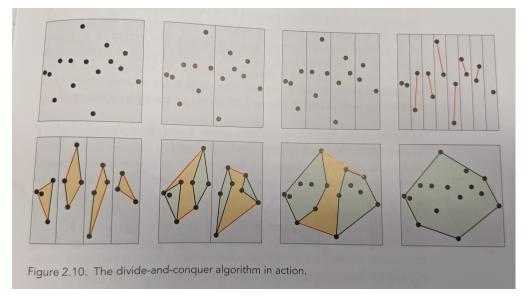
Exercise 1

Divine-and-Conquer Algorithm for computing convex hulls in 2D:

Let *P* be a point set in the plane with no three points collinear and no two points on the same vertical line. Sort the points according to their *x*-coordinate. Divide the points into two (nearly) equal groups, *A* and *B*, where *A* contains the left $\lceil \frac{n}{2} \rceil$ points and *B* the right $\lfloor \frac{n}{2} \rfloor$ points. Compute the convex hull of *A* and *B* recursively (using the algorithm). Finally, merge conv(*A*) and conv(*B*) to obtain conv(*P*).



- (i) Show that the merging step can be computed in linear time O(n).
- (ii) Let T(n) be the time complexity of the divine-and-conquer hull algorithm for n points. Show that T(n) = 2T(n/2) + O(n), a recurrence relation in computer science, whose solution is $T(n) = O(n \log n)$.

Exercise 2

Let P be a point set in the plane. Show that T is a Delaunay triangulation of P if and only if T is a legal triangulation of P.

Exercise 3

Let *P* be a point set in the plane, and \overline{P} be the set of corresponding lifted points in the parabola $z = x^2 + y^2$. That is, a point $(a, b) \in \mathbb{R}^2$ is lifted to the point $(a, b, a^2 + b^2) \in \mathbb{R}^3$. Consider the union of the tangent planes $T_{\overline{p}}$ of the parabola at the lifted points $\overline{p} \in \overline{P}$, and the projection $\pi : \mathbb{R}^3 \to \mathbb{R}^2$ defined by $\pi(x, y, z) = (x, y)$.

- (i) Show that the intersection of two tangent planes $T_{\overline{p}_i} \cap T_{\overline{p}_j}$ projects to the bisector line ℓ_{ij} between the points p_i and p_j .
- (ii) Show that the intersection of three tangent planes $T_{\overline{p}_i} \cap T_{\overline{p}_j} \cap T_{\overline{p}_k}$ projects to the center of the circumcircle through the points p_i, p_j, p_k .
- (iii) Show that the tangent planes and intersections that you can see from the top $(z = +\infty)$, project to the Voronoi diagram Vor(P) in the *xy*-plane.

Exercise 4

Consider the paraboloid in \mathbb{R}^{n+1} defined by the equation $y = x_1^2 + \cdots + x_n^2$, and its tangent hyperplane E at the point $(a_1, \ldots, a_n, a_1^2 + \cdots + a_n^2)$. The projection $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$ is defined by $\pi(x_1, \ldots, x_n, y) = (x_1, \ldots, x_n)$. Show that the intersection of the paraboloid with a translation of E projects to a sphere with center (a_1, \ldots, a_n) .