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Plan of the talk

1. Simultaneous core partitions & rational Dyck paths
2. Skew length
3. Conjugation

4. Zeta map



1. Simultaneous core partitions & rational Dyck paths



Simultaneous core partitions
Definition
Let A - n be a partition of n
> say A is an a-core if it has no cell with hook length a

> say A is an (a, b)-core partition if it has no cell with hook length a or b

Example

A (5, 8)-core: o fefafo2 I 1 |
11 6 3 1
9 | 4| 1
7 2




Simultaneous core partitions

Theorem (Anderson 2002)

The number of (a, b)-cores is finite if and only if a and b are relatively
prime, in which case they are counted by the rational Catalan number

1 [fa+b
Cop =
b a+b< a )




Simultaneous core partitions: Anderson’s bijection

Beautiful bijection: (a, b)-cores «<— Dyck paths in an a x b rectangle

149642|1|

9 | 4| 1 27 |22 |17 | 12| 7 | 2 3 178
71 2 19 (14| 9 | 4 |- /6/ -11 | -16
6 1 1] 6 | 1 4479 | 14| 19 | 24
4 3 | -2 / 42 | 17 | 22 | 27 | -32
3 10 | -15 | -20 | -25 | -30 | -35 | -40




Simultaneous core partitions: Anderson’s bijection

Beautiful bijection: (a, b)-cores «<— Dyck paths in an a x b rectangle

149642|1|

11 6 3 1
9 4 1 7 2
7 2 14 9 4




Rational g-Catalan

Define the g-analog of the (a, b)-Catalan number as

Cap(q) = B Jlr b] [aj‘: b]

obtained by replacing every number r by its g-analog

[M=1+q+---+q""



Rational g-Catalan

Define the g-analog of the (a, b)-Catalan number as

Cap(q) = B Jlr b] [aj‘: b]

obtained by replacing every number r by its g-analog

[M=1+q+---+q""

Proposition

C,.b(q) is a polynomial if and only if a and b are relatively prime.



Rational g-Catalan and g, t-Catalan

Conjecture (Armstrong—Hanusa—Jones 2014)
C, b(q) — Z qsl(n)Jrarea(n)
Conjecture (Armstrong—Hanusa—Jones 2014)

Z qarea(n) tsl’(n) _ Z qsl’(n) tarea(n)

sums over all (a, b)-cores



2. Skew length



Skew length

a-rows: largest hooks of each residue mod a
b-boundary: boxes with boxes with hooks less than b

skew length: number of boxes in both the a-rows and b-boundary

(5,8)-core

sl = 443+2+41 =10



Skew length

(5,8)-core (8,5)-core
—> 14 nd 14
— 11 - 1
9 i 9
— 7 - 7
6 6
4 ind 4
— 3
z -
] |



Skew length

(5,8)-core (8,5)-core
— 14 nd 14
— | 1 el
9 b 9
—- | 7 - |7
6 6
4 —- | 4
-~ 3
: -
1 1

sl = 4+43+2+1 =10 sl = 3+2+2+1+1+1 =10



Skew length

(5,8)-core (8,5)-core
— 14 nd 14
— 11 - "
9 b 9
—- | 7 - |7
6 6
4 — | 4
-~ 3
: -
1 1

sl = 4+43+2+1 =10 sl = 3+2+2+1+1+1 =10

Theorem (C.—Denton—Hanusa)
Skew length is independent of the ordering of a and b.



3. Conjugation



Conjugation on cores

conjugation: reflect along a diagonal

2 ||

9 9
7 6
6 4
4 2




Conjugation on Dick paths

conjugation: cyclic rotation to get a path below the diagonal,
rotate 180° degrees




Conjugation

Theorem (C.—Denton—Hanusa)

Both conjugations coincide under Anderson’s bijection

" HEE




Conjugation

Theorem (C.—Denton-Hanusa)

Conjugations preserves skew length

(5,8)-core
— 14 |
. 1
9 —
. 7
6 —

sl = 443+2+1 =10

(5,8)-core

sl =6+3+1 =10



The shaded partitions determine two amazing maps called zeta and eta

statistics for g, t-enumeration of classical Dyck paths were famously
difficult to find, but were nearly simultaneously discovered by Haglund
(area and bounce) and Haiman (dinv and area). The zeta map sends

dinv — area
area — bounce

Drew Armstrong: generalized this zeta map to (a, b)-Dyck paths



4. Zeta map (and eta)



Zeta and eta on cores

Armstrong (zeta):
The bounded partitions of zeta and eta are the shaded partitions before

eta := zeta of the conjugate



Zeta and eta on cores

Armstrong (zeta):
The bounded partitions of zeta and eta are the shaded partitions before

eta := zeta of the conjugate

Note: the map {(7) — n() is an area preserving map



Zeta and eta

Exercise for the party tonight:
The shaded partitions fit above the main diagonal!

Conjecture (Armstrong)
The zeta map is a bijection on (a, b)-Dyck paths



Zeta and eta on Dyck paths

Armstrong—Loehr—Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

¢(m)




Zeta and eta on Dyck paths

Armstrong—Loehr—Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

E o E o E Yo E ¢(m)
E e E e E (N
E (N /
N o
N A
N
™ n(m)



Zeta and eta on Dyck paths

Armstrong—Loehr—Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

E Yo E e (E e E S(m)
E Yo (B (N Vd
E (N
N d
N)—<Z
N
™ n(m)

NE



Zeta and eta on Dyck paths

Armstrong—Loehr—Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

E E E E C(ﬂ’)
E E E N i
E N /
N //
N
. 7r ()

NEN



Zeta and eta on Dyck paths

Armstrong—Loehr—Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

E Yo E e E e S(m)
E Je(E Je(E NI/
E (N
7
N P
N
N
™ n(m)

NENE



Zeta and eta on Dyck paths

Armstrong—Loehr—Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

N ()
e (O
E N ,/
[ 7
N
. 7 )

NENEN



Zeta and eta on Dyck paths

Armstrong—Loehr—Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

E o E o E Yo E ¢(m)
E e E e E N
E (N
/
N
N
N
™ n(m)

NENENE



Zeta and eta on Dyck paths

Armstrong—Loehr—Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

E o E o E Yo E S(m)
E e E e E ye(N
E ue(N) 4
7
N
N
N
™ n(m)

NENENEN



Zeta and eta on Dyck paths

Armstrong—Loehr—Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

E e E me((E Yo E ¢(m)
B O Oml
E N,/
N
N
N
™ n(m)

NENENENE



Zeta and eta on Dyck paths

Armstrong—Loehr—Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

E o E o E Yo E ¢(m)
E o E ) E y==e(N
B0
N
N
N
™ n(m)

NENENENEN



Zeta and eta on Dyck paths

Armstrong—Loehr—Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

E o E o E Yo E ¢(m)
E e E o E (N
E (N
N
N
N
™ n(m)

NENENENENE



Zeta and eta on Dyck paths

Armstrong—Loehr—Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

E o E o E Yo E ¢(m)
E o E Yo E (N
Ep(N
N
N
N
™ n(m)

NENENENENEE



Zeta and eta on Dyck paths

Armstrong—Loehr—Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

E o E o E Yo E ¢(m)
E )t E e E =N
B0
N
N
N
™ n(m)

NENENENENEEE



Zeta and eta on Dyck paths

Armstrong—Loehr—Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

E o E o E Yo E ¢(m)
E Yo E e E (N
E (N
N
N
N
™ n(m)

NENENENENEEEE



Zeta and eta on Dyck paths

Armstrong—Loehr—Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

E o E o E Yo E ¢(m
E e E e E (N
E (N
N
N
N
™ n(m)

NENENENENEEEE



Zeta and eta on Dyck paths

Armstrong—Loehr—Warrington, ... :
Zeta: move diagonal up and record north and east steps as crossed

E o E o E Yo E ¢(m)
E e E e E (N
E (N
N
N
N
™ n(m)

NENENENENEEEE

Eta: move diagonal down and record south and weast steps as crossed



Zeta and eta via lasers

Theorem (C.—Denton-Hanusa)
Description of zeta and eta in terms of a laser filling

2 3 2 1 1 1 0 0




Zeta and eta

Conjecture (Armstrong)
The zeta map is a bijection on (a, b)-Dyck paths



Zeta and eta

Conjecture (Armstrong)
The zeta map is a bijection on (a, b)-Dyck paths

Lets construct the inversel!!
(knowing zeta and eta)



Zeta inverse knowing eta

4 5 6

3

1 2
(N,N,N,E,N,E,E,E,N,E,E,E,E) Y =(1,37,12,9,13,11,8,510,6,4,2)



Zeta inverse knowing eta

10 11 12 13
9
T 8 13
7
6 12
5 11
4 10
3 8 9
2 7
4 4 5 6
3
1 2
(N,N,N,E,N,E,E,E,N,E,E,E,E) Y =(137,129,13,11,8,510,6,4,2)

Theorem (C.-Denton-Hanusa)

> v is a cycle permutation.

» The east steps of w correspond to the descents of .



Zeta inverse knowing eta

10 1112 13
9
T 8 13
7
6 12
5 1
4 10
s 8| 9
2 7
] 7| 5] 6
3
T 2
(N,N,N,E,N,E,E,E,N,E,E,E,E) Y =(1,3,7,12,9,13,11,8,5,10,6,4,2)

Theorem (C.—Denton—Hanusa)

> v is a cycle permutation.

» The east steps of w correspond to the descents of .

missing: combinatorial description of the area preserving involution



Square case

Theorem (C.—Denton-Hanusa)
Area preserving involution: reverse the path

»,




Square case

Corollary (C.—Denton-Hanusa)
Inverse: descents of y are the east steps of the inverse

’Y =(1,3,5,9,6,10,15,11,16,12,7,13,17,14,8,4,2) (N,N,N,E,N,N,E,N,E,E,N,N,E,E,E E,E)
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Square case

Corollary (C.—Denton-Hanusa)

Inverse: descents of y are the east steps of the inverse

13 !
i |
11 i 1 i
! ¢ |(m) l
10 T T
8 9 ! !
7 3 3
! !
.
| |
S 4
. ! !
)
: :
! !
’Y =(1,3,5,9,6,10,15,11,16,12,7,13,17,14,8,4,2) (N,N,N,E,N,N,E,N,E,E,N,N,E,E,E,E,E)

Different from the known inverse description using “bounce paths”!



Square case

Theorem (C.—Denton-Hanusa)

Co-skew length is equal to the dinv statistic

2

3

3

2
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2

1

o]
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Thank you!



