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Abstract

This master’s thesis gives a new geometric realization, as the edge graph of a polytopal complex,
of the rotation lattice of ν-trees using a projection of a brick polyhedron. Motivated by the fact
that generalized associahedra for cluster algebras can be realized as brick polytopes, this concept
has been generalized for all subword complexes, known as the brick polyhedron, which is in
the center of this thesis. After introducing the allowed tools, we give a projection of a brick
polyhedron to obtain a new realization of the ν-associahedron.
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1 Preliminaries

The word “geometry” comes from ancient Greek, consisting of “geo” (earth) and “metro” (mea-
sure). Therefore, philosophically geometry can be seen as “measuring the earth”. We will always
consider a finite dimensional vector spaces V over a field k, which can be described/characterized
indirectly by defining its dual V∗ := {λ : V → k | λ is k-linear}. Since V ∼= (V∗)∗, we can re-
cover V from the space of linear functions on V. This work considers finite Coxeter groups of type
A as thinking about “geo” (earth) and a counting measure in respect of “metron” (measure). In
Chapter 3 we will see what we are measuring out. For the motivation of considering brick poly-
topes, we will give a little thought experiment for obtaining the permutahedron of order four,
which can be realized geometrically using brick polytopes. In the second part of this chapter we
give a brief introduction of Coxeter groups.

1.1 A little thought experiment

In geometry, the truncated octahedron is a very interesting object. As it is often motivated by the
Catalan numbers, we will start with a little thought experiment, where the truncated octahedron
appears. Moreover, the truncated octahedron is also known as the permutahedron of order four,
which is a three-dimensional polytope.

In 1927, Edwin Hubble presented the observation that the universe is expanding. So, it will be
intuitive to think about some boundary of the whole space. Let us model the space by a three-
dimensional expanding ball. In the next step, we consider a spaceship in our ball. If the spaceship
flies with an infinite energy source, we can consider the case reaching the boundary of the space.
As our ball is the whole space we come to the conclusion that if we cross the boundary the space-
ship will appear on the other side of the ball. Regarding that this sounds a bit unrealistic in
physics, we consider this as an entry of our spaceship in an exact copy of our ball. Doing this
for all directions, we come to the conclusion that our ball could not fill the whole space without
some tilling space. From this, our assumption of the boundary in the form of a ball does not make
sense anymore. But we are very interested in space filling polyhedra. The next idea will be to
replace the ball by a cube. This polyhedron fills the whole space and this assumption sounds very
comfortable. Now in each vertex of the cube eight copies of our space contact and this does not
make much sense. For this, we can consider the truncated octahedron. It fills the space and in
each vertex we observe that exactly three edges of four polytopes touch. Technically speaking,
this gives us a better understanding, why we are living in a three-dimensional space.
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Figure 1.1: Truncated octahedron with f-vector (24,36,14).

We also know the truncated octahedron by the Kelvin problem, posed by Lord Kelvin in 1887,
which is given by finding an arrangement of polyhedra of equal volume, such that the total sur-
face area of the surfaces between them is as small as possible. From this conclusion, we are very
interested in studying the truncated octahedron and get a better understanding of its geometry.

General Sidemark: If we contract some faces and edges of the truncated octahedron, we get some
realization of the associadron (special case of the secondary polytope). For studying the combi-
natorics of these polytopes, we identify polytopes with the same face lattice. To remember, this
is the partially ordered set (poset) whose elements are the faces of the polytope, including the
polytope itself, its faces, edges vertices and the “empty” face (ordered in levels with this order)
and connected by an edge, if there is a contact in the polytope. We will identify two polytopes,
if they have the same face lattice, and ask, if there is a polytope realizing a given face lattice. In
analogy to this, we will see that the brick polytope realizes subgraphs of the flip graph.

1.2 Coxeter groups

We give a short introduction to finite Coxeter groups. Our Coxeter systems are representing
symmetry groups, which are generated by reflections. Their elements can be classified by their
reduced expressions. We will see two key properties about them. We concentrate on Coxeter
groups of type A. The definitions are taken from [Hum90].

A Coxeter system is defined as a pair (W, S) consisting of a finite set of generators S ⊂ W and a
group W, called Coxeter group1, subject to relations of the form (ss′)m(s,s′) = e, where m(s, s) = 1,
m(s, s′) = m(s′, s) ≥ 2, for two distinct elements s, s′ ∈ S and e being the identity. In this setup we
are going to allow the case m(s, s′) = ∞, if s and s′ are unrelated. The cardinality of S is denoted
by |S|, called the rank of the Coxeter system (W, S). Therefore, we use the following notation for
a Coxeter group: W = ⟨S | (st)m(s,t) = e⟩. We can represent a Coxeter System (W, S) by a Coxeter
graph having a vertex for each generator s ∈ S and an edge (s, s′) if m(s, s′) ≥ 3. The edges
are labeled with the number m(s, s′) if m(s, s′) > 3, edges without number correspond to order
m(s, s′) = 3 and we do not draw the edges for m(s, s′) = 2 since this means that the elements
commute, i.e. ss′ = s′s for s, s′ ∈ S, several examples are shown in Figure 1.2.

Example 1.1: Coxeter group of type An

The Coxeter group of type An is the group generated by S = {s1, ..., sn} satisfying s2
i = e for

i = 1, ..., n. (sisi+1)
3 = e for i = 1, ..., n− 1 and sisj = sjsi = e for |i− j| > 1. The Coxeter group

of type A2 describes the symmetry group of an equilateral triangle. A3 describes the symmetry

1) W is acting on an Euclidean vector space V ∼= Rn, where n = |S|.
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A2
A3
A4
An

Figure 1.2: Coxeter graphs of type A.

group of a tetrahedron, which is exactly the same as the symmetry group S4 of permutations of
four elements . The Coxeter graph of A4 will consist of four vertices, connected by three edges
and describes the symmetry group of a 4-dimensional simplex. In general, An is the symmetry
group of an n-simplex. It can be shown that the Coxeter group An is isomorphic to the symmetric
group Sn+1 of permutations of n + 1 elements. In symbols: WAn

∼= Sn+1.

Each generator has order 2 in W, every s ∈ S satisfies m(s, s) = 2, and each w ̸= e can be written
as w = s1 · · · sk for some si ∈ S, which are not necessarily distinct. We call the smallest possible k
the length of w, and denote it by ℓ(w). Any expression of w as a product of k elements of S is
called a reduced expression of w. In particular w = s1 · · · sk is reduced if ℓ(w) = k. In general, we
distinguish between the word (s1, ..., sk) and the product s1 · · · sk. Reduced expressions in W are
fundamental in the study of Coxeter groups. They satisfy two useful properties called the Strong
Exchange Property and the Deletion Property [Hum90].

Theorem 1.2: Strong Exchange Property [Hum90]

Let w = s1 · · · sk be a not necessarily reduced word in S and t ∈ S such that ℓ(wt) < ℓ(w). Then
there exists an index i such that wt = s1 · · · ŝi · · · sk. This notation means that the i-th component
is omitted.

The proof of this Theorem also works for the following statement: If t ∈ S satisfies ℓ(tw) < ℓ(w)

then tw = s1 · · · ŝi · · · sk. If the expression for w is reduced, then the index i, which is omitted is
unique.

Theorem 1.3: Deletion Property [Hum90]

Let w = s1 · · · sk be a word in S such that ℓ(w) < k. Then there exist indices i < j for which
w = s1 · · · ŝi · · · ŝj · · · sk holds.

Furthermore, finite Coxeter groups have a nice representation as a group generated by reflections
in a vector space V. We will denote by sv for v ∈ V \ {0} the reflection interchanging v and −v,
which is fixing the orthogonal hyperplane v⊥ = {w ∈ V | ⟨v, w⟩ = 0} pointwise. Recall that W
is acting on a finite vector space V, and one can find a basis {α1, ..., αn} of V ∼= Rn, called simple
roots, with inner form2 ⟨·, ·⟩ and |S| = n, such that si = sαi . In other words, W is the group
generated by reflections along hyperplanes orthogonal to the simple roots α1, ..., αn.

Define the root system Φ := {wαi | w ∈ W, 1 ≤ i ≤ n} as the set obtained by letting all group
elements of W act on our αi’s. We say that a root β ∈ Φ is positive, if it can be written as a linear
combination of simple roots β = c1α1 + · · · + cnαn, such that all coefficients are non-negative
ci ≥ 0 ∀i ∈ [n], and a negative root if all coefficients are non-positive ci ≤ 0 ∀i ∈ [n]. The set

2) This needs some details about the geometric representation of W. We refer to [Hum90] for more details.
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of positive roots (resp. negative roots) is denoted by Φ+ (resp. Φ−). A useful theorem from
reflection groups [Hum90] tells us that the set of roots can be writen as disjoint union of positive
and negative roots Φ = Φ+ ⊔Φ−.

Remark 1.4

As a consequence, there exists a hyperplane H, known as the root hyperplane, that separates the
positive roots Φ+ and negative roots Φ−. There is a normal vector to this hyperplane, denoted
as η, such that the linear functional η : V → R, η(x) := ⟨η, x⟩ is positive for positive roots and
negative for negative roots, meaning ⟨α, η⟩ > 0 for α ∈ Φ+ and ⟨α, η⟩ < 0 for α ∈ Φ−. Moreover,
⟨η, α⟩ ̸= 0 for all α ∈ Φ.

The set of reflections in W is defined by R := {wsw−1 | w ∈ W, s ∈ S}, and corresponds to
geometric reflections along positive roots {sβ | β ∈ Φ+}. In particular, we associate to each simple
reflection s ∈ R a simple root αs ∈ V, and denote the set of simple roots by Λ = {αs | s ∈ S}.
This is a subset of the set of reflectionsR = {sβ | β ∈ Φ+}.

Example 1.5: Root systems of type An

Let V = Rn+1 with standard inner product and {e1, ..., en+1} the basis of canonical unit vectors.
Then Φ+ = {(ei − ej)|1 ≤ i < j ≤ n + 1} and Φ− = {−(ei − ej)|1 ≤ i < j ≤ n + 1}. The
simple roots are αi = ei − ei+1 and si = sαi for 1 ≤ i ≤ n. The generating system is given by
S = {si|1 ≤ i ≤ n}.

Example 1.6: Root system of type A2

If n = 2 we obtain Φ+ = {e1 − e2, e1 − e3, e2 − e3}, Φ− = {e2 − e1, e3 − e1, e3 − e2}. Simple roots
α1 = e1 − e2, α2 = e2 − e3 and S = {s1, s2}, shown in Figure 1.3.

α1 α2

−α1−α2

−(α1 + α2)

α1 + α2

ω2 ω1

Φ+

Φ−
H

α1 α2

−α1−α2

−(α1 + α2)

η

Φ+

Φ−

Figure 1.3: Left: Root system of type A2 Right: Root hyperplane H and Highest root η.

The fundamental weights ω1, ..., ωn are defined such that ⟨αs, ωt⟩ = δs,t
⟨αs ,αs⟩

2 . Using the Cartan

matrix C = (ci,j)i,j∈S, with ci,j = 2
⟨αi ,αj⟩
⟨αi ,αi⟩

, that gives the nice connection α = Cω 3, where α and
ω are the vectors of simple roots and fundamental weights. The set of fundamental weights is
denoted by ∇ = {ωs | s ∈ S} ⊆ V. By the previous discussion, the fundamental weights satisfy
αs = ∑t∈S ctsωt and s(ωt) = ωt − δs=tαs for s, t ∈ S. Geometrically, the fundamental weights are
the directions of the rays spanning the fundamental chamber.

3) This comes from the geometric representation by mapping W → GL(V), si 7→ σi with σi(v) := v− 2⟨v, αi⟩αi
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Example 1.7: Fundamental weights of type An

The Cartan matrix C = (cij)i,j of the root system An is given by

cij=


2, if i = j

−1, if |i− j| = 1

0, otherwise

and therefore invertible. By [LL19] the inverse is given by (C−1)i,j = min{i, j} − ij
n+1 . Therefore,

the fundamental weights are given by ω = C−1α. The i-th fundamental weight is given by ωi =

(ω)i = (C−1α)i = ∑j(min{i, j} − ij
n+1 )αj = ∑j min{i, j}αj −∑j

ij
n+1 αj for 1 ≤ i ≤ n.

Example 1.8: Fundamental weights of type A2

As an example, let us consider a root system of type A2. For the corresponding Cartan matrix
CA2 =

(
2 −1
−1 2

)
and C−1

A2
= 1

3
(

2 1
1 2

)
we have α = CA2 ω. We use the notation 10∆ = 1α1 + 0α2

and 10∆ = −1α1 − 0α2. We have S = {s1, s2}, simple and positive roots ∆ ⊂ Φ+ given by
{10∆, 01∆} ⊂ {10∆, 01∆, 11∆} and s1(10∆) = 10∆, s1(01∆) = 11∆, s2(10∆) = 12∆, s2(01∆) =

01∆. So we get ∇ = {ω1 = 1
3 (21∆), ω2 = 1

3 (12∆)}. To practice notation, we show this for α1:
a11ω1 + a21ω2 = 2( 1

3 (21∆) + (−1)( 1
3 (12∆)) =

2
3 (2α1 + α2)− 1

3 (α1 + 2α2) = α1.

A connection between positive (resp. negative) roots and the length of a word is given by the
following theorem.

Theorem 1.9: [Hum90]

Let w ∈W and s ∈ S. If ℓ(ws) < ℓ(w) then w(αs) is a negative root. Analogously, if ℓ(ws) > ℓ(w)

then w(αs) is a positive root.

Example 1.10

Consider a root system of type A2. Let S = {s1, s2} be the generating system and α1 = αs1 ,
α2 = αs2 as in Figure 1.3. For w = s1s2, we obtain s1s2(α1) = α2 and s1s2(α2) = −(α1 + α2). Since
ℓ(s1s2s1) > ℓ(s1s2), w(α1) = α2 this is a positive root by Theorem 1.9. Analogously ℓ(s1s2s2) =

ℓ(s1) < ℓ(s1s2) implies w(α2) = −(α1 + α2) is a negative root.

We use ≤B for the Bruhat order on W, which is the partial order defined by the cover relation
w ≺B rw for w ∈ W and r ∈ R with ℓ(rw) = ℓ(w) + 1. A Bruhat interval [x, y] is defined for
x ≤B y, by [x, y] = {z ∈ W | x ≤ z ≤ y}. Another, well known partial order in W is the right
weak order, which differs from the Bruhat order as follows:

Right weak order: x ≺R y :⇔ s ∈ S : xs = y and ℓ(y) = ℓ(x) + 1
Bruhat order: x ≺B y⇔ r ∈ R : rx = y and ℓ(y) = ℓ(x) + 1

An equivalent definition of right weak order is given by the inversion set Inv(w) := {s1...sk−1(αsk ) |
1 ≤ k ≤ l} of a reduced element w = (s1, ..., sℓ) ∈ W, si ∈ S. An element x is smaller in right
weak order than an element y, if and only if the inversion set of x is contained in the inversion
set of y [JS23]. In symbols: x ≤R y ⇐⇒ Inv(x) ⊆ Inv(y). By definition, right weak order implies
Bruhat order.
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A concept of great interest for our work is the Demazure product of a word Q = (s1, ..., sn).
By [KM04, Lemma 3.4 (1)] the Demazure product of Q can be defined as the unique maximal
element in Bruhat order that is a subword of Q

Dem(Q) = max≤B{∏ QX | X ⊆ {1, ..., n}},

where ∏ QX denotes the product of elements with indices in X. The maximum can easily be
calculated by a greedy algorithm using Theorem 1.9. Note that the Demazure product induces a
monoid structure on any Coxeter group. By Knutson and Miller [KM04], the Demazure product
of a word is essential to determine wheter a subword complex is a topological sphere or ball. We
will discuss more about this, when we introduce subword complexes in Chapter 3.
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2 Brick polyhedra

This chapter starts with the brick polytope of a sorting network and presents some generalization
to the brick polytope for spherical subword complexes. The generalization to all subword com-
plexes are called brick polyhedra, which are the heart of our thesis. They will allow us to consider
any path ν in our geometric realization of ν-associahedra in Chapter 3.

2.1 Brick polytopes of sorting networks

Before generalizing the brick polytope to finite Coxeter groups, we first study the brick polytope
of a sorting network. This part is mainly based on [PS12]. We follow the underlying idea to con-
struct polytopes from combinatorics and explain combinatorics with geometry. We are studying
the brick polytope of a networkN . The permutahedron will show up as the brick polytope of the
duplicated network. Remark that the permutahedron can be manipulated to obtain some realiza-
tion of the associahedron. For a detailed construction we refer to [Hoh12], [HL07]. This will be
in close connection to the brick polytope. For well chosen networks, the brick polytope coincides
with the associahedron of Hohlweg and Lange, shown in [PS12], which gives us a new point of
view of their associahedron.

We give a short reminder about the usual setup for a sorting network N . The network N is a
set of n horizontal lines (levels, labelled from top to bottom) and m vertical segments (commuta-
tors, labelled from left to right) joining two levels, where the commutators have pairwise distinct
endpoints. The generated bounded cells are called bricks1. For an example, see Figure 3.23.
A pseudoline is a abscissa monotone path on N which starts at some level k and ends at level
n− k + 1. We say a commutator is a contact between two pseudolines, if its endpoints are con-
tained in respectively one of them. The set of commutators will be very useful. If a commutator
is contained in two pseudolines, it is called a crossing between these pseudolines. A pseudoline
arrangement is a set of n pseudolines supported by N such that any two of them have precisely
one crossing, maybe some contacts and no other intersection. Since we define a pseudoline ar-
ranegment by having exactly one crossing and our network N is fixed (and so the commutators)
it is completely determined by its (n

2) crossings or especially by its m− (n
2) contacts. Such a net-

work is also said to be reduced, if we consider more general networks. N is called sorting if it
supports some pseudoline arrangement. This gives the intuitive sense of sorting, since if we run
through the network the order of pseudolines changes.

1) We are following [PS12] and do not count the first brick, which is only bounded by the right side. In the following part
we will note that we later count it. This will not make any differences for our observations.
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1

2

3

4

5

1

2

3

4

5

1 3 2

5 4

Figure 2.1: Left: sorting network N with n = 5 and m = 14, Middle: pseudoline arrangement
Λ ∈ Arr(N ), Right: contact graph Λ#.

The set of all pseudoline arrangements supported by N is denoted by Arr(N ). By this setup,
we can transform a pseudoline arrangement supported byN into another one by exchanging the
position of a contact and a crossing of the same two pseudolines, which is called a flip operation.
We call the pseudoline arrangement, where any of its contacts is located to the right (resp. left) of
its corresponding cross (if any) the greedy (resp. anti-greedy) pseudoline arrangement.

For a given pseudoline arrangement Λ ∈ Arr(N ), the contact graph Λ# is the directed multigraph
with a node for each pseudoline and an arc (i, j) for each contact of Λ oriented from the node for
the pseudoline i passing above the contact to the node corresponding to the pseudoline j passing
below it. If the contact graph Λ# is connected (resp. disconnected) the sorting network Λ is
called irreducible (resp. reducible). An example for a disconnected contact graph is illustrated in
Figure 3.23. Other examples are shown in Figure 2.6.

Now we can define the flip graph G(N ) = (V(G), E(G)) with V(G) as the set of pseudoline
arrangements supported by N and E(G) as the set of possible flips between them. An example
is shown in Figure 2.2. By Pilaud and Pocchiola [PS12, Theorem 2.1], the flip graph G(N ) is
(m− (n

2))-regular and connected.

Λ1
1

2

3

Λ2
1

2

3
Λ1 Λ2

Figure 2.2: Left/Middle: Two pseudoline arrangements Λ1 and Λ2 supported by the sorting net-
work N , related by a flip between the pseudolines 1 and 2. The right (resp. left) pseu-
doline arrangement is the greedy (resp. antigreedy) pseudoline arrangement. Right:
Flip graph G(N ) = (V(G), E(G)).

We define the brick polytope of a sorting network as follows:

Definition 2.1: Brick polytope of a sorting network [PS12]

Let N be a sorting network with n levels. The brick vector of a pseudoline arrangement Λ sup-
ported by N is the vector b(Λ) ∈ Rn whose i-th coordinate is the number of bricks of N located
below the i-th pseudoline of Λ. The brick polytope Ω(N ) ⊂ Rn of the sorting network N is
the convex hull of the brick vectors b(Λ) associated to the pseudoline arrangements Λ supported
by N :

Ω(N ) := conv{b(Λ)|Λ ∈ Arr(N )} ⊂ Rn

.
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The next observation gives us that the brick polytope is not of full dimension. The depth of a brick
of N is defined as the number of levels above it and we denote by D(N ) the sum of the depths
of all bricks. By definition of pseudoline arrangements, the number of pseudolines above each
brick is equal to its depth. Therefore, the brick polytope is contained in the hyperplane defined
by the equation ∑n

i=1 xi = D(N ) and has at most dimension n− 1. An interesting example is the
“Duplicated Sorting Networks”.

Example 2.2: Duplicated Sorting Network [PS12]

Let N be a reduced network with n levels and (n
2) commutators. The duplicated sorting network

of N is defined as the network obtained by duplicating the commutators of N . In this construc-
tion we disallow a crossing between the original commutator and its added twin.

We are going to compute the brick polytope of the duplicated sorting network N shown in Fig-
ure 2.3 and use the notation (2, 3, 5) for the sorting network with commutators 2, 3, 5 as contacts.
For the sorting netwok N we obtain 23 = 8 possible pseudoline arrangements: Λ1 = (1, 3, 5),
Λ2 = (2, 3, 5), Λ3 = (2, 4, 5), Λ4 = (2, 4, 6), Λ5 = (1, 4, 6), Λ6 = (1, 3, 6), Λ7 = (2, 3, 6),
Λ8 = (1, 4, 5), illustrated in Figure 2.4. The flip graph is given by a cube, shown in Figure 2.5.
Note, this concept can be used to construct a d-dimensional cube, which can be constructed by
drawing two (d− 1)-dimensional cubes and connecting each vertex from one cube to its twin in
the other cube.

1 2

3 4

5 6

Figure 2.3: Dupicated sorting network N .

Λ1
1
2
3

Λ2
1
2
3

Λ3
1
2
3

Λ4
1
2
3

Λ5
1
2
3

Λ6
1
2
3

Λ7
1
2
3

Λ8
1
2
3

Figure 2.4: Pseudoline arrangements supported by N from Figure 2.3.

By counting the bricks below each pseudoline, we obtain the following brick vectors:

b(Λ1) = (2, 3, 0)⊤ b(Λ2) = (1, 4, 0)⊤ b(Λ3) = (0, 4, 1)⊤ b(Λ4) = (0, 3, 2)⊤

b(Λ5) = (1, 2, 2)⊤ b(Λ6) = (2, 2, 1)⊤ b(Λ7) = (1, 3, 1)⊤ b(Λ8) = (1, 3, 1)⊤

Note, all brick vectors are in the plane x1 + x2 + x3 = 5. Therefore, the brick polytope is two
dimensional, shown in Figure 2.7.

In Figure 2.6 we observe that the contact graph Λ#
6 is acyclic and Λ#

7 is cyclic. If we compare this
with the brick polytope shown in Figure 2.7 we observe that b(Λ6) is on the boundary, whereas
b(Λ7) is not.
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Λ8 Λ3

Λ2

Λ7Λ6

Λ5 Λ4

Λ1

Figure 2.5: Flip graph for the sorting network N in Figure 2.3.

1

2

3

Λ#
6

1

2

3

Λ#
7

Figure 2.6: Two contact graphs for the sorting network N in Figure 2.3.

b(Λ4)b(Λ5)

b(Λ6)

b(Λ1) b(Λ2)

b(Λ3)
b(Λ7)

b(Λ8)

Figure 2.7: Brick polytope obtained by the sorting network in Figure 2.3

Observe two questions: Firstly: What is the exact dimension of the brick polytope? Secondly:
Which vertices are vertices of the brick polytope? It is shown that we have the following general
statements:

The brick polytope Ω(N ) satisfies at each brick vector b(Λ):
cone{b(Λ′)− b(Λ) | Λ′ ∈ Arr(N )} = cone{ej − ei | (i, j) ∈ Λ#}. [PS12, Theorem 3.13]

The brick polytope of an irreducible sorting network with n levels has dimension n− 1. The
dimension of a brick polytope with n levels and p irreducible components has dimension
n− p. [PS12, Corollary 3.14]

The brick vector b(Λ), Λ ∈ Arr(N ) is a vertex of Ω(N ), if and only if the corresponding
contact graph Λ# is acyclic. [PS12, Corollary 3.15]



11

Example 2.3: Permutahedron of order three and four

The brick polytope in Figure 2.2 is isomorphic to the permutahedron of order three. Analogously
to Example 2.2, the brick polytope for the duplicated sorting network shown in Figure 2.8 (Left)
is isomorphic to the permutahedron of order four in Figure 2.8 (Right).

Figure 2.8: Left: Duplicated sorting network, Right: Corresponding brick polytope isomorphic to
permutahedron of order four.

We define the simplicial complex ∆(N ) of all sets of commutators of N contained in the set of
contacts of a pseudoline arrangement supported byN . This means a set of commutators I ofN is
a face of ∆(N ) if and only if the networkN \ I is still sorting. This complex is pure of dimension
m− (n

2)− 1. This motivates Question 2.4.

Question 2.4

Is ∆(N ) the boundary complex of a m− (n
2)- dimensional simplicial polytope?

The brick polytope was introduced by [PS12] as an attempt to give a positive answer to this
question in the particular case related to the combinatorics of multitriangulations of a convex
polygon (the multiassociahedron). Unfortunately, this attempt failed, but the brick polytope still
has many interesting properties.

If the brick polytope has dimension m − (n
2), the answer is yes, by the construction of the brick

polytope [PS12, Question 2.2]. By [PS12, Question 3.26], there is also another affirmative answer
to this question: For a minimal irreducible sorting network N , the simplicial complex ∆(N ) is
the boundary complex of the polar of the brick polytope Ω(N ).

Everything we have seen for sorting networks can be transmitted to triangulations of a convex
polygon in some particular cases. We describe a duality between triangulations of a convex poly-
gon and the pseudoline arrangements supported by the 1-kernel (described below) of a reduced
alternating sorting network. This duality is used to show that the brick polytopes of reduced al-
ternating2 sorting networks specialize to Hohlweg and Lange’s construction of the associahedra.

We give a short description of the constructed convex polygon: Px denotes the n-gon for x ∈
{a, b}n−2 obtained by the convex hull of p1 = (1, 0), pn = (n, 0) and pi+1 the point on the circle
of diameter [p1, pn] with abscissa i + 1 and locatetd above [p1, pn] if xi = a and otherwise below,
for i ∈ [n − 2]. Nx denotes the reduced alternating sorting network such that the (i + 1)-th
pseudoline touches its top level if xi = a and its bottom level for all i ∈ [n − 2]. We denote by
N 1 the 1-kernel of a network N , which is obtained from N by erasing its first and last level, as
well as all commutators incident to them. Now we can observe that the network N 1

x has n − 2
levels and (n

2) − n commutators. The binomial coefficient follows by the definition of reduced,

2) This is a sorting network with commutators in alternating order, above and below, for each level.
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alternating sorting networks and we substract n commutators since every pseudoline touches
the top or bottom level once. For 1 ≤ i < j ≤ n, we denote by (i, j) the diagonal or boundary
edge [pi, pj] of Px, and the commutator of Nx where the i-th and j-th pseudoline of the unique
pseudoline arrangement supported by Nx cross. Note that the commutators bounding the top or
bottom level correspond to the boundary edges of the polygon and the remaining commutators
are labelled by the internal diagonals of Px. An example is illustrated in Figure 2.9. Details are
described by Pilaud and Pocchiola in [PS12].

p1

p2

p3

p4

p5

p6
a b a b

6
5
4
3
2
1

b
a
b
a

Figure 2.9: Leftt: Pabab, Right: Nabab

The duality works as follows: The set of commutators of N 1
x labelled by the internal diagonals of

a triangulation T of Px is the set of contacts of a pseudoline arrangement T∗ supported by N 1
x .

Reciprocally, the internal diagonals of Px which label the contacts of a pseudoline arrangement
supported by N 1

x form a triangulation of Px. So the dual pseudoline arrangement T∗ of a trian-
gulation T of Px has one pseudoline ∆∗ dual to each triangle ∆ of T. Moreover, a commutator is
the crossing between two pseudolines ∆∗ and ∆′∗ of T∗, if it is labelled by the common bisector of
the triangles ∆ and ∆′. This is illustrated in Figure 2.10.

Remark 2.5: Duality between pseudoline arrangements supported byN 1
abab and triangulations

of Pabab [PS12]

triangulation T of Pabab ↔ pseudoline arrangement T∗ supported by N 1
abab

triangle ∆ in T↔ pseudoline ∆∗ of T∗

common edge of two triangles ∆ and ∆′ ↔ contact between the pseudoliens ∆∗ and (∆′)∗

common bisector of two triangles ∆ and ∆′ ↔ flip between the pseudolines ∆∗ and (∆′)∗

p1

p2

p3

p4

p5

p6

Z

W V

U

6
5
4
3
2
1

Z
W
V
U

Figure 2.10: Left: triangulation of Pabab, Right: pseudoline arrangement of N 1
abab for the triangu-

lation on the left.

We also obtain an isomorphism between the graph of flips on pseudoline arrangements supported
by N 1

x and the graph of flips on triangulations of Px. If we consider a triangulation T of Px, the
contact graph (T∗)# of the dual pseudoline arrangement is exactly the dual tree of T, with some
additional orientations on the edges. This has been extended by Pilaud and Pocchiola in two
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ways: On the one hand to pseudotriangulations of point sets in general position, and on the other
hand to multitriangulations of a convex polygon. For details we refer to [PS12].

From this we can get an intuitive understanding of the brick polytope defined by some triangula-
tion of the brick polytope! By the discussed results we see, if Nx is a reduced alternating sorting
network with n levels. Its 1-kernel N 1

x is a minimal network: the pseudoline arrangements it
supports correspond to triangulations of Px and their contact graphs are the dual trees of these
triangulations. The main result we have seen is that the brick polytope Ω(N 1

x ) is a realization of
the (n− 3)-dimensional associahedron. Furthermore, these brick polytopes are precisely the as-
sociahedra of Hohlweg and Lange [PS12]. It can be seen that, Ω(N 1

x ) does not depend on the first
and last letter. Moreover, a network Nx and its reflection through the vertical (resp. horizontal)
axis give rise to affinely equivalent associahedra, see [PS12] for more details.

Remark 2.6

Hohlweg and Lange’s associahedra is not the only one realized by the brick polytope. The brick
polytope of the 1-kernel of the network Nbn−2 coincides with the (n− 3)- dimensional associahe-
dron of Loday. Another example is Hohlweg and Lange’s realization of the cyclohedron. For this
they considered the antisymmetric word x ∈ {a, b}2n−2 satisfying {xi, x2n−1−i} = {a, b}, such
that the (2n)-gon Px is centrally symmetric . Then the convex hull of the brick vectors of the
dual pseudoline arrangements of all centrally symmetric triangulations of Px is a realization of
the (n− 1)-dimensional cyclohedron [PS12].

2.2 Brick polytopes of spherical subword complexes

We start with introducing subword complexes in the context of Coxeter groups as a generalization
of the simplicial complex ∆(N ) of a sorting network N . To remember, t he length ℓ(w) of an
element w ∈ W is the smallest length of a word w = (s1, ..., sℓ(w)) such that its product is an
expression for w. If ℓ(w) is minimal, we call this a reduced expression for w.

Definition 2.7: Subword complex SC(Q, w) [PS15]

For a Coxeter system (W, S), let Q = (q1, ..., qm) be a word in the generators S of W and let
π ∈ W. The subword complex SC(Q, w) is defined as the simplicial complex whose facets are
subsets I ⊆ [n] such that Q[n]\I is a reduced expression for w. Here QJ denotes the subword of Q
with positions at J.

Two facets I and J of SC(Q, w) are adjacent, if there are i ∈ I and j ∈ J such that I \ {i} = J \ {j}.
We call the transition from I to J the flip of i ∈ I and furthermore say the flip is increasing if i < j
and otherwise decreasing. Moreover, we define SC(Q) := SC(Q, w◦).

The simplicial complex ∆(N ) can be naturally obtained as a subword complex SC(QN , w◦) with
underlying Coxeter group (Sn, {si| i ∈ [n− 1]}) and the permutation w◦ := [n, n− 1, ..., 2, 1] the
longest element of Sn. A commutator connecting levels i and i + 1 inN corresponds to a letter si

in QN , and these letters are read from left to right in the network. The contacts of a pseudoline
arrangement supported byN correspond to a facet of SC(QN , w◦), and vice versa. Therefore the
simplicial complex ∆(N ) is isomorphic to SC(QN , w◦).
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Having considered the case of sorting networks of the form SC(Q, w◦), we go one step further
and generalize the brick polytope to spherical subword complexes. By [KM04, Corollary 3.8] a
subword complex SC(Q, w) is spherical if and only if Dem(Q) = w, otherwise a ball. R(I) of a
facet I, or equivalently of all facets, is linearly independent. In the case where the root configu-
ration R(I) of a facet I, or equivalently of all facets, is linearly independent, then the polar of the
brick polytope is a realization of the subword complex, by [PS15].

In this thesis, we always consider the Coxeter sytem (W, S) of type An: W := Sn+1 which is acting
on V := {x ∈ Rn+1 | x1 + ... + xn+1 = 0} by permutation of coordinates, S := {sp | p ∈ [n]} with
sp = (p, p + 1) and Φ = {ep − eq | p ̸= q ∈ [n + 1]} = Φ+ ⊔Φ− with Φ+ = {(ei − ej)|1 ≤ i <
j ≤ n + 1} and Φ− = {(ej − ei)|1 ≤ i < j ≤ n + 1}, simple roots ∆ = {ep − ep+1 | p ∈ [n]} and
fundamental weights ∇ = {∑q≤p eq | p ∈ [n]}.

Remark 2.8

Note that the fundamental weights we are using are not the same we discused in Example 1.7 and
1.8. In particular the fundamental weights ∇ do not lie in the vector space V and do not coincide
with our original definition of fundamental weights. However, by [PS15, Example 2.2], this alters
the definiton of the brick polytope below only by a shift, and enables us to match the presentation
of the brick polytopes for sorting networks.

Question 2.4 above can be formulated more generally, whether any spherical subword complex
is the boundary complex of a convex simplicial polytope [KM04]. This question is widely open.
Pilaud and Stump have generalized the construction of the brick polytope on any Coxeter system.
This construction yields in particular the generalized associahedra of Hohlweg and Lange [HL07]
for certain particular subword complexes described by Ceballos, Labbé and Stump [CLS14].

There will be two important functions, which we are going to define now for w ∈ W and Q =

(s1, ..., sm). The root function r(I, ·) : [m] −→ Φ is defined by r(I, k) := ∏ Q{1,...,k−1}\I(αsk ). There-
fore we denote by R(I) := {{r(I, i) | i ∈ I}} the root configuration of a facet I. The other function
is the weight function w(I, ·) : [m] −→ Φ, defined by w(I, k) := ∏ Q{1,...,k−1}\I(ωsk ). Note that
the only difference is in the argument. The root function operates on simple roots and the weight
function operates on fundamental weights. The following result is proven by Knutson and Miller:

Lemma. 2.9: [KM04]

Let I ∈ SC(Q, w) be a facet then i ∈ I is flippable if and only if

r(I, i) ∈ Inv(w), or

r(I, i) ∈ Φ−

We associate to a word Q = (q1, ..., qm) in S a sorting network NQ with n + 1 levels and m com-
mutators, such that if qi = sp then the i-th commutator is between level p and p + 1.

Example 2.10: NQ for Q = (s1, s1, s2, s2, s1, s1)

To illustrate this, we can consider the case n = 2 and the word Q = (s1, s1, s2, s2, s1, s1), where
we are going to write it as Q = 112211 for simplicity. The sorting network NQ is equal to the
sorting network discussed in Example 2.2, shown in Figure 2.3. The set of positive roots is given
by Φ+ = {e1 − e2, e1 − e3, e2 − e3}. We observe two properties, which hold in general , namely
|Ic| = |Q \ I| and |Ic| = |Φ+|. These observations are formulated by the next Lemma.
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Lemma. 2.11: [PS15]

Let I be a facet of the subword complex SC(Q).

The map r(I, ·) : k 7→r(I, k) determines a bijection between the complement of I and Φ+.

For I, J adjacent facets of SC(Q) with I \ {i} = J \ {j} the position j is the unique position
in the complement of I for which r(I, j) ∈ {±r(I, i)}. Moreover, r(I, j) =r(I, i) ∈ Φ+ if i < j
and r(I, j) = −r(I, i) ∈ Φ− if i > j.

In the same situation as in the second point, the map r(J, ·) is obtianed from the map r(I, ·)
by

r(J, k) =

{
sr(I,i)(r(I, k)) if min(i, j) < k ≤ max(i, j)

r(I, k) otherwise

We say a root configuration R(I) for a facet I of a subword complex is root independent if R(I) is
a set of linearly independent vectors. By Lemma 2.11, either all the root configurations R(I) for
facets I of SC(Q) are simultaneously linearly independent, or none of them is. For more details
we refer to [PS15, Lemma 3.8].

Definition 2.12: Brick polytope [PS15]

For a spherical subword complex SC(Q), with Q = (q1, ..., qm), Dem(Q) = w◦ and weight func-
tion w(I, k) = ∏ Q{1,...,k−1}\I(ωsk ), define the brick vectors B(I) := ∑k w(I, k) and the brick poly-
tope as the convex hull of the brick vectors:

B(Q) := conv{B(I) | I facet of SC(Q)} = convI B(I).

Example 2.13

We continue Example 2.10, the facets are: I1 = (1, 3, 5), I2 = (2, 3, 5), I3 = (2, 4, 5), I4 = (2, 4, 6),
I5 = (1, 4, 6), I6 = (1, 3, 6), I7 = (2, 3, 6), I8 = (1, 4, 5). We are going to compute the weight
function explicitly:
The fundamental weights are given by: ω1 = e1, ω2 = e1 + e2.
The simple roots are: α1 = e1 − e2, α2 = e2 − e3.

We do the calculation for facet I1 explicitely:
w(I1, 1) = ω1 = e1, w(I1, 2) = ω1 = e1, w(I1, 3) = s1(ω2) = e1 + e2,
w(I1, 4) = s1(ω2) = e1 + e2, w(I1, 5) = s1s2(ω1) = e2, w(I1, 6) = s1s2(ω1) = e2,

Therefore, b(I1) = ∑ w(I1, k) = 4(e1 + e2) = (4, 4, 0)⊤. Here is the list of all brick vectors:

b(I1) = (4, 4, 0)⊤, b(I2) = (3, 5, 0)⊤, b(I3) = (2, 5, 1)⊤, b(I4) = (2, 4, 2)⊤,
b(I5) = (3, 3, 2)⊤, b(I6) = (4, 3, 1)⊤, b(I7) = (3, 4, 1)⊤, b(I8) = (3, 4, 1)⊤

The computation of the root configuration works similar. We do the calculation for facet I1 explicitely:
r(I1, 1) = α = e1 − e2, r(I1, 2) = α1 = e1 − e2, r(I1, 3) = s1(α) = e1 − e3,
r(I1, 4) = s1(α) = e1 − e3, r(I1, 5) = s1s2(α1) = e2 − e3, r(I1, 6) = s1s2(α1) = e2 − e3,
Therefore, R(I1) = {e1 − e2, e1 − e3, e2 − e3}.
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Remark 2.14

Notice that the computed brick vectors in Example 2.13 do not coincide with those from Exam-
ple 2.2. By Definition 2.12, the left unbounded brick is counted. However, the resulting brick
polytope is just a translation of the one computed before. The precise translation is givent by
adding the vector (n− 1, n− 2, ..., 0)⊤ to the brick vectors in Definition 2.1. In particular, the brick
vectors in Example 2.13 are obtained from the brick vectors in Example 2.2 by just adding the
vector (2, 1, 0) to each of them.

This generalization in Definition 2.12 satisfies the following property, which we have also seen
for brick polytopes for sorting networks, in the following way:

Proposition. 2.15: [PS15]

Let I be a facet of the subword complex SC(Q). The cone of the brick polytope at the brick vector
B(I) coincides with the cone generated of the negative of the root configuration of I:

cone{B(J)− B(I) | J facet of simplicial complex SC(Q)} = cone{-r (I,i)| i ∈ I}.

2.3 Brick polyhedra

Now our task is to come up with a generalization of the brick polytopes for spherical subword
complexes towards general subword complexes by introducing brick polyhedra [JS23]. We start
by giving a connection between Bruhat intervals in finite Coxeter groups and subword complexes.
At the end we combine Bruhat cones with brick polytopes to define brick polyhedra for all sub-
word complexes. Some statements for brick polytopes will also hold for brick polyhedra and
others can be adapted. First, our aim in this section is to give a brief introduction about the con-
nection between Bruhat intervals and subword complexes.

Definition 2.16: Bruhat cone [JS23]

For a Bruhat interval [x, y], the upper Bruhat cone is defined by C+(x, y) := cone E+(x, y), the
lower Bruhat cone C−(x, y) := cone E−(x, y), where E+(x, y) := {β ∈ Φ+ | x ≺B sβx ≤B y} and
E−(x, y) := {β ∈ Φ+ | x ≤B sβy ≺B y}, which only means that the upper Bruhat cone is the cone
spanned by the labels of the atoms in the Bruhat interval [x, y]. If we write Bruhat cone, we talk
about the upper Bruhat cone.

Remark 2.17: Making-of the definition of the Bruhat Cone

Behind this definition there is the following idea: In the case that we have a non-flippable i ∈ I ∈
SC(Q) the root r(I, i) is still a positive root that does not belong to the inversion set, r(I, i) ∈ Φ+ \
Inv(w). In terms of the Demazure product, we can insert the generator qi into the reduced word
of w determined by the complement of I and get w ≺B rβw ≤B Dem(Q), where β = r(I, i). This
insertion/deletion of letters yields a connection between the subword complexes SC(Q, rβw) ↔
SC(Q, w). So we can consider all of these upper covers that are still below Dem(Q). This leads
us to the Bruhat cones. Especially, if we have an interval x ≤B y for x, y ∈ W, we consider an
upper cover of x in Bruhat order x ≺B z ≤B y, such an upper cover corresponds to a reflection
r ∈ R, such that rx = z and this reflection has a corresponding positive root β ∈ Φ+, i.e. r = rβ.
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Now we collect for the interval [x, y] all such roots β and define E+(x, y) = {β ∈ Φ+ | x ≺B

rβx ≤B y}, which gives us some rays. The Bruhat cone is the cone over those roots C+(x, y) =

cone E+(w, Dem(Q)). By [JS23], the following holds:

Theorem 2.18: [JS23]

Let SC(Q, w) be a non-empty subword complex. Then

C+(w, Dem(Q)) =
⋂

I facet of SC(Q, w)

cone R(I), (2.1)

E+(w, Dem(Q)) = {r(I, i) | I facet of SC(Q, w) and i ∈ I non-flippable}. (2.2)

Moreover, if for a facet I of SC(Q, w), i ∈ I is a flippable index, then r(I, i) /∈ E+(w, Dem(Q)).

Theorem 2.18 states that we can describe the root function values of all non-flippable indices
exactly by these sets of roots that correspond to upper covers. Now we reduce our studies to
simplicial complexes containing non-flippable vertices. This happens when

E+(w, Dem(Q)) ̸= ∅⇔ w < Dem(Q)

⇔ SC(Q, w) is a ball

⇔ SC(Q, w) has facets containing non-flippable vertices

Definition 2.19: Brick polyhedra [JS23]

The brick vector of a facet I ∈ SC(Q, w) for a word Q = (q1, ..., qm) is defined by b(I) :=
−∑m

k=1 w(I, k). (The minus sign simplifies the notation in later aspects.) The brick polyhe-
dron B(Q, w) of a non-empty subword complex SC(Q, w) is the Minkowski sum of the convex
hull of all brick vectors and the Bruhat cone C+(w, Dem(Q)):

B(Q, w) := conv{b(I) | I facet of SC(Q, w)}+ C+(w, Dem(Q)).

Definition 2.19 coincides with the brick polytope in the spherical case (for w = Dem(Q)), because
then the Bruhat cone is just a point. Now, how does the added cone influence the structure of
the brick polytope? The brick polyhedron preserves many of the properties of the brick poly-
tope, one reason for this is that the Bruhat cone C+(w, Dem(Q)) is exactly the intersection of all
cones over root configurations. The Bruhat cone is given by C+(w, Dem(Q)) = {0} if and only
if Dem(Q) = w, which is equivalent to the subword complex SC(Q, w) being spherical. Equiv-
alently, the brick polyhedron B(Q, w) of a non-empty subword complex SC(Q, w) is polytopal3

if and only if SC(Q, w) is spherical. Our definition of the brick polyhedra allows us to keep the
following local property, shown in [JS23]. What can go wrong is given in Example 2.23.

Definition 2.20: Local cone [JS23]

The local cone of a polyhedron P at a point q ∈ P is defined by

cone(q)(P) := cone{p− q|p ∈ P}.

3) We call a bounded polyhedron polytopal. P is called a polyhedron if there are finitely many linear functions f1, ...., fk :
V → R and scalars b1, ..., bk ∈ R such that P = {v ∈ V : fi(v) + bi ≥ 0 for all 1 ≤ i ≤ k}.
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Theorem 2.21: [JS23]

The local cone of the brick polyhedron B(Q, w) at the brick vector b(I) coincides with the cone
generated by the root configuration of the facet I of SC(Q, w). In symbols:

cone(b(I))(B(Q, w)) = cone R(I).

As an immediate consequence we obtain Corollary 2.22.

Corollary 2.22: [JS23]

For I, J facets of a subword complex SC(Q, w) such that their brick vectors b(I) and b(J) are
contained in the same edge of the brick polyhedron B(Q, w), then the facets I, J are connected by
a flip.

In the following example we can see, if we only take the convex hull of the brick vectors and draw
the corresponding root configuration with vectors, there are vertices such that the root configura-
tion lies outside the polytope. Taking the Minkowski sum with the Bruhat cone is fixing this, as
Example 2.23 shows.

Example 2.23

(Type A2) Let Q = (s2, s1, s2, s1) and w = s2s1. The subword complex SC(Q, w) has three facets
I1 = (1, 2), I2 = (2, 3), I3 = (3, 4) with corresponding brick vectors b(I1) = −(0, 2, 4)⊤, b(I2) =

−(0, 3, 3)⊤, b(I3) = −(1, 3, 2)⊤. The subword complex is non-spherical since Dem(Q) = s2s1s2 ̸=
w, and root dependent. The corresponding brick polyhedron is shown in Figure 2.11. The local
cone of the brick polytope, using only the convex hull, does not coincide with the cone spanned
by the root configuration at the brick vector for the facets I1 and I3. The solution for this is to add
the so-called Bruhat cone in the sense of a Minkowski sum, discussed above.

Figure 2.11: Left: Sorting network NQ for Q = (s2, s1, s2, s1), Right: Brick vectors and root config-
uration

After introducing brick polyhedra we give a brief introduction of the normal fans of brick poly-
hedra. [JS23, Corollary 4.18].

Definition 2.24: Coxeter fan [JS23]

The Coxeter fan of a Coxeter group W is defined by CFW = {w(cone∇′)|w ∈ W,∇′ ⊆ ∇} with
the fundamental chamber C = cone(∇) being the cone spanned by the fundamental weights.

Definition 2.25: [JS23]

For a Bruhat interval [x, y] define the ideal IdR(x, y) := {z ∈ W|E+(x, y) ⊆ z(Φ+)} and the map
κ : IdR(w, Dem(Q)) → SC(Q, w), by sending z ∈ IdR(w, Dem(Q)) to the unique facet I f with
R(I) ⊆ z(Φ+). Here f is the linear functional, which is positive on z(Φ+) and negative on z(Φ−)

and I f is the unique facet for which R(I) ⊆ z(Φ+).
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By [JS23, Proposition 4.12], the map κ is well defined and by [JS23, Proposition 4.16] surjective.
We also have Corollary 2.26

Corollary 2.26: [JS23]

The normal fan N (B(Q, w)) is obtained from the Coxeter fan by glueing together the chambers
corresponding to fibers of the map κ, and deleting the chambers corresponding to elements in W
not in IdR(w, Dem(Q)).

Example 2.27: Normal fan

We consider the subword complex SC(Q, w) with Q = (s2, s1, s3, s2) and w = s2. The simple
roots are Φ+ = {(ei − ej)|1 ≤ i < j ≤ 4}. Let I2 be the greedy facet and I1 the anti-greedy facet.
The brick polyhedron B(Q, w) is given by the two brick vectors b(I1), b(I2) connected by a flip,
such that b(I2)− b(I1) = e2 − e3. By Theorem 2.18, the Bruhat cone is spanned by the elements
E+(w, Dem(Q)) = {e1 − e2, e3 − e4, e1 − e3, e2 − e4}.

We obtain IdR(w, Dem(Q)) = {w ∈ W|E+(w, Dem(Q)) ⊆ z(Φ+)} = {e, s2}. By Corollary 2.26
the normal fan is given byN (B(Q, w)) = {{ω1}, {ω2}, {ω3}, {s2ω2}, {ω1, ω2}, {ω2, ω3}, {ω1, ω3},
{ω1, s2ω1}, {ω3, s2ω2}, {ω1, ω2, ω3}, {ω1, s2ω2, ω3}}, illustrated in Figure 2.13. The interior of the
normal fan N (B(Q, w)) is given by {{ω1, ω3}, {ω1, ω2, ω3}, {ω1, ω3, s2(ω2)}}.

Since the sorting networkNQ is embedded in the sorting network of Figure 2.8 (Left), the bounded
faces of the brick polyhedron B(Q, w)) and the directions of the Bruhat cone are embedded in the
permutahedron of order four. This embedding is shown in Figure 2.12: The arrows mark the
directions of the Bruhat cone. The corresponding vectors of the normal fan are denoted by the
orange letters. Note this coincides with ωi ⊥ (ej − ej+1) for i ̸= j.

e3 − e4

e1 − e3

e1 − e2

e2 − e4

s2(ω2)

ω3

ω2

ω1

Figure 2.12: Left: Embedding of the sorting network NQ in the sorting network in Figure 2.8,
Right: Embedding of the brick polyhedron B(Q, w) in the permutahedron of order
four with Q = (s2, s1, s3, s2) and w = s2.

ω3

ω2

ω1

s2(ω2)

Figure 2.13: Normal fan of the brick polyhedron B(Q, w) with Q = (s2, s1, s3, s2) and w = s2.
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3 Application

After studying brick polytopes and generalizing them to brick polyhedra, we will introduce the
ν-Tamari lattice and project brick polyhedra in a nice way to obtain ν-Tamari lattices. This means
we will apply our results to give geometric realizations of ν-associahedra by brick polyhedra.

3.1 The ν-Tamari lattice

We denote by ν a lattice path with finitely many East and North steps. Let Fν be the Ferrers
diagram weakly above ν, inside the smallest rectangle containing ν. Aν is the set of lattice points
weakly above ν, which are inside Fν. We consider all paths weakly above ν with the same starting
and endpoint in Aν. We define the ν-Tamari lattice as the poset Tν on this set of paths with a
covering relation ≺ν. The cover relation is given by [CPS20] as follows:

For p ∈ Aν, define the arm(p) to be the maximum number of East steps that can be added to p
without crossing ν. Let u be a lattice path weakly above ν. Suppose for an integer point p on
u, it is proceeded by an East step and followed by a North step in u. Let p0 be the first lattice
point in u which is after p and such that arm(p0) = arm(p). Let P[p, p0] be the subpath of u that
starts at p and finishes at p0. Let u0 be obtained from u by switching E and P[p, p0]. This cover
relation is denoted by ≺ν and its induced poset is called the ν-Tamari lattice. Figure 3.1 shows an
example of the cover relation and Figure 3.30 (Left) shows an example of the ν-Tamari lattice for
ν = EENEEN.

p

p0
P[p, p0]

E

ν
u

≺ν

p

p0
P[p, p0]

E

ν
u0

Figure 3.1: Example cover relation: ENENENENE = u ≺ν u0 = ENNENEENE.

In the following, we will introduce ν-trees and its rotation lattice. Let p, q ∈ Aν. We say p and q
are ν-incompatible p ̸∽ q if and only if p is southwest (SW) to q or p is northeast (NE) to q and
the smallest rectangle containing p, q is completely inside Fν. A ν-tree is a maximal collection of
pairwise ν-compatible elements in Aν. The elements are called nodes. The top left corner is called
root. We associate a rooted binary tree τ to each ν-tree T by connecting every p ∈ T other than the
root to the next in North or West direction. An example is illustrated in Figure 3.3. By [CPS19],
exactly one exists and the resulting graph is a rooted binary tree. By ν-compatibility a planar
drawing of τ is non-crossing, since 2 crossing parent nodes would be ν-incompatible. One can
also show that every rooted binary tree τ can be obtained uniquely as the binary tree of a ν-tree
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ν-Tamari lattice Rotation lattice of ν-trees

Figure 3.2: Example ν=EENEEN.

T, where ν is uniquely determined by τ [CPS19]. Two ν-trees T, T′ are related by a right rotation
if T′ can be obtained from T by exchanging q ∈ T with q′ ∈ T′ in as in Figure 3.4 with p, r ∈ T, T′.

Figure 3.3: Left: ν = EENEEN, Right: ν-tree.

r

p

q
→

r

p q

Figure 3.4: Right rotation.

The inverse is called a left rotation. Clearly the rotation of a ν-tree is also a ν-tree. The rotation
poset of ν-trees is the partial order on the set of ν-trees, which is defined by the cover relation
T < T′ if T′ can be obtained by a right rotation of T. Moreover, the rotation poset of ν-trees is a
lattice, and the rotation poset of ν-trees is connected. All ν-trees have the same number of nodes,
which is the number of lattice points on ν. Two ν-trees differ by a single element if and only if
they are related by a rotation. More remarkable, the following holds, see example in Figure 3.30:

Theorem 3.1: [CPS19]

The ν-Tamari lattice is isomorphic to the rotation poset of ν-trees.

We present a bijection from [CPS20], which induces an isomorphism between the rotation lattice
of ν-trees and the ν-Tamari lattice. We give a short description of the right flush R, which con-
structs a ν-tree from a ν-path µ: Start with labeling all points in the ν-path µ in order they appear
along the path. Now we are constructing the ν-tree from the bottom to the top. The vertices in
a row are placed as rightmost as possible on the same row of the path in assigned order. But we
avoid the x-coordinates that are forbidden by previous flushed rows. We disallow here the coor-
dinates by all flushed points in a row, excepting the last one (leftmost). The obtained points give
us the ν-tree. The Left flush L will work symmetrically, see [CPS20]. This bijection is visualized
in Figure 3.5. The maps and R, L are well defined, and bijective inverse to each other. Moreover,
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for µ,µ′ ν-paths, they are related by a ν-Tamari covering if and only ifR(µ′),R(µ) are related by a
rotation.

Figure 3.5:→ Right shift,← Left shift.

3.2 The ν-Tamari complex and the ν-subword complex

The description of the ν-Tamari lattice in terms of ν-trees allows us to introduce a much richer
structure, called the ν-Tamari complex.

Definition 3.2: ν-Tamari Complex [CPS19]

The ν-Tamari complex is the simplicial complex T C(ν) of pairwise ν-compatible sets in Aν. The
dimension of a face I is dim(I) = |I| − 1. The facets are the ν-trees.

As shown in [CPS19], the ν-Tamari complex can be determined as a well chosen subword com-
plex. For this, we need to introduce pipe dreams [Ber+23] and the words Qν, wν corresponding
to a finite path ν.

Definition 3.3: Pipe dream [Ber+23], [CPS19]

A pipe dream P is a filling triangular shape with crosses and elbows . The permutation of
the pipe dream P is denoted by π(P), and any two pipes have at most one intersection. To each ν-
tree T we associate a pipe dream P(T) by placing elbows at all nodes of the ν-tree and outside Fν.
This is illustrated in Figure 3.7. For a fixed ν the permutation πν := πν(T) is independent of
the ν-tree T, because rotations do not alter the permutation. However, every pipe dream with
permutation πν arises this way.

Definition 3.4: Qν and wν [CPS19]

Let ν be a finite path of length n. For every lattice point in the Ferrers diagram p ∈ Fν, denote by
d(p) the lattice distance from p to the top-left corner of Fν. Now label each integer lattice point
p ∈ Fν by the transposition sd(p)+1. See Figure 3.6 (Middle) for an example.

Furthermore, define Qν as the word obtained by reading the associated transpositions from bot-
tom to top, and the columns from left to right.

We denote by πν the permutation whose one-line representation, denoted with square brackets,
is given by the top labels, read from left to right in the corresponding pipe dream. The reduced
word wν is such that πν = wν(1, ..., n).

Remark 3.5: [CPS19]

The complements of ν-trees are the reduced expressions of wν in Qν. The effect of a rotation keeps
wν constant. Figure 3.6 shows an example.

Example 3.6

We consider the path ν = ENEEN. By the Figures 3.6, 3.7 we obtain Qν, wν, πν.
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s3 s4

s2 s3 s4 s5

s1 s2 s3 s4

s2 s3

s2 s4

Figure 3.6: Left: ν-tree, Middle: grid for Qν Right: complement of ν-tree, ν = ENENE

1

2

3

4

5

6

1 4 3 5 2 6

Figure 3.7: Pipe dream for ν-tree, ν=ENENE

By Figure 3.6 (Middle), we obtain Qν = (s3, s2, s1, s4, s3, s2, s4, s3, s5, s4), Figure 3.6 (Right) gives us
wν = s2s3s2s4. The pipe dream in Figure 3.7 illustrates πν = [1, 4, 3, 5, 2, 6].

Definition 3.7

The ν-subword complex is the subword complex SC(Qν, wν).

Theorem 3.8: [CPS19]

The ν-subword complex SC(Qν, wν) is isomorphic to the ν-Tamari complex.

Definition 3.9: Boundary and Interior of ν-Tamari Complex [CPS19]

A co-dimension 1 face A of the ν-Tamari complex1 is in the boundary if it is contained in only one
facet. A general face B is in the boundary if it is contained in some A of co-dimension 1, which is
in the boundary. An interior face is a face that is not in the boundary.

3.3 The ν-associahedron

The Hasse diagram of the ν-Tamari lattice can be geometrically realized as the edge graph of a
polytopal complex called the ν-associahedron [CPS19]. The construction in [CPS19] uses tech-
niques from tropical geometry. The goal of this thesis is to give new realizations in terms of brick
polyhedra. The following is a purely combinatorial definition.

Definition 3.10: ν-Associahedron [CPS19]

The ν-associahedron is a polytopal complex induced by an arrangement of tropical hyperplanes,
whose poset of faces (ordered by containment) is anti-isomorphic to the poset of interior faces of
the ν-Tamari complex.

The interior faces of the ν-Tamari complex can be characterized as follows.

1) The co-dimension of A is given by the maximal dimension minus the dimension of A.
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Definition 3.11: [CP20]

A node v in a ν-tree T is called an ascent if there exists a node to the North and another to the East
of v. Equivalently, ascents of T are the increasingly flippable nodes of T.

Lemma. 3.12: [CP20]

The interior faces I of the ν-Tamari complex are in bijective correspondence with pairs (T, A),
where T is a ν-tree and A is a subset of its ascents, via the map I = T \ A.

Corollary 3.13: [CP20]

The faces of the ν-associahedron are in correspondence with pairs (T, A), where T is a ν-tree and
A is a subset of its ascents. The dimension of the face corresponding to (T, A) is |A|.

Example 3.14

Consider the path ν = EN. We associate to the lattice points in the Ferrers diagram Fν the letters
{a, b, c, d}, as in Figure 3.8 (Left). By Definition 3.4, we obtain Qν = (s2, s1, s3, s2) and wν = s2.
Therefore, SC(Qν, wν) = {abc, bcd, ab, bd, cd, bc, ac, a, b, c, d}. The interior faces are {abc, bcd, bc}.
Consequently, by Theorem 3.8, the ν-associahedron is, up to isomorphism, represented by the line
segment shown in Figure 3.8 (Right).

We go one step further and consider the sorting network shown in Figure 3.8 (Second left), which
has two non-flippable contacts b and c. The corresponding brick polyhedron is shown in Fig-
ure 3.9. By Theorem 2.18, the Bruhat cone is of dimension 3, because by Theorem 2.18 (2.2)
the Bruhat cone is given by C+(wν, Dem(Qν)) = cone{α1, α3, s2(α1), s2(α3)} and α1 + s2(α3) =

α3 + s2(α1). The bounded faces of the ν-brick polyhedron are given by one edge, which we label,
{bc}, between the two possible facets {abc}, {bcd}, see Figure 3.9.

b

a c

d

a d

c

b

b

a

c

d

b

a c

d

b

a c

d b

a c

d

Figure 3.8: From left to right: ν-tree, sorting network, ν-Tamari complex, ν-associahedron

{abc}

{bcd}
{bc}

α3

α1

s2(α3)

s2(α1)

Figure 3.9: ν-Brick Polyhedra for ν = EN

By Example 2.27 the interior of the normal fanN (B(Qν, wν)) is given by {{ω1, ω3}, {ω1, ω2, ω3},
{ω1, ω3, s2ω2}}.
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Example 3.15

Consider the ν-subword complex for ν = ENEEN, the ν-associahedron is shown in Figure 3.10,
and its edge graph is the Hasse diagram of the ν-Tamari lattice. The interior face I1 illustrated
in orange in Figure 3.10 corresponds to the orange line segment, while the red interior face I2

corresponds to the red pentagon. Note that I2 ⊆ I1, but the face corresponding to I1 is contained
in the face corresponding to I2. The containment poset of interior faces is reversed.

The word Qν and element wν are Qν = (s3, s2, s1, s4, s3, s2, s4, s3, s5, s4), wν = s3s2s3s4. The brick
polyhedron B(Qν, wν) is of dimension 4 in a 5 dimensional space, so we can not really draw
it. However, to get a feeling about how it looks like, we can remove the letters s1 and s5 from
Qν. They are contained in every facet (are non-flippable) and give rays in the brick polyhe-
dron. If we call Q̃ν the resulting word Q̃ν = (s3, s2, s4, s3, s2, s4, s3, s4) then the brick polyhedron
B(Qν, wν) is of dimension 3 and is illustrated in Figure 3.14. By Theorem 2.18, the Bruhat cone is
of dimension 2, because by Theorem 2.18 (2.2) the Bruhat cone is given by C+(wν, Dem(Qν)) =

cone{α4, s3(α4)}.

I1

I2

Figure 3.10: The ν-associahedron for ν = ENEEN.

3.3.1 A canonical realization of the alt ν-associahedron

In this subchapter, we define the canonical realization of the alt ν-associahedron.

Definition 3.16: A Canonical Realization of the Alt ν-Associahedron [Ceb24]

For a ν-tree T, the coordinates of the corresponding vertex x(T) in the ν-associahedron are de-
termined as follows: For each horizontal line k in the Ferrer’s diagram Fν, excluding the first
one containing the root and labeled from top to bottom, the k-th coordinate of x is given by
xk(T) = area(Rk). Here, Rk is the shortest path connecting the root to the left most node of T
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s3(α2)

s2s3(α4)

α4

s3(α4)

α3

α2

Figure 3.11: B(Qν, wν) for ν = ENEEN.

on the k-th horizontal line, and area(Rk) is the number of boxes inside Fν to the left of Rk. An
example is illustrated in Figure 3.12.

(0, 0) (2, 0) (3, 0)

(0, 1)

(1, 2) (2, 2) (3, 2)

Figure 3.12: The canonical realization of ν-associahedron for ν=ENEEN.

Theorem 3.17: [Ceb24]

The canonical coordinates of ν-trees in Definition 3.16 give a geometric realization of the ν-associa-
hedron.
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3.4 A geometric realization via brick polyhedra

In the context of this chapter, we define the ν-brick polyhedron B(Qν, wν) as the brick polyhedron
associated with the ν-subword complex SC(Qν, wν). Our goal is to demonstrate that the bounded
faces of ν-brick polyhedron B(Qν, wν) also yield a geometric realization of the ν-associahedron,
as we can see from Examples 3.14 and 3.15 above.

Theorem 3.18

The bounded faces of the ν-brick polyhedron yield a geometric realization of the ν-associahedron.
In other words, the poset of bounded faces of the ν-brick polyhedron is anti-isomorphic to the
poset of interior faces of the ν-subword complex (∼= ν-Tamari complex).

Our approach to establish this result involves the following steps:

1) Enhance the understanding of the faces of general brick polyhedra (Theorem 3.23).

2) Characterize the bounded faces of the ν-brick polyhedron (Corollary 3.45 and Corollary 3.47).

3) Analyze the poset of bounded faces of the ν-brick polyhedron (Proof of Theorem 3.18 in
Section 3.4.4).

3.4.1 Faces of brick polyhedra

In this chapter, we explore the structure of faces within general brick polyhedra by focusing on
identifying the minimal elements within them, as each face contains exactly one minimal element,
and characterizing their vertices. We introduce modified brick polyhedra B I(Q, w) and demon-
strate that every face F of the brick polyhedron B(Q, w) can be represented as a modified brick
polyhedron B I(Q, w) for some face I ∈ SC(Q, w) (Theorem 3.23).

Definition 3.19: Modified Bruhat Cone C I,+

We denote the set of all faces in the subword complex SC(Q, w) that contain a given face I ∈
SC(Q, w) as SC I(Q, w). Formally, we define

SC I(Q, w) := {J ∈ SC(Q, w) : I ⊆ J}.

The modified root configuration RI(J) is given by

RI(J) := {r(J, j) | j ∈ J \ I}.

We define the modified Bruhat cone C I,+ as

C I,+ :=
⋂

J∈SC I(Q,w)

cone RI(J).

Definition 3.20: Modified Brick Polyhedron B I(Q, w)

For a face of a non-empty subword complex SC(Q, w), the modified brick polyhedron B I(Q, w)

is the Minkowski sum of the convex hull of all brick vectors of all facets containing I and the
modified Bruhat cone C I,+:



28

B I(Q, w) := conv{b(J) | J facet of SC(Q, w) and I ⊆ J}+ C I,+.

Example 3.21

For ν = ENEEN and using the labeling shown in Figure 3.13, the modified brick polyhedron
B I2(Q, w) for I2 = {c, d, g, i} is the bounded pentagon in Figure 3.14, while B I3(Qν, wν), where
I3 = {a, b, c, i}, is not a face of the ν-brick polyhedron B(Qν, wν) since it consists of a brick
vector and two rays extending to infinity, as illustrated by the red region in Figure 3.14. For
I4 = {c, g, h, i}, the modified brick polyhedron B I4(Qν, wν) is a slice of the ν-brick polyhedron
B(Qν, wν), as illustrated by the green region in Figure 3.14.

a d
b e g i
c f h j

Figure 3.13: Grid for labeling of SC(Qν, wν) for ν = ENEEN.

Figure 3.14: B(Qν, wν) for ν = ENEEN

Remark 3.22

Note that not every modified brick polyhedron B I(Q, w) is a face of the brick polyhedron B(Q, w),
as shown in Example 3.21.

Moving forward, our objective is to establish the following:

Theorem 3.23

Every face F of the brick polyhedron B(Q, w) is of the form B I(Q, w) for some face I ∈ SC(Q, w).

Remark 3.24

This result was essentially proved in [JS23] using the description of faces via linear functionals,
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see [JS23, Remark 4.11] and [JS23, Corollary3.24 and Proposition 4.6]. Our approach here is a bit
different.

It is essential to develop certain ideas before we can prove Theorem 3.23.

3.4.1.1 The minimal element of a face

First, we demonstrate that each face F of the brick polyhedron B(Q, w) has a minimal element.
To accomplish this, let η ∈ V be a vector such that ⟨η, α⟩ > 0 for α ∈ Φ+ and ⟨η, α⟩ < 0 for
α ∈ Φ−. This vector η can be regarded as a linear functional η : V → R defined by x 7→ ⟨η, β⟩, as
established in Remark 1.4. Note η(α) ̸= 0 for all α ∈ Φ.

Lemma. 3.25: Minimal element of a face

For every face F of the brick polyhedron B(Q, w), there exists a unique vertex b(JF,min) ∈ F,
corresponding to some facet JF,min, that minimizes the linear functional η.

Proof. Let Fη be the sub-face of F that minimizes the linear functional η. We aim to demonstrate
that Fη consists of only one point. Otherwise, Fη would contain a (possibly unbounded) edge in
the direction of α for some α ∈ Φ.

Let p and q be two points on this edge such that q = p + α for some α ∈ Φ. Then, ⟨η, q⟩ =

⟨η, p⟩ + ⟨η, α⟩. Since p and q are minimizing η, it follows that ⟨η, α⟩ = 0, which contradicts to
Remark 1.4, which states that ⟨η, α⟩ ̸= 0 for all α ∈ Φ.

3.4.1.2 Characterization of the vertices in a face F

In this chapter, we explore how reflections can help characterize the vertices within a face F of
the brick polyhedron B(Q, w). This method offers a straightforward yet powerful way to under-
stand the structure and properties of these vertices. The following Observation 3.26 is a direct
consequence of the definition rα(β) = β− 2 ⟨α,β⟩

⟨α,α⟩α.

Observation 3.26

If α, β ∈ U, where U be a finite-dimensional subspace of a vector space, then rα(β) ∈ U. If α ∈ U
and β ̸∈ U, then rα(β) ̸∈ U.

Definition 3.27

Let F be a face in a finite dimensional subspace. The affine vector space ṼF is the smallest vector
space containing F, while the vector space VF is obtained by shifting F to the origin.

Lemma. 3.28: Characterization of the vertices in a face F

Let F be a face of the brick polyhedron B(Q, w). Suppose J is a facet of the subword complex
SC(Q, w) such that the brick vector b(J) belongs to F. Define JF := {j ∈ J : r(J, j) ∈ VF} as the
subset of J consisting of indices whose corresponding roots lie in the affine vector space ṼF, and
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let I = J \ JF. For any facet J′ ∈ SC(Q, w), we have the following equivalence:

I ⊆ J′ if and only if b(J′) ∈ ṼF.

Proof. ⇒: Assume I ⊆ J′. Note that there exists a sequence of flips J = J0
j0→ J1

j1→ . . .
jℓ−1→ Jℓ = J′

that never flips an element in I. This is due to the connectedness of the flip graph of a subword
complex, especially for SC(Q[m]\I , w), where Q is of length m.

Now the following holds:

1) r(Jk, j) ∈ VF if j ∈ Jk \ I (Case 1 and Case 2)

2) r(Jk, i) /∈ VF if i ∈ I (Case 3)

To prove this, it is enough to examine only one flip. Without loss of generality, take the first flip.
Let J1 = J0 \ {j0} ∪ {j′0}. Using Lemma 2.11, we proceed as follows:

Case 1: Let i ∈ I, then

r(J1, i) =

{
sβ(r(J0, i)) if min(i, j0) < k ≤ max(i, j0)

r(J0, i) otherwise

for β :=r(J0, j0). Since β ∈ VF and r(J0, i) /∈ VF Observation 3.26 implies r(J1, i) /∈ VF.

Case 2: Let j ∈ J0 ∩ J1, then

r(J1, j) =

{
sβ(r(J0, j)) if min(j, j0) < k ≤ max(j, j0)

r(J0, j) otherwise

holds. By Observation 3.26 in either case r(J1, j) ∈ VF.

Case 3: Let j = j′0, then

r(J1, j′0) =

{
sβ(r(J0, j′0)) if min(j0, j′0) < k ≤ max(j0, j′0)

r(J0, j′0) otherwise

but r(J0, j′0) = ±r(J0, j0) ∈ VF, hence r(J1, j′0) ∈ VF.

Therefore, 1) and 2) hold. Now, note that b(J1) = b(J0) + c0,1r(J0, j0), for some constant c0,1.
Since r(J0, j0) ∈ VF, we have b(J1) ∈ ṼF. Applying the same argument several times yields
b(Jℓ) = b(J′) ∈ ṼF.

⇐: Let q = b(J′) ∈ ṼF and b(JF,min) be the minimal element by Lemma 3.25. We will show that J′

can be connected to Jmin by a sequence of decreasing flips J′ = J′0
j′0→ J′1

j′1→ . . .
j′ℓ−1→ J′ℓ′ = Jmin, with

r(J′k, j′k) ∈ VF for all 1 ≤ k < ℓ′. To demonstrate this, we provide a construction of a flip-sequence.
Let pmin := b(JF,min). By the local cone property (Theorem 2.21), pmin − q is equal to

∑
j′∈J′

aj′r(J′, j′) = b(JF,min)− b(J′) ∈ VF,
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where aj′ ≥ 0 for all j ∈ J′. Let ηF be a linear functional that is minimal at the face F. Taking the
inner product with ηF, we obtain:

0 = ∑
j′∈J′

aj′⟨r(J′, j′), ηF⟩

but ⟨r(J′, j′), ηF⟩ = 0 if r(J′, j′) ∈ VF and ⟨r(J′, j′), ηF⟩ > 0 otherwise. So, aj′ = 0 if r(J′, j′) ̸∈ VF.
Therefore,

b(JF,min)− b(J) = ∑
j′∈J′

r(J′ ,j′)∈VF

aj′r(J′, j′).

ṼF

J

JF,min

ηFF

Figure 3.15: Normal vector ηF.

Since JF,min minimizes the linear functional η, the inner product with η satisfies

⟨η, b(JF,min)− b(J)⟩ < 0.

If all r(J′, j′) ∈ R(J) ∩ VF were positive roots, by Remark 2.9, ⟨η, b(JF,min) − b(J)⟩ > 0 would
hold. Thus, at least one r(J′, j′) must be a negative root, r(J′, j′) ∈ Φ− ∩ VF. We then perform a
decreasing flip along j′ to obtain J′1 and repeat this process until reaching the minimal element

of the face. Therefore, we can find a sequence J′
j′0→ J′1

j′1→ . . .
j′
ℓ′−1→ JF,min such that r(J′k, j′k) ∈ VF

for 1 ≤ k < ℓ′. Similarly, going through JF,min, we can find a sequence J = J1
j0→ J1

j1→ . . .
jℓ−1→ Jℓ =

J′ such that r(Jk, jk) ∈ VF for 1 ≤ k < ℓ. By properties 1) and 2), we are never flipping an element
in I such that jk /∈ I. Therefore, I ⊆ J holds. Note that since r(J′, j′) ∈ Φ−, then j′ ∈ J′ is indeed a
flippable element.

3.4.1.3 Proof of Theorem 3.23

Theorem 3.23 follows from the following Proposition. Compare with [JS23, Proposition 4.6 and
Remark 4.11].
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Proposition. 3.29

Consider a face F of the brick polyhedron B(Q, w), let J ∈ SC(Q, w) be a facet such that the brick
vector b(J) ∈ F and JF := {j ∈ J : r(J, j) ∈ VF}. Then, the following hold:

1) for I = J \ JF, we have F = B I(Q, w) and

2) for J′ ∈ SC(Q, w) a facet, we have I ⊆ J′ if and only if b(J′) ∈ F.

Proof. By Lemma 3.28, I ⊆ J′ if and only if b(J′) ∈ F, so 2) follows. The vertices of F are then b(J′)
for I ⊆ J′, and the local cone at b(J′) inside F is the intersection of the local cone of b(J′) in the
brick polyhedron B(Q, w) with ṼF. This is precisely the local cone at b(J′) in the modified brick
polyhedron B I(Q, w). Thus, F = B I(Q, w).

3.4.2 Some faces of ν-brick polyhedra

In this subsection, we will outline some conditions under which the modified brick polyhedron
B I(Qν, wν) is a face of the ν-brick polyhedron B(Qν, wν). The following notation will be used
throughout our discussion.

Definition 3.30

For a ν-tree T we denote by βt the root βt =r(T, t) = ei − ej, for t ∈ T. We label the corresponding
node t ∈ T by ij for convenience and define the cone C(T) := {x ∈ V | ⟨x, βt⟩ > 0 for all t ∈ T}.
Given a subset of nodes M ⊆ T we denote the ν-tree with M marked by TM and define C(TM) :=
{x ∈ V | ⟨x, βt⟩ > 0 for all t ∈ T \ M and ⟨x, βt⟩ = 0 for all t ∈ M}. An example is shown in
Figure 3.16.

T
12

23

34 45

35 56

C(T) := {x ∈ V | x1 > x2 > x3 > x4 > x5 > x6}

TM

12

23

34 45

35 56

C(TM) := {x ∈ V | x1 > x2 = x3 = x4 > x5 > x6}

Figure 3.16: Left:ν-tree T, Right:ν-tree with marked points TM.

Remark 3.31

The result [Ber+23, Theorem 4.17] asserts that all facets of the subword complex associated with
the ν-Tamari lattice are acyclic. This condition is equivalent to the contact graph of the corre-
sponding sorting network (or pipe dream) being acyclic, which in turn is equivalent to the sys-
tem of inequalities having a solution. Therefore, the cone C(T) is non-empty if and only if the
corresponding contact graph is acyclic, a property that holds for ν-trees.

Lemma. 3.32

Let I = T \ A, where T is a ν-tree and A ⊆ T a subset of ascents and define βt :=r(T, t), t ∈ T.
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There exists a linear functional f such that

f (βa) = 0 for a ∈ A and f (βt) > 0 for t ∈ T \ A. (3.1)

The proof idea of Lemma 3.32 relies on Definition 3.30 and is exemplified in Example 3.33.

Example 3.33

Consider ν = EEN. All three ν-trees T, T′ and T′′ are shown in Figure 3.17.

T12

23 34 45

x1 > x2 > x3> x4 > x5

T′13 32

24 45

x1 > x3 > x2> x4 > x5

T′′13 34 42

25

x1 > x3 > x4 > x2 > x5

Figure 3.17: ν-trees for ν = EEN and defining inequalities for C(T), C(T′), C(T′′).

We are going to find a vector f ∈ R5 satisfying (3.1) for the ν-tree T and the only ascent marked,
illustrated in Figure 3.19. Therefore, we need to solve ⟨ f , e2 − e3⟩ = 0 and ⟨ f , β⟩ > 0 for β ∈
R(T) \ {e2 − e3}. In particular, f must satisfy x1 > x2 = x3 > x4 > x5. Rotating the only ascent
in T gives us the ν-tree T′. Considering the cones C(T) and C(T′), we observe that these cones
are separated by {x ∈ R5 | x1 > x2 = x3 > x4 > x5}, as illustrated schematically in Figure 3.18.
A point p ∈ C(T) satisfies p2 > p3, and respectively p′ ∈ C(T′) satisfies p′3 > p′2, and both p and
p′ satisfy all constraints except x2 > x3, respectively x2 < x3. As illustrated in Figure 3.18, these
two cones are separated by C = {x ∈ R5 | x1 > x2 = x3 > x4 > x5}. Therefore, along the line
segment connecting p and p′, there exists a point that satisfies x1 > x2 = x3 > x4 > x5.

b(T)

b(T′)

b(T′′)
e2 − e4 ∈ A

e2 − e3

e3 − e4

f ′
f

f ′′

f ′

C

f ′′

p

p′
q(r)

C(T)

C(T′)

Figure 3.18: Left: Brick polyhedron for ν = EEN, Right: Cones C(T) and C(T′).

Firstly, define the cone D̄ as the set of points satisfying the inequalities defining both C(T) and
C(T′), but removing the inequalities x2 > x3 and x3 > x2. In symbols:

D̄ := {x ∈ V | x1 > x2, x3 > x4 > x5}.

Since by definition C(T) ⊆ D̄ and C(T′) ⊆ D̄ hold, we have for p = (p1, . . . , p5) ∈ C(T) and
p′ = (p′1, . . . , p′5) ∈ C(T′), p, p′ ∈ D̄. Defining q(t) := (1 − t)p + tp′ for t ∈ [0, 1] gives us
q2(0) = p2 > p3 = q3(0) and q2(1) = p′2 < p′3 = q3(1). Therefore, there exists r ∈ [0, 1] such that
q2(r) = q3(r). Since all other inequalities of C hold, f = q(r) ∈ C is a solution.

Proof.[Lemma 3.32] We proceed by induction on the number of marked ascents k := |A|. The
statement holds for k = 0 by [Ber+23, Theorem 4.17], see Remark 3.31. Suppose k ≥ 1 and that
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12

23 34 45

C(TM) := {x ∈ R5 | x1 > x2 = x3> x4 > x5}

13 32

24 45

C(T′M′ ) := {x ∈ R5 | x1 > x3 = x2> x4 > x5}

Figure 3.19: Marked ν-trees TM and T′M′ for ν = EEN.

the statement holds for k− 1. Let I = T \ A, where T is a ν-tree and A ⊆ T is a subset of ascents
with |A| = k, and let βt =r(T, t), t ∈ T as above.

Let ā ∈ A be the north-east most node in A (i.e. no other node in A is located north-east of ā),
and let T′ = T \ {ā} ∪ {ā′} be the ν-tree obtained from T by rotating ā. Let i1, i2, i3, i4 be the pipes

i2

i1

i3 i4
T

/∈ A

ā /∈ A i2

i1

i3 i4
T′

/∈ A ā′

/∈ A

Figure 3.20: Structure of ν-trees T and T′.

passing through the nodes of T involved in the rotation of ā ∈ T, as illustrated in Figure 3.20. Let
Ā = A \ {ā}, then Ā ⊆ T is a subset of ascents of T with |Ā| = k− 1 and Ā ⊆ T′ is also a subset of
ascents of T′. By induction hypothesis, the inequalities and equalities defining C(TĀ) and C(T′Ā)
have solutions. Let

p = (p1, ..., pℓ) ∈ C(TĀ),

p′ = (p′1, ..., p′ℓ′) ∈ C(TĀ).

Note that all defining inequalities and equalities defining C(TĀ) and C(T′Ā) coincide, except for
three:

xi1 > xi2 > xi3 > xi4 in C(TĀ),

xi1 > xi3 > xi2 > xi4 in C(T′Ā).

On the other hand, the defining inequalities and equalities for C(TA) are all other defining in-
equalities for C(TĀ) and C(T′Ā) together with

xi1 > xi2 = xi3 > xi4 in C(TĀ).

Let D̄ be defined by the other inequalities and equalities together with

xi1 > xi2 , xi3 > xi4 .
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Note that we do not put any condition between xi2 and xi3 in D̄, while

xi2 > xi3 in C(TĀ),

xi3 > xi2 in C(T′Ā),

xi2 = xi3 in C(TA).

We want to show that C(TA) ̸= ∅. For this, note that C(TĀ) ⊆ D̄ and C(T′Ā) ⊆ D̄. Therefore

q(t) = (1− t)p + tp′ ∈ D̄ for all t ∈ [0, 1].

Since

qi2(0) = pi2 > pi3 = qi3(0) and qi2(1) = p′i2 < p′i3 = qi3(1).

Then, there must be some r ∈ [0, 1] such that

qi2(r) = qi3(r).

Since all other defining inequalities of C(TA) are satisfied for q(r), then

q(r) ∈ C(TA).

Thus, C(TA) has a solution as wanted.

Remark 3.34

Note that Lemma 3.32 is not necessarily true if A ⊆ T is not a subset of ascents, as demonstrated
in Example 3.35.

Example 3.35

Let us continue Example 3.21 and consider the marked ν-trees TM2 , TM3 , and T′M4
as illustrated in

Figure 3.21 and let I2 = T \M2, I3 = T \M3, I4 = T′ \M4.

For TM2 , we obtain the conditions x1 > x2 = x3 = x4 > x5 > x6, which has a solution, and the
modified brick polyhedron B I2(Qν, wν) is a face. For TM3 , we obtain the conditions x1 > x2 >

x3 > x4 = x5 > x6 with x3 = x5, which has no solution, and the modified brick polyhedron
B I3(Qν, wν) is not a face. For T′M4

, we obtain the conditions x1 > x3 = x4 = x5 and x3 > x2 >

x5 > x6, which has no solution, and the modified brick polyhedron B I4(Qν, wν) is not a face.

TM2

12

23

34 45

35 56
TM3

12

23

34 45

35 56
T′M4

13 32

34 45

25 56

Figure 3.21: Marked ν-trees for ν = ENEEN.

If we only replace inequalities by equalities for nodes corresponding to ascents, then there a solu-
tion and the modified brick polyhedron is face of the brick polyhedron:
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Proposition. 3.36

Let I = T \ A, where T is a ν-tree and A ⊆ T a subset of ascents. Then the modified brick
polyhedron B I(Qν, wν) is a face of the ν-brick polyhedron B(Qν, wν).

Proof. Take f as in Lemma 3.32 and let F be the face of the brick polyhedron B(Qν, wν) minimiz-
ing f . Since for every ν-tree T̃ we have

b(T̃)− b(T) = ∑
t∈T

ctr(T, t) for some ct ≥ 0.

Then f (b(T̃)) ≥ f (b(T)), with equality satisfied when b(T̃)− b(T) ∈ VF, the vector space sanned
by {r(T, a) | a ∈ A}. In particular b(T) ∈ F and by Proposition 3.29 2)

b(T̃) ∈ F ⇐⇒ T \ A = I ⊆ T̃.

Now F = B(Qν, wν) ∩ ṼF, and the local cone at point b(T̃) inside F is the intersection of the local
cone of b(T̃) in B(Qν, wν) with ṼF. This is equal to the local cone of b(T̃) in B I(Qν, wν). Therefore,
F = B I(Qν, wν).

3.4.3 Bounded faces of ν-brick polyhedra

The goal of this section is to show that the faces in Proposition 3.36 are exactly the bounded faces
of the ν-brick polyhedron (Corollary 3.45 and Corollary 3.47).

3.4.3.1 The spherical and root independent property

We denote by Qν,I the word obtained from Qν by deleting the letters with positions in I, and con-
sider the corresponding subword complex SC(Qν,I , wν). Note that SC(Qν,I , wν) ̸= SC I(Qν, wν),
since every element in SC I(Qν, wν) is of the form I ∪ J for J ∈ SC(Qν,I , wν). The purpose of
this section is to show that SC(Qν,I , wν) is spherical and root independent. As a consequence,
SC(Qν,I , wν) is realized as the polar of the brick polytope B(Qν,I , wν), which is combinatorially
isomorphic to B I(Qν, wν). Before doing this, we need some preliminaries.

Theorem 3.37: [PS15]

If SC(Q, w◦) is root independent, then it is realized by the polar of the brick polytope B(Q, w◦).

Lemma. 3.38: [Ces22], [CLS14]

Every spherical subword complex SC(Q, w) is isomorphic to a (spherical) subword complex of
the form SC(Q̃, w◦).

Remark 3.39: Completing

For any spherical subword complex SC(Q, w), there exists a word w′, such that ww′ = w◦ with
ℓ(w) + ℓ(w′) = ℓ(w◦), by completing w to w◦. By defining Q′ = Qw′, the subword complexes
SC(Q, w) and SC(Q′, w◦) are isomorphic and the brick polytope B(Q, w) is just a translation
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of B(Q′, w◦).

The following result is assumed/mentioned in [PS15] but not explicitly written down. We include
it here with proof for completeness.

Corollary 3.40

Every spherical, root independent subword complex SC(Q, w), where w is not necessary equal to
w◦, is realized by the polar of the brick polytope B(Q, w).

Proof. By Lemma 3.38, SC(Q, w) ∼= SC(Q′, w◦) by completing, as in Remark 3.39 the facets and
root configurations do not change, so SC(Q′, w◦) is root independent and we can apply Theo-
rem 3.37. Moreover the brick polytope of SC(Q′, w◦) is a translation of the brick polytope of
SC(Q, w), so the Corollary holds.

Now, our goal is to show that SC(Qν,I , wν) is spherical and root independent for interior faces I.

Lemma. 3.41: Spherical

For an interior face I ∈ SC(Qν, wν), the subword complex SC(QI
ν, wν) is realizable as the bound-

ary of a polytope, hence it is spherical.

Proof. If I is an interior face then the set of faces {J ∈ SC(Qν, wν) : I ⊆ J}, ordered by reverse
containment is the face poset of the face of the ν-associahedron corresponding to I. But the reverse
containment poset on {J ∈ SC(Qν, wν) : I ⊆ J} is isomorphic to the reverse cotainment poset
faces of SC(Qν,I , wν). And by [CPS19, Proposition 5.16] the cells of the ν-associahedron are known
to be products of classical associahedra, in particular they are polytopes. And SC(Qν,I , wν) can
be realized as the boundary complex of the polar of the polytope of the corresponding cell. Hence
SC(Qν,I , wν) is polytopal, hence spherical.

Remark 3.42

Observe, a single pipeline cannot have more than two turns inside the Ferrer’s diagram Fν. Oth-
erwise, there would exist at least three vertices, as shown in Figure 3.22 (Left) in the ν-tree, but
then the two red points would be ν-incompatible, which contradicts the definition of a ν-tree as a
maximal set of ν-compatible elements.

Lemma. 3.43: Root Independent

Let I be an interior face of SC(Qν, wν), T a ν-tree and A ⊆ T a subset of ascents of T such that
I = T \ A.

1) {r(T, a) : a ∈ A} is linearly independent.

2) SC(Qν,I , wν) is root independent.

Proof.

To show 1), we proceed by induction on n = |A|. The statement is clear for n = 1. Suppose that
n ≥ 2 and that the statement holds for n− 1.
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j

i

Figure 3.22: Left: A pseudoline with 3 turns exhibiting red vertices in ν-incompatible position,
Right: A pseudoline with 2 turns showing all vertices in ν-compatible position.

Let a2 ∈ A such that r(T, a2) = ei − ej with the smallest possible i. Since a2 ∈ A is an ascent, there
is a node to the North and one to the East. By Remark 3.42, there cannot be a node to the left of
a2, as illustrated in Figure 3.23 (Right). Furthermore, since i is chosen to be minimal, a2 is unique.
Additionally, there can be no vertex on the line segment between the vertices a2 and a3, following
the same argument.

i

a2 a3

a1

Figure 3.23: No node in gray area.

Now, suppose there exists a linear combination such that ∑a∈A carI(a) = 0. Since rI(a2) = ei − ej

with i being minimal, there is no summand of the form ek − ei, hence ca2 = 0. Therfore ∑ carI(a)
is a sum of n− 1 summands and by incuction hypothesis, we obtain ca = 0 for all a ∈ A. So 1)
follows.

To prove 2) it is enough to find a facet of SC(Qν,I , wν) whose root configuration is linearly inde-
pendent. Taking the facet A ⊆ SC(Qν,I , wν) and applying 1) conclude 2).

Corollary 3.44

The subword complex SC(Qν,I , wν) is realized by the polar of the brick polytope B(Qν,I , wν). In
particular B(Qν,I , wν) is a bounded polytope.

Proof. By Lemma 3.41 and Lemma 3.43, SC(Qν,I , wν) is spherical and root independent. Therefore,
it is realized by the polar of B(Qν,I , wν) by Corollary 3.40.
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Corollary 3.45

Let T a ν-tree, A ⊆ T be a subset of ascents, and I = T \ A be the corresponding interior face of
SC(Qν, wν). Then, B I(Qν, wν) is a bounded face of the ν-brick polyhedron. Moreover,

B I(Qν, wν) = conv{b(J) | I ⊆ J a facet of SC(Qν, wν)}

and its face poset is the reverse containment poset on the set {J ∈ SC(Qν, wν) : I ⊆ J}.

Proof. By [JS23, Remark 4.11] the brick polytope B(Qν,I , wν) and the brick polyhedron B I(Qν, wν)

share the following properties:

1) Their vertices are in correspondence (J ∈ SC(Qν,I , wν)⇐⇒ I ∪ J ∈ SC I(Qν, wν)).

2) Their edge directions are the same, although they may have different lengths (roots in the
root configuration and modified root configuration are the same).

3) Their local cones at the vertices are the same.

In particular, B(Qν,I , wν) andB I(Qν, wν) are combinatorially isomorphic, and in particular bounded
(Corollary 3.44). Since SC(Qν,I , wν) is realized by the polar of B(Qν,I , wν) by Corollary 3.44, trans-
forming the facets J ∈ SC(Qν,I , wν) to facets I ∪ J ∈ SC I(Qν, wν) we obtain:

B I(Qν, wν) = conv{b(J) | I ⊆ J a facet of SC(Qν, wν)}.

Also, since the face poset of B(Qν,I , wν) is the reverse containing poset of faces J ∈ SC(Qν,I , wν),
then adding I to each face we obtain that the face poset of B I(Qν, wν) is the reverse containment
poset on the set {J′ ∈ SC(Qν, wν) | I ⊆ J′} as desired.

3.4.3.2 Unique representation of bounded faces

Lemma. 3.46

Let T be a ν-tree, A ⊆ T a subset of ascents, I = T \ A and F = B I(Qν, wν) be the corresponding
bounded face of the ν-brick polyhedron B(Qν, wν). Then

1) T = JF,min and A = JF
F,min.

2) If F = B I′(Qν, wν) for I′ = T′ \ A′ where T′ is a ν-tree and A′ ⊆ T′ a subset of ascents, then
T = T′, A = A′ and I = I′.

Proof. 1) JF,min is the unique facet I ⊆ J such that j ∈ J \ I is increasingly flippable. Since T satisfies
this property, then T = JF,min. Moreover, JF

F,min = JF,min \ I = T \ A.

2) follows from 1).
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Corollary 3.47

The bounded faces of the ν-brick polyhedron B(Qν, wν) are exactly, the B I(Qν, wν), for I = T \ A,
T a ν-tree and A ⊆ T a subset of ascents.

Proof. By Corollary 3.45, if T is a ν-tree, A ⊆ T a subset of ascents, and I = T \ A then B I(Qν, wν) is
a bounded face of B(Qν, wν). Now let F be a bounded face of B(Qν, wν). Now let F be a bounded
face of B(Qν, wν), T = JF,min and A = JF

F,min. Since F is bounded then every element of A is
flippable in T, otherwise F would contain an infinite ray. Moreover, every a ∈ A is increasingly
flippable in T, because T is the minimal element of the face. The face F = B I(Qν, wν) as desired.

Question 3.48

Can we characterize the sets I for which B I(Qν, wν) is a face of B(Qν, wν)? Corollary 3.47 gives
an answer for bounded faces but we do not know an answer in general. See Example 3.21.

3.4.4 The poset of bounded faces of ν-brick polyhedra

In this section, we will demonstrate that the poset of bounded faces of the ν-brick polyhedron is
anti-isomorphic to the poset of interior faces of the ν-subword complex, as stated in Theorem 3.18.

Proof.[Theorem 3.18] By Corollary 3.47, the bounded faces of B(Qν, wν) are exactly the B I(Qν, wν)

for the interior face I = T \ A for some ν-tree T and A ⊆ T a subset of ascents. We are going to
show: If I1, I2 are interior faces of SC(Qν, wν) then

I1 ⊆ I2 ⇐⇒ B(Qν,I1 , wν) ⊇ B(Qν,I2 , wν).

Corollary 3.45 implies that if I is an interior face, then

B I(Qν, wν) = conv{b(J) | I ⊆ J facet}.

Therefore, if I1 ⊆ I2 then B I2(Qν, wν) ⊆ B I1(Qν, wν). Indeed all faces of B I1(Qν, wν) are of the
form B J(Qν, wν) for I1 ⊆ J.

We are labelling faces of the brick polyhedron by B J(Qν, wν), where J = T \ A, such a labelling is
unique by Lemma 3.46. Now take a faceB I2(Qν, wν) ofB I1(Qν, wν) thenB I2(Qν, wν) = B J(Qν, wν)

for some I1 ⊆ J. By uniqueness I2 = J ⇒ I1 ⊆ I2.

Corollary 3.49

The complex of bounded faces of the ν-brick polyhedron is a realization of the ν-associahedron.

3.5 A projection of brick polyhedra

In this section, we investigate projections of brick polyhedra. Our focus includes providing a
proof for the special case where ν has no two consecutive North steps, and we illustrate the gen-
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eral case through two examples. Throughout this section, we use the notation [N] := {1, . . . , N}
for N ∈N.

3.5.1 The maximal polytopal part

Since the dimension of the ν-brick polyhedron can be higher than the dimension of the maximal
polytopal part, we apply a projection π. To begin our study, we focus on understanding the
dimension of the maximal polytopal part.

Definition 3.50: Maximal Polytopal Part of the ν-Brick Polyhedron

The dimension of the maximal polytopal part of the ν-brick polyhedron is given by the size of
the the biggest stair case weakly above ν. In particular, the dimension d of the maximal polytopal
part is:

d := max{# valleys(u)| u is a path weakly above ν inside Fν}.

For a path ν of length n, we associate coordinates to all lattice points in the Ferrers diagram Fν by
giving the top-left point the coordinate (0, 0). Moving one step to the right (respectively down)
increases the first (respectively second) coordinate by one. This is illustrated in Figure 3.25. For
each point p = (p1, p2) ∈ Aν, we define χ(p) := p1 + p2 and the k-th diagonal level Mk = {p ∈
Aν : χ(p) = k} for all 1 ≤ k ≤ n.

Definition 3.51

For a finite path ν, with associated networkNν having N levels, let T be the ν-tree corresponding
to the anti-greedy facet. We label the levels from top to bottom by 0, 1, ..., N − 1 and denote the
corresponding vertex in the ν-brick polyhedron by x = b(T) = (x0, ..., xN−1). Since x0 and xN−1

are constant for every ν-tree, we omit them and write just x = b(T) = (x1, ..., xN−2). Since the
sum of the coordinates is constant, then dimB(Qν, wν) = N − 3. Let Σ ⊆ [N] such that Mk for
k ∈ Σ represent the diagonal levels where nodes t1, . . . , tℓ ∈ T exist between consecutive East
or North steps. Let S ⊆ Σ be a subset containing exactly one node of each diagonal level Mk

for k ∈ Σ.

Define Γν := {r(T, t) | t ∈ S} ⊆ E+(wν, Dem(Qν)). Since t ∈ S is non-flippable in T then
r(T, t) ∈ E+(wν, Dem(Qν). Moreover, denote the cardinality of Γν by γ := |Γν|. An example
where Γν is unique is shown in Figure 3.24. Moreover, Γν implies a partition of [N] by grouping
all indices i, j that appear in some element ei − ej ∈ Γν.

e4 − e5

e3 − e6

e2 − e7
1

2

3

4

5

6

7

Figure 3.24: Γν for ν = EENEENEEN with partition {1}, {2, 7}, {3, 6}, {4, 5}, {8}.



42

Lemma. 3.52

The dimension of the maximal polytopal part d of the ν-brick polyhedron is given by

d = N − 3− γ, (3.2)

where N is the number of levels ofNν, and γ is the number of lines through two consecutive East
or North steps.

Proof. This is easily seen in Figure 3.25. The number of diagonal levels going through the interior
of at least one box in Fν is N − 3. We find the largest stair case weakly above ν by increasing it
from (0, 0) until we touch ν. From this point, we substract the number of diagonal levels, getting
d = N − 3− γ.

Γν

(0, 0) (1, 0) (2, 0)

(0, 1)

M7 M8 M9

Figure 3.25: Biggest stair case (blue) and a choice of nodes for Γν (red).

Example 3.53

For ν = EEENNN, we have N = 8 levels and |Γν| = γ = 2. By Lemma 3.52, we obtain d =

N − 3− γ = 8− 3− 2 = 3. In Figure 3.26, we see a clear comparison of the relevant points for
counting N − 3, and the cardinality of Γν.

N − 3 | Γν |

Figure 3.26: Relevant points for Left: N − 3, Right: Γν for ν = EEENNN.

3.5.2 A projection in a special case

In this subsection, we consider the special case where ν has no two consecutive North steps. This
assumption allows us to offer a nice projection. We will denote the dimension of the maximal
polytopal part as d and the number of levels ofNν as N. As mentioned above we take x = b(T) =



43

(x1, ..., xN−2) by omitting the first and last coordinates x0 and xN−1 (which are constant). The set
S in this case consists of all the points between two consecutive East steps in ν.

Remark 3.54

We denote the sum of the coordinates indexed by i ∈ I as xI . In particular, we denote the sum of
coordinates xik , 1 ≤ k ≤ j, as xi1,...,ij .

Definition 3.55: Grouping

Let Mi for all i = 1, ..., d + 1, be the partition of coordinates given by Γν. For this case, we have
Mi = {i} union the diagonal levels plus 1 of s ∈ S that are in the i − 1 horizontal line from
top to bottom. We define the projection π1 : RN−2 −→ Rd+1, by sending each element x =

(x1, ..., xN−2) ∈ RN−2 to (xM1 , ..., xMd).

Definition 3.56: Projection

Since the sum of all brick vectors is constant, we apply a second projection π2 : Rd+1 → Rd,
defined as (xM1 , ..., xMd+1) 7→ (y1, ..., yd) = (xM1 , xM1 + xM2 , ..., xM1 + ... + xMd). We define π :
RN−2 → Rd as π = π2 ◦ π1.

Example 3.57

For ν = EENEENEEN, we have N − 2 = 7 and Γν = {e4 − e5, e3 − e6, e2 − e7}, as illustrated in
Figure 3.27. Then M1 = {1}, M2 = {2, 7}, M3 = {3, 6} and M4 = {4, 5}.

(x1, x2, x3, x4, x5, x6, x7)
π1−→ (x1, x2 + x7, x3 + x6, x4 + x5)

π2−→ (x1, x1 + x2 + x7, x1 + x2 + x3 + x6 + x7)

= (x1, x1,2,7, x1,2,3,6,7)

e4 − e5

e3 − e6

e2 − e7
1

2

3

4

5

6

7

Figure 3.27: Coordinate grouping for projection (special case) for ν = EENEENEEN.

Lemma. 3.58

If ν has no two consecutive North steps the first yk in which xi appears is yi for all 1 ≤ i ≤ d.
Moreover xi appears in yi, yi+1, ..., yd.

Proof. By the definition of π1, and since i ∈ Mi, it follows that xi appears for the first time in yi ,
and appears in all yi afterwards.
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Lemma. 3.59: Projection Special Case

In the case where ν has no two consecutive North steps, the projection π of the ν-brick polyhedron
B(Qν, wν) realizes the ν-associahedron. Moreover, this realization coincides with the canonical
realization of the ν-associahedron up to translation.

Proof. Observe that the dimension of the maximal polytopal part and the projected points align
precisely. Let T be a ν-tree and T′ = T \ {b} ∪ {b′} be a rotation as in Figure 3.28.

i

j

k

a

b c
areai,j

A1

T

i

j

k

a b′

c
areai,j

A1

T′

Figure 3.28: Structure of ν-trees T and T′.

Let c(T) = (c1, ..., cd) and c(T′) = (c′1, ..., c′d) be the coordinates of the ν-trees T and T′ in the
canonical realization. We need to show

c(T)− c(T′) = π(b(T′))− π(b(T)).

The translation vector from the canonical realization to the projection is then π(b(T0)), where T0

is the minimal ν-tree. Suppose that node b ∈ T touches pseudolines i and j, and let k be the
lower horizontal level of a descendant node of b in the tree T, see Figure 3.28. In the canonical
realization, we have

c′ℓ =

cℓ + areai,j for i ≤ ℓ ≤ k

cℓ otherwise
.

We need to show that this formula holds for the projected points. Let

y = (y1, ..., yd) = π(b(T)), y′ = (y1′ , ..., yd′) = π(b(T′)),

x = (x1, ..., xN−2) = b(T), x′ = (x1′ , ..., x′N−2) = b(T′).

Then x′i = xi + areai,j, x′j = xj − areai,j and x′ℓ = xℓ otherwise. This is because in the ν-brick poly-
hedron xi is minus the number ob bricks below pseudoline i. When we make the flip/rotation,
this number of bricks is reduced by areai,j. Similarly, the number of bricks below pseudoline j in
creases by areai,j. The number of bricks below and other pseudolines remains constant.

Now it is not hard to see that j ∈ Mk+1. If there is a node below b in T then j = k + 1 ∈ Mk+1, if
not then j is the diagonal level plus 1 of the point s ∈ S that is in the same column as b and in the
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k-th horizontal line, so j ∈ Mk+1. Therefore, since

yℓ = (xM1 + ... + xMℓ
) and y′ℓ = (x′M1

+ ... + x′Mℓ
)

then

y′ℓ =

yℓ + areai,j for i ≤ ℓ ≤ k

yℓ otherwise
.

This finishes the proof.

Example 3.60

Consider the path ν = EENEEN and use the labeling shown in Figure 3.29.

a d
b e

g
j

c f
h

ki
l
m

Figure 3.29: Grid for labeling of SC(Qν, wν) for ν = EENEEN.

We obtain the ν-Tamari lattice and rotation lattice shown in Figure 3.30. Here is a list of all facets:

I1 = {a, b, c, d, g, j, l} I2 = {a, c, d, g, j, k, l} I3 = {a, c, d, g, k, l, m} I4 = {c, d, f , g, k, l, m}

I5 = {c, f , g, i, k, l, m} I6 = {b, c, d, e, g, j, l} I7 = {b, c, e, g, h, j, l} I8 = {c, e, f , g, h, j, l}

I9 = {c, f , g, h, i, j, l} I10 = {c, f , g, i, j, k, l} I11 = {c, d, e, f , g, j, l} I12 = {c, d, f , g, j, k, l}

1 2 3

4

5

6

7

8

9 10

11 12

ν-Tamari lattice

1 2 3

4

5

6

7

8

9 10

11 12

Rotation lattice of ν-trees

Figure 3.30: Example ν=EENEEN.
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The corresponding brick vectors (omitting the first and last coordinate, which are constant) are:

B(I1) = −(12, 8, 8, 5, 1)⊤ B(I2) = −(9, 11, 8, 5, 1)⊤ B(I3) = −(8, 11, 8, 5, 2)⊤

B(I4) = −(8, 9, 10, 5, 2)⊤ B(I5) = −(8, 7, 10, 7, 2)⊤ B(I6) = −(12, 7, 9, 5, 1)⊤

B(I7) = −(12, 6, 9, 6, 1)⊤ B(I8) = −(11, 6, 10, 6, 1)⊤ B(I9) = −(10, 6, 10, 7, 1)⊤

B(I10) = −(9, 7, 10, 7, 1)⊤ B(I11) = −(11, 7, 10, 5, 1)⊤ B(I12) = −(9, 9, 10, 5, 1)⊤

By Lemma 3.52, the dimension of the maximal polytopal part is equal to d = 2. According to
Definition 3.24, we obtain a unique Γν = cone{e2 − e5, e3 − e4}, as shown in Figure 3.31.

1

2

3

4

5

3 4 2 5 1

Figure 3.31: Pipe dream for anti-greedy facet for ν = EENEEN with Γν = {e2 − e5, e3 − e4}.

Applying π1 to the brick vectors gives us the points:

P′1 = −(12, 9, 13)⊤ P′2 = −(9, 12, 13)⊤ P′3 = −(8, 13, 13)⊤ P′4 = −(8, 11, 15)⊤

P′5 = −(8, 9, 17)⊤ P′6 = −(12, 8, 14)⊤ P′7 = −(12, 7, 15)⊤ P′8 = −(11, 7, 16)⊤

P′9 = −(10, 7, 17)⊤ P′10 = −(9, 8, 17)⊤ P′11 = −(11, 8, 15)⊤ P′12 = −(9, 10, 15)⊤

Applying π = π2 ◦ π1 to the brick vectors gives us the points:

P1 = −(12, 21)⊤ P2 = −(9, 21)⊤ P3 = −(8, 21)⊤ P4 = −(8, 19)⊤

P5 = −(8, 17)⊤ P6 = −(12, 20)⊤ P7 = −(12, 19)⊤ P8 = −(11, 18)⊤

P9 = −(10, 17)⊤ P10 = −(9, 17)⊤ P11 = −(11, 19)⊤ P12 = −(9, 19)⊤

The points from the canonical realization are the following:

C1 = (0, 0)⊤ C2 = (3, 0)⊤ C3 = (4, 0)⊤ C4 = (4, 2)⊤

C5 = (4, 4)⊤ C6 = (0, 1)⊤ C7 = (0, 2)⊤ C8 = (1, 3)⊤

C9 = (2, 4)⊤ C10 = (3, 4)⊤ C11 = (1, 2)⊤ C12 = (3, 2)⊤

In particular, we have the equality

Ci = Pi − P1 for 1 ≤ i ≤ 12,

as shown in Lemma 3.59.
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P1 P2 P3

P4

P5

P6

P7

P8

P9 P10

P11 P12

Figure 3.32: Projection of B(Qν, wν) for ν = EENEEN.

3.5.3 A projection in the general case

In this chapter, we present two examples to illustrate the general case, although we do not provide
a formal proof.

Example 3.61

Consider the path ν = EENN and use the labeling shown in Figure 3.33. By Lemma 3.52, the
dimension of the maximal polytopal part is equal to d = 2. If we contract the whole Bruhat cone,
we obtain a polytope of dimension 1, which is a contradiction to d = 2. Therefore, we have to
choose exactly one element of the set {e3 − e4, e1 − e2} for Γν.

a d
b e

g

ic f
h

Figure 3.33: Grid for labeling of SC(Qν, wν) for ν = EENEEN.

Here is a list of all facets:

I1 = {a, b, c, d, g} I2 = {b, c, d, e, g} I3 = {c, d, e, f , g}

I4 = {b, c, e, g, h} I5 = {c, e, f , g, h} I6 = {c, f , g, h, i}

The corresponding brick vectors are:

b(I1) = −(8, 5, 4, 1)⊤ b(I2) = −(8, 4, 5, 1)⊤ b(I3) = −(7, 4, 6, 1)⊤

b(I4) = −(8, 3, 5, 2)⊤ b(I5) = −(7, 3, 6, 2)⊤ b(I6) = −(6, 3, 6, 3)⊤

We obtain the ν-Tamari lattice, rotation lattice and the bounded faces of the ν-brick polyhedron as
shown in Figure 3.34.

For the canonical realization, we obtain the points Ci, 1 ≤ i ≤ 6. See Figure 3.35 (Left).

C1 = (0, 0)⊤ C2 = (0, 1)⊤ C3 = (1, 2)⊤

C4 = (0, 2)⊤ C5 = (1, 3)⊤ C6 = (2, 4)⊤
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1

2

34

5

6

ν-Tamari lattice

1

2

34

5

6

Rotation lattice of ν-trees

P1

P2

P3
P4

P5

P6

Bounded faces of ν-brick
polyhedron for ν = EENN

Figure 3.34: Example ν=EENN.

For Γν = {e1 − e2}, we obtain projected points P(1)
i , 1 ≤ i ≤ 6. See Figure 3.35 (Middle).

P(1)
1 = −(13, 17)⊤ P(1)

2 = −(12, 17)⊤ P(1)
3 = −(11, 17)⊤

P(1)
4 = −(11, 16)⊤ P(1)

5 = −(10, 16)⊤ P(1)
6 = −(9, 15)⊤

For Γν = {e3 − e4}, we obtain projected points P(2)
i , 1 ≤ i ≤ 6. See Figure 3.35 (Right).

P(2)
1 = −(8, 13)⊤ P(2)

2 = −(8, 12)⊤ P(2)
3 = −(7, 11)⊤

P(2)
4 = −(8, 11)⊤ P(2)

5 = −(7, 10)⊤ P(2)
6 = −(6, 9)⊤

C1

C2

C3C4

C5

C6

Canonical realization

P(1)
1 P(1)

2 P(1)
3

P(1)
4 P(1)

5

P(1)
6

Projection for Γν = {e1 − e2}
P(2)

1

P(2)
2

P(2)
3

P(2)
4

P(2)
5

P(2)
6

Projection for Γν = {e3 − e4}

Figure 3.35: Example ν=EENN.

Note that if we choose Γν = {e3 − e4}, we obtain the canonical realization up to translation.
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Example 3.62

Consider the path ν = EENNEEN and use the labeling shown in Figure 3.36. By Lemma 3.52,
the dimension of the maximal polytopal part is equal to d = 3. We choose exactly one element
from {e2 − e3, e4 − e5}, let Γν = {e2 − e3}.

a

d

e
b f

i

kc g
j

h l
m
n

o
p

Figure 3.36: Grid for labeling of SC(Qν, wν) for ν = EENNEEN.

Here is a list of all facets of the ν-subword complex SC(Qν, wν):

I1 = {a, b, c, d, e, i, m, o} I2 = {b, c, d, e, f , i, m, o} I3 = {b, c, d, f , i, j, m, o} I4 = {c, d, f , g, i, j, m, o}

I5 = {c, d, g, i, j, k, m, o} I6 = {c, d, e, f , g, i, m, o} I7 = {d, e, f , g, h, i, m, o} I8 = {d, f , g, h, i, j, m, o}

I9 = {d, g, h, i, j, k, m, o} I10 = {d, h, i, j, k, l, m, o} I11 = {d, h, i, j, l, m, n, o} I12 = {d, h, i, j, l, n, o, p}

I13 = {a, b, d, e, i, m, n, o} I14 = {b, d, e, f , i, m, n, o} I15 = {b, d, f , i, j, m, n, o} I16 = {b, d, f , i, j, n, o, p}

I17 = {d, f , h, i, j, n, o, p} I18 = {d, e, f , h, i, m, n, o} I19 = {a, b, d, e, i, n, o, p} I20 = {b, d, e, f , i, n, o, p}

I21 = {d, f , h, i, j, m, n, o} I22 = {d, e, f , h, i, n, o, p}

Here are the corresponding brick vectors after omitting the first and last coordinates:

b(I1) = −(15, 11, 6, 9, 5)⊤ b(I2) = −(15, 11, 5, 10, 5)⊤ b(I3) = −(15, 11, 4, 10, 6)⊤

b(I4) = −(15, 10, 4, 11, 6)⊤ b(I5) = −(15, 9, 4, 11, 7)⊤ b(I6) = −(15, 10, 5, 11, 5)⊤

b(I7) = −(14, 10, 5, 12, 5)⊤ b(I8) = −(14, 10, 4, 12, 6)⊤ b(I9) = −(14, 9, 4, 12, 7)⊤

b(I10) = −(13, 9, 4, 12, 8)⊤ b(I11) = −(12, 10, 4, 12, 8)⊤ b(I12) = −(11, 10, 5, 12, 8)⊤

b(I13) = −(12, 14, 6, 9, 5)⊤ b(I14) = −(12, 14, 5, 10, 5)⊤ b(I15) = −(12, 14, 4, 10, 6)⊤

b(I16) = −(11, 14, 5, 10, 6)⊤ b(I17) = −(11, 12, 5, 12, 6)⊤ b(I18) = −(12, 12, 5, 12, 5)⊤

b(I19) = −(11, 14, 7, 9, 5)⊤ b(I20) = −(11, 14, 6, 10, 5)⊤ b(I21) = −(12, 12, 4, 12, 6)⊤

b(I22) = −(11, 12, 6, 12, 5)⊤

Here is a list of all projected points:

P1 = −(15, 32, 41)⊤ P2 = −(15, 31, 41)⊤ P3 = −(15, 30, 40)⊤ P4 = −(15, 29, 40)⊤

P5 = −(15, 28, 39)⊤ P6 = −(15, 30, 41)⊤ P7 = −(14, 29, 41)⊤ P8 = −(14, 28, 40)⊤

P9 = −(14, 27, 39)⊤ P10 = −(13, 26, 38)⊤ P11 = −(12, 26, 38)⊤ P12 = −(11, 26, 38)⊤

P13 = −(12, 32, 41)⊤ P14 = −(12, 31, 41)⊤ P15 = −(12, 30, 40)⊤ P16 = −(11, 30, 40)⊤

P17 = −(11, 28, 40)⊤ P18 = −(12, 29, 41)⊤ P19 = −(11, 32, 41)⊤ P20 = −(11, 31, 41)⊤

P21 = −(12, 28, 40)⊤ P22 = −(11, 29, 41)⊤
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Below is a list of the points representing the canonical realization, illustrated in Figure 3.38.

C1 = (0, 0, 0)⊤ C2 = (0, 0, 1)⊤ C3 = (0, 0, 2)⊤ C4 = (0, 1, 3)⊤

C5 = (0, 2, 4)⊤ C6 = (0, 1, 2)⊤ C7 = (1, 2, 3)⊤ C8 = (1, 2, 4)⊤

C9 = (1, 3, 5)⊤ C10 = (2, 4, 6)⊤ C11 = (3, 4, 6)⊤ C12 = (4, 4, 6)⊤

C13 = (3, 0, 0)⊤ C14 = (3, 0, 1)⊤ C15 = (3, 0, 2)⊤ C16 = (4, 0, 2)⊤

C17 = (4, 2, 4)⊤ C18 = (3, 2, 3)⊤ C19 = (4, 0, 0)⊤ C20 = (4, 0, 1)⊤

C21 = (3, 2, 4)⊤ C22 = (4, 2, 3)⊤

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

P17

P18

P19

P20

P21
P22

Figure 3.37: Projection of ν-associahedron for ν = EENNEEN.

Remark 3.63

Note that the projected points differ from the canonical realization. However, I believe this idea
can be used to further study ν-associahedra. We expect this approach to work in general, although
it is not yet proven.
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C1C2C3

C4

C5

C6

C7C8

C9

C10

C11

C12

C13C14C15

C16

C17

C18
C19C20C21

C22

Figure 3.38: Canonical realization of ν-associahedron for ν = EENNEEN.
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