Exercise 1

Consider the duality between points and non-vertical lines in the plane defined as follows:

- for a point $p = (a, b) \in \mathbb{R}^2$ its dual line is $D(p) = p^*$: y = ax b,
- for a line ℓ : y = mx + n its dual point is $D(\ell) = \ell^* = (m, -n)$.

Show that D is order preserving, meaning that a point p is above the line ℓ if and only if the point ℓ^* is above the line p^* .

Exercise 2

Let D be the map from previous exercise.

- (i) Show that if p is a point on the parabola $y = x^2/2$ then $D(p) = p^*$ is the tangent line to the parabola at p.
- (ii) For a point q, let p be its vertical projection to the parabola. Show that q^* is the line parallel to p^* at a vertical distance opposite to the distance from p to q.

Exercise 3

The following figure shows two point sets and two line arrangements. Which line arrangement corresponds to which point set?

Exercise 4

Consider a finite set $P \subset \mathbb{R}^2$ of points in general position (no four points on a circle), and let Del(P) be its Delaunay triangulation. Let q be a point inside the convex hull of P, such that $P \cup \{q\}$ is in general position. We say that a triangle t of Del(P) is marked if its circumcircle contains q.

- (i) Show that the union of the marked triangles is a triangulated polygon Q containing q.
- (ii) Show that the edges connecting p with the vertices of this triangulated polygon Q are inside Q.
- (iii) Show that $Del(P \cup \{q\})$ is the triangulation obtained from Del(P) by discarding the diagonals of the polygon Q, and replacing them by the edges from q to each of its vertices.