . , 1), ∂Dµ is the space of harmonics.

M. Haiman. Hilbert schemes, polygraphs, and the Macdonald positivity conjecture.
(J. Amer. Math. Soc. 2001)



The space of harmonics

Q[x] := Q[x1, . . . , xn] is the polynomial ring in n variables,
I := ideal generated by Sn invariant polynomials with no constant term,
∂x = ( ∂

∂x1
, . . . , ∂

∂xn
).

Definition

The space of harmonics is defined by

Hn = {h ∈ Q[x] : f (∂x)h = 0, ∀f ∈ I} .

Fact

As Sn-modules,
Hn
∼= Q[x]/I .



The space of diagonal harmonics

Q[x, y] := Q[x1, . . . , xn, y1, . . . , yn]
I := ideal generated by Sn invariant polynomials with no constant term,
∂x = ( ∂

∂x1
, . . . , ∂

∂xn
).

Definition

The space of diagonal harmonics is defined by

DHn = {h ∈ Q[x, y] : f (∂x, ∂y)h = 0, ∀f ∈ I} .

Fact

as Sn-modules,
DHn

∼= Q[x, y]/I .



The space of diagonal harmonics

The (n + 1)n−1 conjecture by Garsia and Haiman from 1993:

Theorem (Haiman 2002)

The dimension of DHn is equal to (n + 1)n−1.

Theorem (Haiman 2002)

The dimension of the alternating component of DHn is equal to 1
n+1

(2n
n

)
.

This led to the now famous q, t-Catalan polynomials!

M. Haiman. Vanishing theorems and character formulas for the Hilbert scheme of points in
the plane. (Invent. Math. 2002)



Multivariate diagonal harmonics

The space DHn can be generalized to three, or more sets of variables.

Conjecture (Haiman 1994)

In the trivariate case,

I the dimension of DHn is 2n(n + 1)n−2.

I the dimension of its alternating component is

2

n(n + 1)

(
4n + 1

n − 1

)
.

These two numbers can be combinatorially interpreted as the number of
labeled and unlabeled intervals in the Tamari lattice, certain poset on
Catalan objects.

No conjectural formulas are known for more sets of variables.
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In summary

The dimensions of the spaces of multivariate diagonal harmonics and
their alternating components are

n!

1

one set of variables

(n + 1)n−1

1
n+1

(
2n
n

)

two sets of variables

Tamari lattice
labelled intervals

Tamari lattice
intervals

three sets of variables

Open problems

Unknown

Unknown

more sets of variables

One may expect that dimensions for r sets of variables are counted by
labeled and unlabeled chains (π1, . . . , πr−1) in the Tamari lattice.
But this is not true in general.



Back to pipe dreams



Hopf chains

Pipe dreams have a natural poset structure.
The number of intervals in the graded dimensions of kΠdom is:

1, 4, 29, 297, 3823, 57956, . . .

They correspond to certain triples of Dyck paths.

Definition (Hopf chains)

A Hopf chain of length r and size n is a tuple (π1, . . . , πr ) of Dyck paths
of size n such that

I π1 is the bottom diagonal path,

I every triple comes from an interval of dominant pipe dreams.



Counting Hopf chains

Example (n=4)

The number of Hopf chains (π1, . . . , πr ) of Dyck paths of size n = 4 is

1, 14, 68, 217, 549, 1196, 2345, . . .

Example (n=4)

The dimension of the alternating component of the space of diagonal
harmonics DHn for fixed n = 4 and r variables is equal to

1, 14, 68, 217, 549, 1196, 2345, . . .



Counting Hopf chains

Example (n=4)

The number of Hopf chains (π1, . . . , πr ) of Dyck paths of size n = 4 is
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Counting Hopf chains

Theorem (N. Bergeron–C. C.–V. Pilaud)

For n ≤ 4 and any number r of sets of variables, the q, t-Frobenius
characteristic of the multivariate diagonal harmonics space DHn,r is

Φn,r (q, t) =
∑

Hopf chains
π=(π1,π2,...,πr )

qcol(π)Lπr (t),

where Lπ(t) denotes the LLT polynomial of Lascoux, Leclerc and
Thibon, and col(π) is certain statistic on Hopf chains.

For r = 2, this recovers the former shuffle conjecture (for n ≤ 4)
recently proven by Carlsson and Mellit.

J. Haglund, M. Haiman, N. A. Loehr, J. B. Remmel, and A. Ulyanov. A combinatorial
formula for the character of the diagonal coinvariants. (Duke Math. J. 2005)

E. Carlsson and A. Mellit. A proof of the shuffle conjecture. (J. Amer. Math. Soc. 2018)
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Counting Hopf chains

Corollary

For n ≤ 4 and any number r of sets of variables:

1. The bigraded Hilbert series of Alt(DHn,r ) is

Φ̃n,r (q, t) =
∑

Hopf chains
π=(π1,π2,...,πr )

qcol(π)tdinv(πr ).

2. The q-Frobenius characteristic of DHn,r is

Φn,r (q, 1) =
∑

Hopf chains
π=(π1,π2,...,πr )

qcol(π)etype(πr ).



Counting Hopf chains

Corollary

For n ≤ 4 and any number r of sets of variables:

1. The dimension of Alt(DHn,r ) equals the number of Hopf chains of
length r and size n.

2. The dimension of DHn,r equals to the number of labeled Hopf
chains of length r and size n.



Counting Hopf chains

The dimensions of the alternating and full component for fixed n ≤ 4
and arbitrary r are given in the following table:

n number of Hopf chains number of laballed Hopf chains

n = 1
(r

0

) (r+1
0

)

n = 2
(r

1

) (r+1
1

)

n = 3
(r

1

)
+ 3
(r

2

)
+
(r

3

) (r+1
1

)
+ 4
(r+1

2

)
+
(r+1

3

)

n = 4
(r

1

)
+ 12

(r
2

)
+ 29

(r
3

) (r+1
1

)
+ 22

(r+1
2

)
+ 56

(r+1
3

)

+25
(r

4

)
+ 9
(r

5

)
+
(r

6

)
+40

(r+1
4

)
+ 11

(r+1
5

)
+
(r+1

6

)



Counting Hopf chains

For n = 5 the result is not true. There is a small excess:

Excessn=5 =

(
k + 4

9

)
e[5] +

(
k + 4

8

)
e[4,1].

We have a few possible candidates that kill this excess but do not have a
combinatorial rule to describe them at the moment.



The Multi-Shuffle Conjecture

s1 + s3

s21 + s4

s11 + s2

s1

s31 + s5

s111 + s31 + s41 + s6

s1

s2

s1

1

s11 + s3

s21 + s4

s2

s3

1⊗ s211 + 1⊗ s22 + s1 ⊗ s1111

s1 ⊗ s211 + s1 ⊗ s22 + s2 ⊗ s1111

S211

1⊗ s1111

S31

S4

S1111 = ξ4

Conjecture (F. Bergeron–N. Bergeron–C. C.–V. Pilaud)

The multi-graded Frobenius characteristic of the space of multivariate
diagonal harmonics DHn,r is

ξn(q + t; z) =
∑

µ⊆δn

σµ(q)⊗ Lµ(t; z).



To be continued . . .

Thank you!


