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1. Simultaneous core partitions & rational Dyck paths



Simultaneous core partitions

Definition
Let λ ` n be a partition of n

I say λ is an a-core if it has no cell with hook length a

I say λ is an (a, b)-core partition if it has no cell with hook length a or b

Example
A (5, 8)-core:
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Simultaneous core partitions

Theorem (Anderson 2002)
The number of (a, b)-cores is finite if and only if a and b are relatively
prime, in which case they are counted by the rational Catalan number

Ca,b =
1

a + b

(
a + b

a

)



Simultaneous core partitions: Anderson’s bijection

Beautiful bijection: (a, b)-cores ←→ Dyck paths in an a× b rectangle
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Simultaneous core partitions: Anderson’s bijection

Beautiful bijection: (a, b)-cores ←→ Dyck paths in an a× b rectangle
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Rational q-Catalan

Define the q-analog of the (a, b)-Catalan number as

Ca,b(q) =
1

[a + b]

[
a + b

a

]
obtained by replacing every number r by its q-analog

[r ] = 1 + q + · · ·+ qr−1

Proposition

Ca,b(q) is a polynomial if and only if a and b are relatively prime.
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Rational q-Catalan and q, t-Catalan

Conjecture (Armstrong–Hanusa–Jones 2014)

Ca,b(q) =
∑

qsl(κ)+area(κ)

Conjecture (Armstrong–Hanusa–Jones 2014)∑
qarea(κ)tsl

′(κ) =
∑

qsl′(κ)tarea(κ)

sums over all (a, b)-cores



2. Skew length



Skew length

a-rows: largest hooks of each residue mod a
b-boundary: boxes with boxes with hooks less than b

skew length: number of boxes in both the a-rows and b-boundary
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Skew length
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Theorem (C.–Denton–Hanusa)

Skew length is independent of the ordering of a and b.



Skew length

sl = 3+2+2+1+1+1 = 10sl = 4+3+2+1 = 10
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3. Conjugation



Conjugation on cores

conjugation: reflect along a diagonal
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Conjugation on Dick paths

conjugation: cyclic rotation to get a path below the diagonal,
rotate 180◦ degrees
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Conjugation

Theorem (C.–Denton–Hanusa)

Both conjugations coincide under Anderson’s bijection
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Conjugation

Theorem (C.–Denton–Hanusa)

Conjugations preserves skew length
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The shaded partitions determine two amazing maps called zeta and eta

statistics for q, t-enumeration of classical Dyck paths were famously
difficult to find, but were nearly simultaneously discovered by Haglund
(area and bounce) and Haiman (dinv and area). The zeta map sends

dinv → area
area → bounce

Drew Armstrong: generalized this zeta map to (a, b)-Dyck paths



4. Zeta map (and eta)



Zeta and eta on cores

Armstrong (zeta):
The bounded partitions of zeta and eta are the shaded partitions before

⇡

⇡c

⇣(⇡)

⌘(⇡)

eta := zeta of the conjugate

Note: the map ζ(π)→ η(π) is an area preserving map
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Zeta and eta

Exercise for the party tonight:
The shaded partitions fit above the main diagonal!

Conjecture (Armstrong)

The zeta map is a bijection on (a, b)-Dyck paths



Zeta and eta on Dyck paths

Armstrong–Loehr–Warrington, . . . :
Zeta: move diagonal up and record north and east steps as crossed
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Zeta and eta via lasers

Theorem (C.–Denton-Hanusa)

Description of zeta and eta in terms of a laser filling

1

1 1 1

1

1 1 �(⇡)

µ(⇡)

12

0

1

3

4

2

2 3 2 1 1 1 0 0

λ = (4, 3, 2, 1, 0)
µ = (3, 2, 2, 1, 1, 1, 0, 0)



Zeta and eta

Conjecture (Armstrong)

The zeta map is a bijection on (a, b)-Dyck paths

Lets construct the inverse!!
(knowing zeta and eta)



Zeta and eta

Conjecture (Armstrong)

The zeta map is a bijection on (a, b)-Dyck paths

Lets construct the inverse!!
(knowing zeta and eta)



Zeta inverse knowing eta
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missing: combinatorial description of the area preserving involution
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Square case

Theorem (C.–Denton-Hanusa)

Area preserving involution: reverse the path



Square case

Corollary (C.–Denton-Hanusa)

Inverse: descents of γ are the east steps of the inverse
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Square case

Theorem (C.–Denton–Hanusa)

Co-skew length is equal to the dinv statistic



Thank you!


