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This talk. Curvature of parallel meshes

based on Pottmann, Liu, Wallner, Bobenko, Wang [SIGGRAPH
’07]

I Quadrilateral Surfaces (discrete parametrized surfaces)
with line congruences = Geometric support structures

I Curvatures
I Discrete Minimal Surfaces
I Discrete Constant Mean Curvature Surfaces
I Generalizations (projective geometry, relative geometry)
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Curvature via parallel surfaces

N f

ft = f + tN

Steiner’s formula

A(ft) =

∫
(1− 2Ht + Kt2)dA(f )

H mean curvature, K Gaussian curvature of f , t small.
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Previous work

Curvature for discrete surfaces via Steiner’s formula

I Steiner’s formula for simplicial surfaces [Nishikawa, Jinnai,
Koga, Hashimoto, Hyde ’98,’01]

I Steiner’s formula for circular surfaces [Schief ’06]
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Quadrilateral Surfaces

Quadrilateral surfaces as discrete parametrized surfaces
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Quadrilateral Surfaces

Quadrilateral surface
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Quadrilateral Surfaces

Quadrilateral surface with line congruence = Geometric support
structure
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Quadrilateral Surfaces

Line congruence net with parallel surfaces
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Quadrilateral Surfaces

A quad of a line congruence net
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Quadrilateral Surfaces

A quad of a line congruence net and its "Gauss" map
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Curvature via offsets

f

ft = f + tN N

A(ft) = A(f + tN, f + tN) = (1− 2tH + t2K )A(f )

I Gaussian curvature K =
A(N)

A(f )

I mean curvature H = −A(f , N)

A(f )
Vector space of polygons with parallel edges.
Mixed area A(P, Q).
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Mixed area

Vector space of polygons with parallel edges

Mixed area A(P, Q) is the symmetric bilinear form
corresponding to the quadratic form area A(P) = A(P, P).

A(P, Q) =
1
2
(A(P + Q)− A(P)− A(Q)),

A(P, Q) =
1
4

k−1∑
i=0

([pi , qi+1] + [pi , qi+1]), [, ] area form.
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Principal curvatures

A(ft) = (1− 2tH + t2K )A(f ) = (1− tk1)(1− tk2)A(f ),

K = k1k2, H =
1
2
(k1 + k2)

Equivalent:
I principal curvatures k1, k2 real,
I the area form A : {quads with parallel edges} → R

indefinite,
I empty convex hull

indefinite A, real k1, k2 definite A, complex k1, k2
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Discrete surfaces with constant curvature

Definition.
I H = 0 - minimal
I H = const - constant mean curvature (CMC)
I K = const - constant Gaussian curvature

Theorem (f , N) CMC with H = H0 6= 0, then
I parallel surfaces f + tN are linear Weingarten aH + bK = 1
I (f + 1

2H0
N, N) has constant Gaussian curvature 4H2

0

I (f + 1
H0

N, N) has constant mean curvature −H0
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Discrete minimal surfaces

I Definition.
Discrete minimal surface is a line congruence net (f , N)
with H = 0 for all faces.

I Mixed area characterization
Minimal ⇔ mixed area A(f , N) = 0 for all corresponding
quads of f and N.

⇒Dual quadrilaterals and dual quad-nets.
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Dual quadrilaterals

I Definition. Two quadrilaterals P, Q with parallel edges are
called dual to each other if their mixed area vanishes,
A(P, Q) = 0.

I Existence and uniqueness For every planar quadrilateral
a dual one exists and is unique up to scaling and
translation. (Two dimensional vector space with a bilinear
symmetric form A.)

I Two quadrilaterals with parallel edges are dual if and only if
their diagonals are antiparallel:
(p1, p3) ‖ (q2, q4), (p2, p4) ‖ (q1, q3).

p1 p2

p3p4

q1
q2

q3 q4

b

c

d

c∗

d∗

a∗a

b∗
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Discrete Koenigs nets

I Definition. A quad-surface f with planar faces is called a
discrete Koenigs net if it admits a dual net f ∗.

I Projective characterization A discrete surface
f : Z2 → R3 with planar faces and non-planar vertices is a
discrete Koenigs net if and only if the intersection points of
diagonals of any four quadrilaterals sharing a vertex are
co-planar. [B., Suris ’07]
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Discrete minimal and CMC surfaces "for free"

Let f be a discrete Koenigs net. Then:
I (f , N) with N = f ∗ is discrete minimal,
I (f , N) with N = f − f ∗ is discrete CMC,

Discrete minimal surface f = N∗ and its Gauss image N
(Koenigs net). [Schröder]
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Discrete spheres

Three natural types of spherical polyhedra
I vertices on S2 (circular nets)
I faces tangent to S2 (conical nets)
I edges tangent to S2 (Koebe polyhedra)
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Circular nets. Curvatures

A(N)

N

ft = f + tN

f
A(f )

A(ft)

I parallel circular surface ft = f + tN:

A(ft) = (1− 2tH + t2K )A(f )
= (1− tk1)(1− tk2)A(f )

I mean curvature H = −A(f ,N)
A(f ) , Gaussian curvature

K = A(N)
A(f ) , principal curvatures k1, k2 (real)
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Circular nets. Isothermic, minimal, CMC

I Circular Koenigs nets = Discrete isothermic surfaces [B.,
Pinkall ’96]

I H = 0 ⇒ Discrete (circular) minimal surfaces of [B., Pinkall
’96] = dual to discrete isothermic in S2

I H = H0 6= 0 ⇒ Discrete (circular) CMC surfaces of [B.,
Hertrich-Jeromin, Hoffmann, Pinkall ’99] = isothermic f and
its dual at constant distance |f − f ∗| = const .
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Principal contact element nets as discrete curvature
parametrization

I Principal contact element nets = neighboring contact
elements share a common (principal curvature) sphere
(Lie geometry)

I Circular and conical nets merged [Pottmann,Walner ’06],
[B.,Suris ’06].

Points ⇒ Circular (Möbius); Planes ⇒ Conical (Laguerre)
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S-isothermic surfaces

I Touching spheres
with an orthogonal
circle

I Dual to
circumscribed quads
are circumscribed

I General
S-isothermic surface
= T-net of spheres

I Theorem. Centers of spheres of an S-isothermic surface
build a Koenigs net.

RE/RG = |EK |/|KG|
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Koebe polyhedra

Edges of a Gauss polyhedron N
touch a sphere ⇒ Koebe polyhedra

I Koebe polyhedra are Koenigs (S-isothermic ⇒ dualizable)
I Most developed (based on the theory of circle packings)
I Theorem. Every polytopal cell decomposition of the

sphere can be realized by a polyhedron with edges tangent
to the sphere. This realization is unique up to projective
transformations which fix the sphere.
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Construction method for discrete minimal surfaces of
Koebe type

[B., Hoffmann, Springborn ’06]

continuous minimal surface
⇓

image of curvature lines under Gauss-map
⇓

cell decomposition of (a branched cover of) the sphere
⇓

Koebe polyhedron (variational principle)
⇓

discrete minimal surface

I Geometry from combinatorics of curvature lines
I Existence and uniqueness
I Boundary conditions and symmetries can be implemented
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Variational principle for orthogonal circle patterns

[B., Springborn ’04]
I Orthogonal circle pattern in a plane (stereographic

projection)
I Minimize the convex function

S(ρ) =∑
j◦−◦k

(
Im Li2

(
ieρk−ρj

)
+Im Li2

(
ieρj−ρk

)
−π

2
(ρj+ρk )

)
+2π

∑
◦j

ρj

logarithmic radii: r = eρ

dilogarithm function: Li2(z) =
z
12 +

z2

22 +
z3

32 + . . .

I Explicit formula, no constraints, easy to compute
I Convexity ⇒ uniqueness. Existence more delicate
I Generalization for circle patterns on a sphere
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Construction method

Koebe polyhedron and the dualized minimal surface
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Examples. [Sechelmann, Bücking]

Symmetric and unsymmetric Schwarz P-surfaces
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Examples

Symmetric and unsymmetric Scherk’s towers
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Examples

Gergone’s surface by Schwarz and discrete analog
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Examples

Schwarz’ H-surfaces
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Examples

Neovius’ surface
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Examples

Quadrilateral minimal surface by Schwarz and discrete analog
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Examples

Schoen’s I-6 surface and a cuboid boundary frame
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Examples

Symmetric and unsymmetric catenoid approximations

Alexander Bobenko Curvature theory


