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Exercise 1

(i) Show that a pseudotriangulation of a point set P with p pointed vertices and q non-pointed vertices
has p+ 2q − 2 pseudotriangles and 2p+ 3q − 3 edges.

(ii) Show that a pointed pseudotriangulation of a point set P with n points has n − 2 pseudotriangles
and 2n− 3 edges.

Exercise 2

(i) Show an example of a pseudotriangulation containing an interior edge that is not flippable.

(ii) Let T be a pointed pseudotriangulation of a point set P . Show that there is exactly one flip for each
interior edge e of T , that is, there exist a unique edge e′ such that replacing e by e′ in T is again a pointed
pseudotriangulation.

Exercise 3

Show that the flip graph of pointed pseudotriangulations of a planar point set is connected.

Exercise 4

The following figure shows a pointed pseudotriangulation for two different point sets P . For each point set:
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(i) draw the flip graph of pointed pseudotriangulations

(ii) draw the sorting network NP and label the commutators by the corresponding edges in P

(iii) draw the sorting network N ∗1P obtained by removing the first and last levels of NP .

(iv) draw the flip graph of pseudoline arrangements supported at N ∗1P

(v) compare both flip graphs (of pseudotriangulations and pseudoline arrangements), are they equal?
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