Exercise 1

- (i) Find the dihedral angles of a regular tetrahedron.
- (ii) Find the dihedral angles of the following tetrahedra embedded in a unit cube:

Exercise 2

For the tetrahedra in the previous exercise:

- (i) show that T_1 is not scissors congruent to neither T_2 nor T_3
- (ii) Are T_2 and T_3 scissors congruent?
- (iii) show that T_1 is scissors congruent to a cube of the same volume
- (iv) (bonus) find a dissection of T_1 and reassemble the pieces to form a cube

Exercise 3

Let $P \subseteq \mathbb{R}^d$ be a finite collection of points. A point $p \in P$ is called a *vertex* of conv(P) if

 $p \notin \operatorname{conv}(P \smallsetminus \{p\}).$

Let $V \subseteq P$ be the set of vertices of P. Show that conv(V) = conv(P).

Exercise 4

Let P be a finite collection of points on the plane not lying on a single line. Show that:

- (i) $\operatorname{conv}(P)$ is the convex polygon with the smallest perimeter containing *P*.
- (ii) $\operatorname{conv}(P)$ is the convex polygon with the smallest area containing P.