Curvature theory based on parallel meshes

Alexander Bobenko

Technische Universität Berlin

Polyhedral Surfaces and Industrial Applications, Strobl, September 14-19, 2007

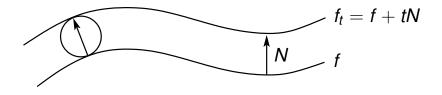
DFG Research Unit "Polyhedral Surfaces"

Alexander Bobenko Curvature theory

based on Pottmann, Liu, Wallner, Bobenko, Wang [SIGGRAPH '07]

- Quadrilateral Surfaces (discrete parametrized surfaces) with line congruences = Geometric support structures
- Curvatures
- Discrete Minimal Surfaces
- Discrete Constant Mean Curvature Surfaces
- Generalizations (projective geometry, relative geometry)

Curvature via parallel surfaces



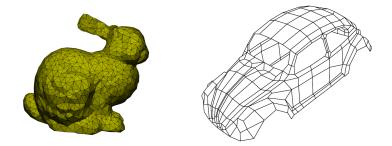
Steiner's formula

$$A(f_t) = \int (1 - 2Ht + Kt^2) dA(f)$$

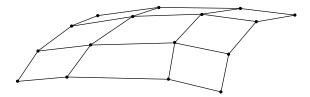
H mean curvature, K Gaussian curvature of f, t small.

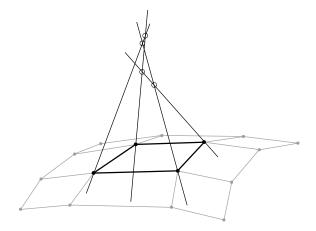
Curvature for discrete surfaces via Steiner's formula

- Steiner's formula for simplicial surfaces [Nishikawa, Jinnai, Koga, Hashimoto, Hyde '98,'01]
- Steiner's formula for circular surfaces [Schief '06]

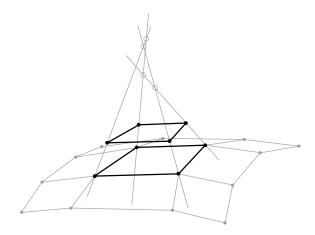


Quadrilateral surfaces as discrete parametrized surfaces

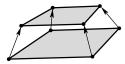




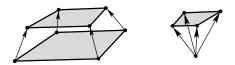
Quadrilateral surface with line congruence = Geometric support structure



Line congruence net with parallel surfaces

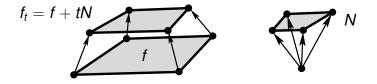


A quad of a line congruence net



A quad of a line congruence net and its "Gauss" map

Curvature via offsets



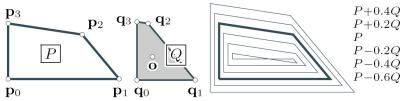
$$A(f_t) = A(f + tN, f + tN) = (1 - 2tH + t^2K)A(f)$$

- Gaussian curvature $K = \frac{A(N)}{A(f)}$
- mean curvature $H = -\frac{A(f, N)}{A(f)}$

Vector space of polygons with parallel edges. Mixed area A(P, Q).

Mixed area

Vector space of polygons with parallel edges



Mixed area A(P, Q) is the symmetric bilinear form corresponding to the quadratic form area A(P) = A(P, P).

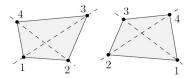
$$\begin{array}{lll} \mathcal{A}(\mathcal{P}, \mathcal{Q}) & = & \frac{1}{2}(\mathcal{A}(\mathcal{P} + \mathcal{Q}) - \mathcal{A}(\mathcal{P}) - \mathcal{A}(\mathcal{Q})), \\ \mathcal{A}(\mathcal{P}, \mathcal{Q}) & = & \frac{1}{4}\sum_{i=0}^{k-1}([p_i, q_{i+1}] + [p_i, q_{i+1}]), \quad [,] \text{ area form.} \end{array}$$

$$A(f_t) = (1 - 2tH + t^2K)A(f) = (1 - tk_1)(1 - tk_2)A(f),$$

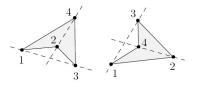
$$K = k_1k_2, \quad H = \frac{1}{2}(k_1 + k_2)$$

Equivalent:

- principal curvatures k_1, k_2 real,
- ► the area form A : {quads with parallel edges} → ℝ indefinite,
- empty convex hull



indefinite A, real k_1, k_2



definite A, complex k_1, k_2

Definition.

- ► H = 0 minimal
- ► *H* = *const* constant mean curvature (CMC)
- ► *K* = *const* constant Gaussian curvature

Theorem (f, N) CMC with $H = H_0 \neq 0$, then

- ▶ parallel surfaces f + tN are linear Weingarten aH + bK = 1
- $(f + \frac{1}{2H_0}N, N)$ has constant Gaussian curvature $4H_0^2$

•
$$(f + \frac{1}{H_0}N, N)$$
 has constant mean curvature $-H_0$

Definition.

Discrete minimal surface is a line congruence net (f, N) with H = 0 for all faces.

Mixed area characterization

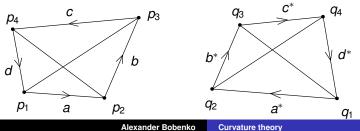
Minimal \Leftrightarrow mixed area A(f, N) = 0 for all corresponding quads of *f* and *N*.

 \Rightarrow Dual quadrilaterals and dual quad-nets.

Dual quadrilaterals

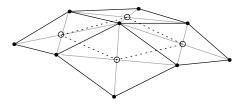
- Definition. Two quadrilaterals P, Q with parallel edges are called dual to each other if their mixed area vanishes, A(P, Q) = 0.
- Existence and uniqueness For every planar quadrilateral a dual one exists and is unique up to scaling and translation. (Two dimensional vector space with a bilinear symmetric form A.)
- Two quadrilaterals with parallel edges are dual if and only if their diagonals are antiparallel:

 $(p_1, p_3) \parallel (q_2, q_4), \quad (p_2, p_4) \parallel (q_1, q_3).$



Discrete Koenigs nets

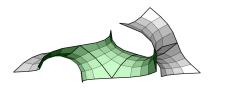
- Definition. A quad-surface f with planar faces is called a discrete Koenigs net if it admits a dual net f*.
- ► Projective characterization A discrete surface f : Z² → R³ with planar faces and non-planar vertices is a discrete Koenigs net if and only if the intersection points of diagonals of any four quadrilaterals sharing a vertex are co-planar. [B., Suris '07]



Discrete minimal and CMC surfaces "for free"

Let f be a discrete Koenigs net. Then:

- (f, N) with $N = f^*$ is discrete minimal,
- (f, N) with $N = f f^*$ is discrete CMC,

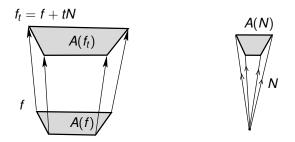


Discrete minimal surface $f = N^*$ and its Gauss image N (Koenigs net). [Schröder]

Three natural types of spherical polyhedra

- vertices on S² (circular nets)
- faces tangent to S^2 (conical nets)
- edges tangent to S² (Koebe polyhedra)

Circular nets. Curvatures

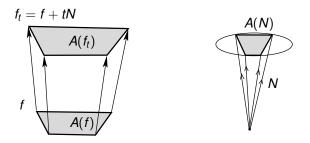


• parallel circular surface $f_t = f + tN$:

$$\begin{array}{rcl} A(f_t) &=& (1 - 2tH + t^2K)A(f) \\ &=& (1 - tk_1)(1 - tk_2)A(f) \end{array}$$

• mean curvature $H = -\frac{A(f,N)}{A(f)}$, Gaussian curvature $K = \frac{A(N)}{A(f)}$, principal curvatures k_1, k_2 (real)

Circular nets. Curvatures

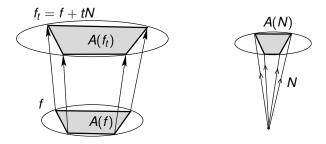


• parallel circular surface $f_t = f + tN$:

$$\begin{array}{rcl} A(f_t) &=& (1-2tH+t^2K)A(f) \\ &=& (1-tk_1)(1-tk_2)A(f) \end{array}$$

• mean curvature $H = -\frac{A(f,N)}{A(f)}$, Gaussian curvature $K = \frac{A(N)}{A(f)}$, principal curvatures k_1, k_2 (real)

Circular nets. Curvature



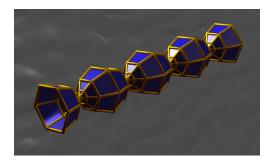
• parallel circular surface $f_t = f + tN$:

$$\begin{array}{rcl} A(f_t) &=& (1 - 2tH + t^2K)A(f) \\ &=& (1 - tk_1)(1 - tk_2)A(f) \end{array}$$

• mean curvature $H = -\frac{A(f,N)}{A(f)}$, Gaussian curvature $K = \frac{A(N)}{A(f)}$, principal curvatures k_1, k_2 (real)

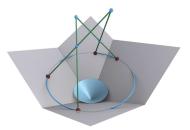
Circular nets. Isothermic, minimal, CMC

- Circular Koenigs nets = Discrete isothermic surfaces [B., Pinkall '96]
- ► $H = 0 \Rightarrow$ Discrete (circular) minimal surfaces of [B., Pinkall '96] = dual to discrete isothermic in S^2
- H = H₀ ≠ 0 ⇒ Discrete (circular) CMC surfaces of [B., Hertrich-Jeromin, Hoffmann, Pinkall '99] = isothermic *f* and its dual at constant distance |*f* − *f**| = const.



Principal contact element nets as discrete curvature parametrization

- Principal contact element nets = neighboring contact elements share a common (principal curvature) sphere (Lie geometry)
- Circular and conical nets merged [Pottmann,Walner '06], [B.,Suris '06].

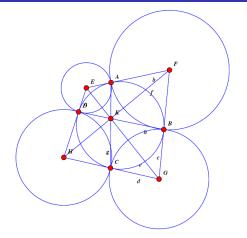


Points \Rightarrow Circular (Möbius); Planes \Rightarrow Conical (Laguerre)

Alexander Bobenko

Curvature theory

S-isothermic surfaces



- Touching spheres with an orthogonal circle
- Dual to circumscribed quads are circumscribed
- General S-isothermic surface
 - = T-net of spheres
- Theorem. Centers of spheres of an S-isothermic surface build a Koenigs net.

$$R_E/R_G = |EK|/|KG|$$

Edges of a Gauss polyhedron N touch a sphere \Rightarrow Koebe polyhedra

- ► Koebe polyhedra are Koenigs (S-isothermic ⇒ dualizable)
- Most developed (based on the theory of circle packings)
- Theorem. Every polytopal cell decomposition of the sphere can be realized by a polyhedron with edges tangent to the sphere. This realization is unique up to projective transformations which fix the sphere.

Construction method for discrete minimal surfaces of Koebe type

[B., Hoffmann, Springborn '06]

```
continuous minimal surface
↓
image of curvature lines under Gauss-map
↓
cell decomposition of (a branched cover of) the sphere
↓
Koebe polyhedron (variational principle)
↓
discrete minimal surface
```

- Geometry from combinatorics of curvature lines
- Existence and uniqueness
- Boundary conditions and symmetries can be implemented

Variational principle for orthogonal circle patterns

[B., Springborn '04]

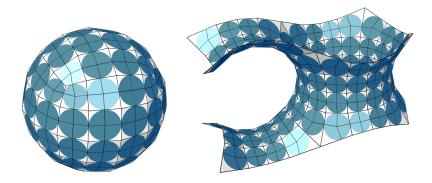
- Orthogonal circle pattern in a plane (stereographic projection)
- Minimize the convex function

$$S(\rho) = \sum_{j \circ \neg \circ k} \left(\operatorname{Im} \operatorname{Li}_{2}(ie^{\rho_{k}-\rho_{j}}) + \operatorname{Im} \operatorname{Li}_{2}(ie^{\rho_{j}-\rho_{k}}) - \frac{\pi}{2}(\rho_{j}+\rho_{k}) \right) + 2\pi \sum_{\circ j} \rho_{j}$$

logarithmic radii: $r = e^{\rho}$
dilogarithm function: $\operatorname{Li}_{2}(z) = \frac{z}{1^{2}} + \frac{z^{2}}{2^{2}} + \frac{z^{3}}{3^{2}} + \dots$

- Explicit formula, no constraints, easy to compute
- ► Convexity ⇒ uniqueness. Existence more delicate
- Generalization for circle patterns on a sphere

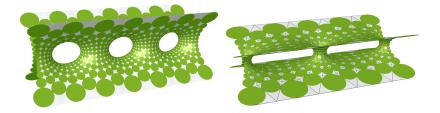
Construction method



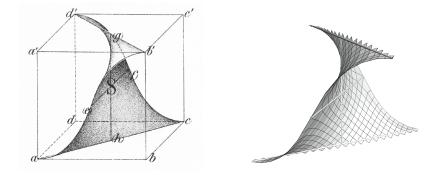
Koebe polyhedron and the dualized minimal surface

Examples. [Sechelmann, Bücking]

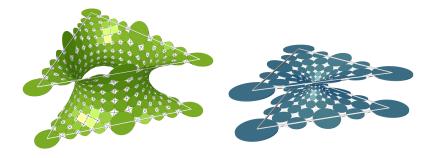
Symmetric and unsymmetric Schwarz P-surfaces



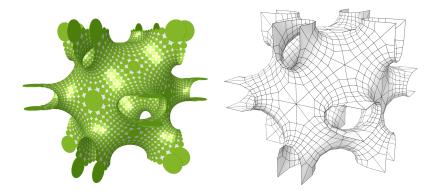
Symmetric and unsymmetric Scherk's towers



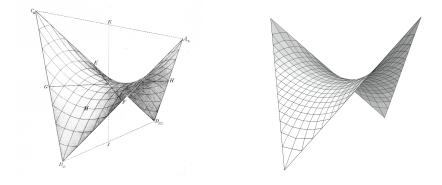
Gergone's surface by Schwarz and discrete analog



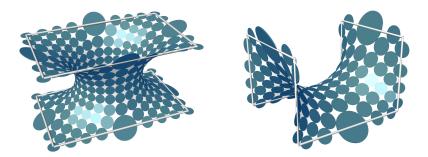
Schwarz' H-surfaces



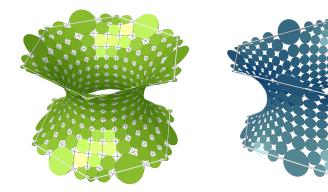
Neovius' surface



Quadrilateral minimal surface by Schwarz and discrete analog



Schoen's I-6 surface and a cuboid boundary frame



Symmetric and unsymmetric catenoid approximations