

## Dual Laplacian Manipulation for Triangular Meshes

### Ligang Liu Zhejiang University, China Sep. 15, 2007

Strobl, Austria



## Outline

- Problem
- Linear iterative framework
- Dual mesh editing
- Dual mesh morphing
- Other manipulations
- Conclusions

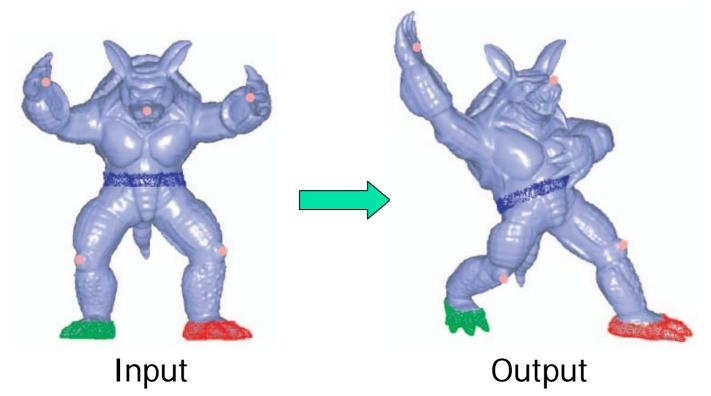


## Problem



## **Shape Deformation**

#### To deform/edit the surface as you imagine in your mind



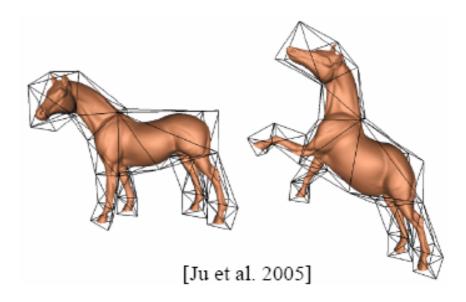


## **Related Work**

- Free-form deformation
  - [Sederberg and Parry, 1988]
  - [Lazarus et al., 1994]
  - [Ju et al., 2005]
  - [Pauly et al., 2006,2007]
- Multi-resolution editing
  - [Eck et al., 1995]
  - [Kobbelt et al., 1998]
  - [Xu et al., 2006]
- Differential surface editing
  - [Alexa, 2003]
  - [Sorkine et al., 2004]
  - [Yu et al., 2004]
  - [Sheffer and Krayevoy, 2004]

Free-form Deformation (Embedded Deformation)

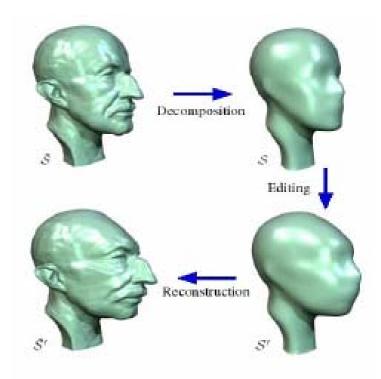
- Manipulated by proxy mesh
- Preserving
  - Parameters of vertices
- Pros
  - Simple, intuitive
- Cons
  - Loss of details





## **Multi-resolution Editing**

- Manipulated by simplified mesh
- Preserving
  - Detail encoding
- Pros
  - Scalable
- Cons
  - Unstable

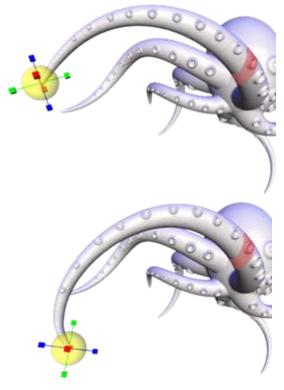


[Botsch & Kobbelt 2003]



## Differential Surface Editing

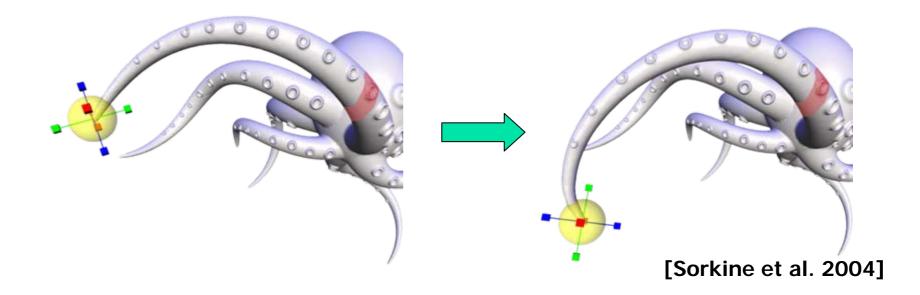
- Manipulated by user handles
- Preserving
  - Differential information
- Pros
  - Detail preserving
- Cons
  - Computational cost



[Sorkine et al. 2004]



- Select some part as handle
- Drag and move the handle
- Deform the surface

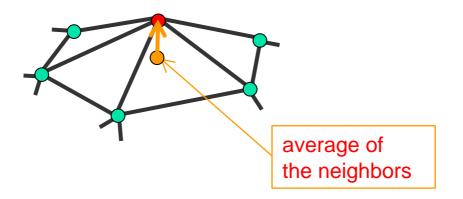


Laplace Coordinates (LC) or Laplace Vector (LV)



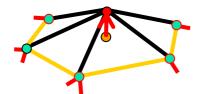
Differential coordinates are defined by the discrete Laplacian operator:

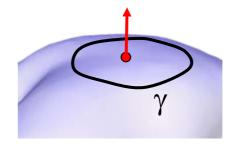
$$\delta_i = v_i - \sum_{j \in N(i)} w_j v_j$$





Discretization of Laplace-Beltrami operator





$$\boldsymbol{\delta}_{\mathbf{i}} = \frac{1}{d_i} \sum_{\mathbf{v} \in N(i)} (\mathbf{v}_{\mathbf{i}} - \mathbf{v})$$

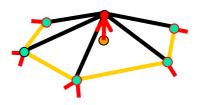
 $\frac{1}{len(\gamma)} \int_{\mathbf{v}\in\gamma} (\mathbf{v}_{i} - \mathbf{v}) ds$ 

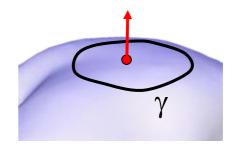
$$\lim_{len(\gamma)\to 0} \frac{1}{len(\gamma)} \int_{\mathbf{v}\in\gamma} (\mathbf{v}_i - \mathbf{v}) ds = H(\mathbf{v}_i) \mathbf{n}_i$$



## **Geometric Meaning**

- LCs represent the local detail / local shape description
  - The direction approximates the normal
  - The size approximates the mean curvature







## Laplacian Surface Editing

[Sorkine et al. 2004]

Compute differential representation

 $\Delta = L(V)$ 

Pose modeling constraints

 $\mathbf{v}'_i = \mathbf{u}_i, \quad i \in C$ 

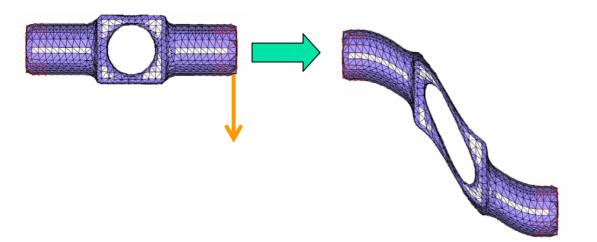
Reconstruct the surface in a least-squares sense

$$\tilde{\boldsymbol{V}'} = \arg\min_{\boldsymbol{V}'} \left( \left\| L(\boldsymbol{V'}) - \Delta \right\|^2 + \sum_{i \in C} \left\| \mathbf{v}'_i - \mathbf{u}_i \right\|^2 \right)$$



#### The LCs are encoded in global coordinate system

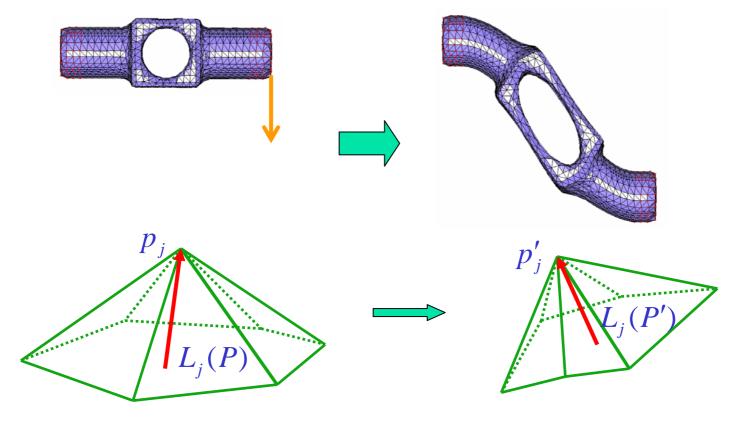
- Local structures of deformed surface may be rotated
- Minimizing changes from LCs of original mesh is not appropriate
- Large distortion and stretch!







#### The LCs should be properly reoriented





#### Several researches attempted to solve it

- [Lipman et al. 2004] used an intermediate reconstructed surface to guess the new orientation of the LCs
- [Sorkine et al. 2004] employed an implicitly defined transformation onto each LC
- [Yu et al. 2004] propagated the changes in the rotation and scaling of the handles to all the unconstrained vertices
- [Zayer et al. 2004] propagated the transformations along harmonic field
- [Lipman et al. 2005] encodes the vertex difference in local frames
- [Sheffer and Krayevoi 2004] proposed pyramid coordinates to encode local features
- These methods only solve the problem partially
  - Have their limitations
  - Do not measure the quality of deformation



- Basically a chicken-and-egg problem
  - Do not know the deformed mesh before solving the linear system
  - Solving the linear system needs the properly reoriented LCs, which depend on the deformed mesh
- Can not be solved satisfactorily using only linear system as direct solvers



## Linear Iterative Framework

[Joint work with Au et al.]



## **Observations**

- The deformed mesh should have
  - Similar triangle shapes as the original mesh
    - Preserve parameterization information (i.e., shapes of local features)
    - Shape distortion causes undesired shearing and stretching
  - Similar local feature sizes as the original mesh
    - Preserve geometry information (i.e., sizes of local features)



## **Observations on LCs**

#### Parameterization information

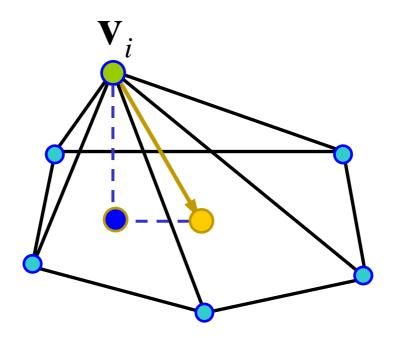
- Captured by the coefficients of the Laplacian operator
- Geometry information
  - Captured by the magnitudes of LCs

$$\boldsymbol{\delta}_i = \sum_{j \in Neigh(i)} \omega_j (\mathbf{v}_i - \mathbf{v}_j)$$



## **Observations on LCs**

LCs have both normal and tangential components

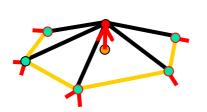


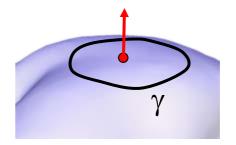


## Weights

Choices of weights of LCs affect the approximation quality of the surface normal

$$\boldsymbol{\delta}_i = \sum_{j \in Neigh(i)} \boldsymbol{\omega}_j (\mathbf{v}_i - \mathbf{v}_j)$$



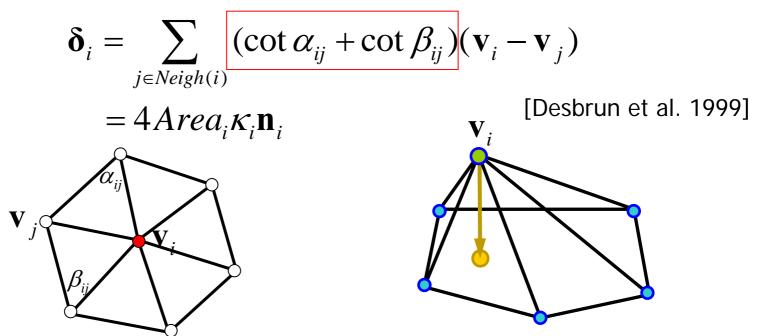




## Cotangent Weight Scheme

[Meyer et al. 2002]

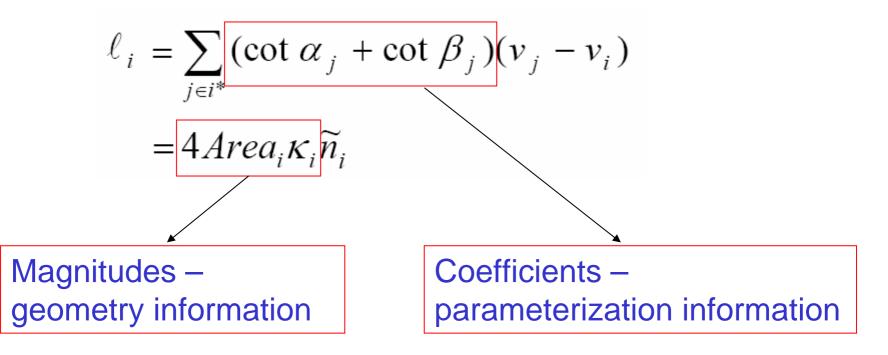
- Geometry dependent
  - Making LCs in local normal direction
  - Reduce tangential shift!





## Curvature Flow LCs

Curvature flow LCs approximate the integrated mean curvature normal





## Goals

- Minimize the difference of both parameterization and geometry information
  - Minimize shape distortion
- But, they are non-linear in the vertex positions
  - Single linear solver cannot obtain satisfactory solution



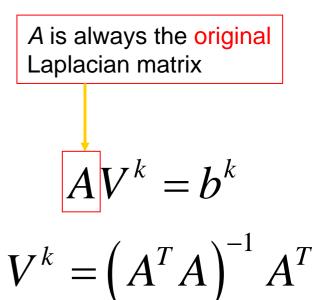
## **Alternating Iterations**

- Given the LVs (fixed), compute the vertex positions using the weights of the original mesh
  - Keep the parameterization information
- Update the LVs so that they have the same magnitude of the original mesh
  - Keep the geometry information



## **Iteration: Step 1**

- Update the vertex positions
  - Solve the linear system using the current LCs and original Laplacian operator



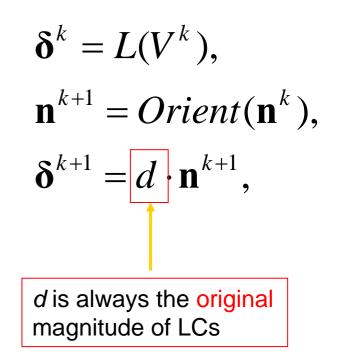
Enforce similar local parameterization as the original mesh



## Iteration: Step 2

#### Update the Laplacian vector

- Compute the LCs using current vertex positions
- Orient the LCs so that they point consistently to the same side of mesh as original LCs
- Set the magnitude of the resulting LCs to be the same as original LCs



Enforce same scale local geometry as the original mesh



## Normal Adjustments

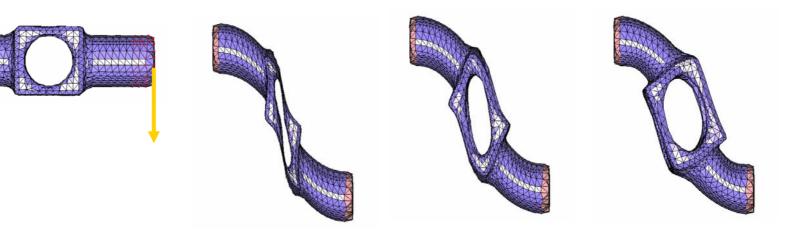
- Why adjust normal direction in the iteration?
  - The computed curvature normal may change between pointing inward or outward during editing
    - The local 1-ring structure might be convex or concave
  - Should be consistent with the corresponding original curvature normal

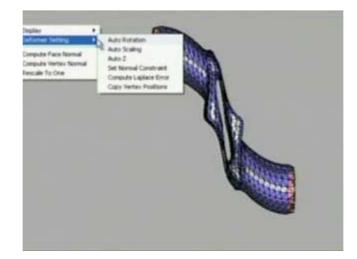
# An Linear Iterative Framework

- Given the LVs (fixed), compute the vertex positions using the weights of the original mesh
  - Keep the parameterization information
- Update the LVs so that they have the same magnitude of the original mesh
  - Keep the geometry information



## **Experimental Result**

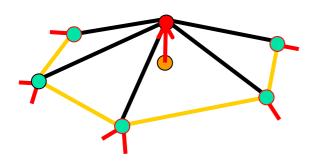


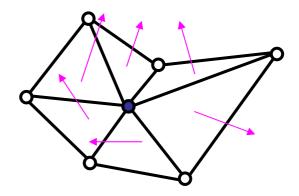




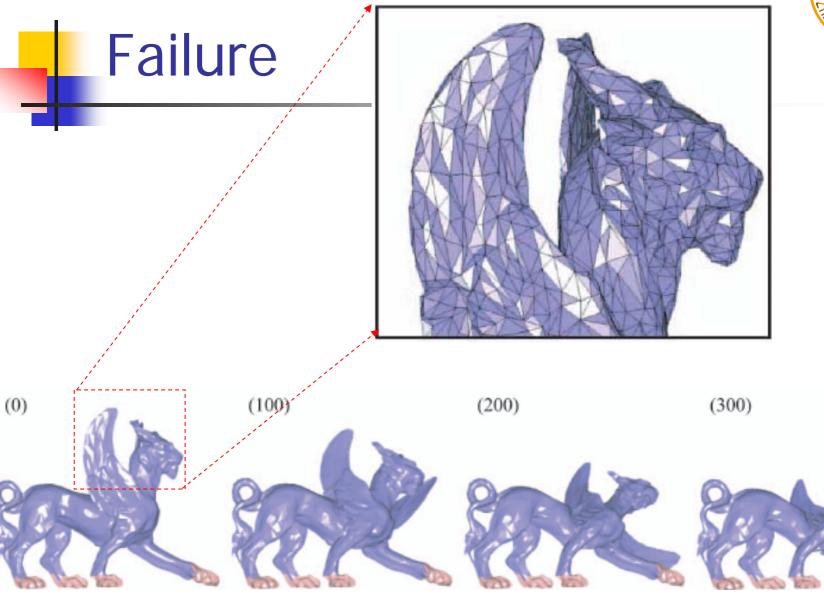
## Drawbacks

- Might fail to converge
  - Poor sampling quality
  - Irregular connectivity
- The 1-ring neighbors are not coplanar
  - LCs have tangential components
  - The normal judgment is not reliable











## Key to Solve the Problem

- Need to encode local geometry in the normal direction
- Eliminate the tangent shift component!



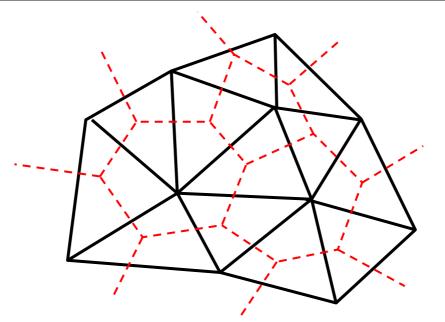
## Dual Laplacian Editing

#### [Joint work with Au et al.]



## **Dual Operator**

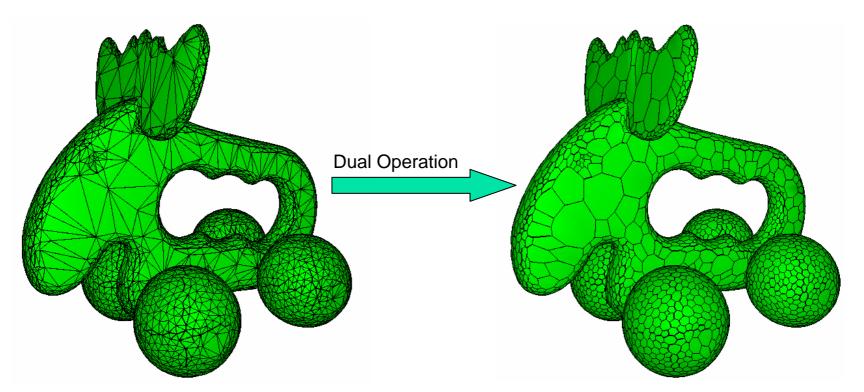
| Primary Mesh | Dual Mesh |
|--------------|-----------|
| Face         | Vertex    |
| Edge         | Edge      |
| Vertex       | Face      |



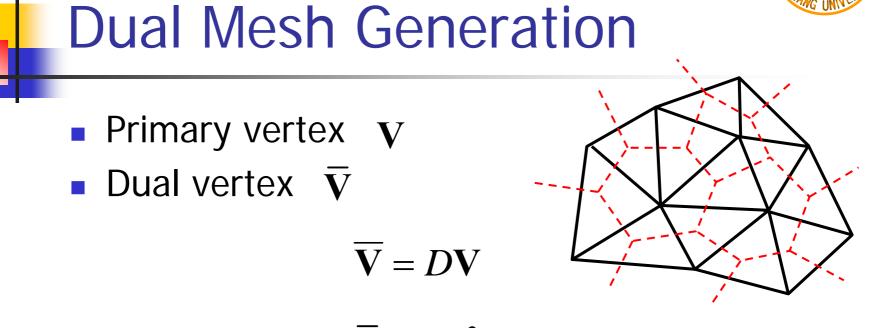




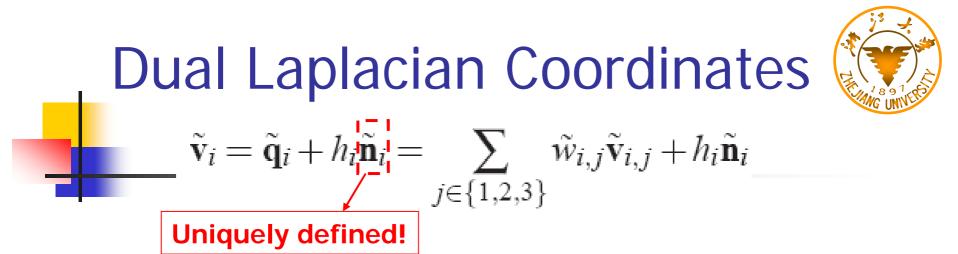
- For a triangular mesh, the valence of every vertex of its dual mesh is always 3
  - 1-ring structure of each vertex is simple and stable (always coplanar!)





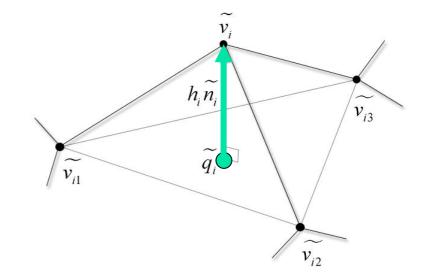


Generally, D(V) = D<sup>2</sup>V ≠ V
 Might introduce some errors in dual operator
 [Taubin 2001]: Dual Mesh Resampling



Parameterization information

- Footpoint  $\tilde{q}_i = \tilde{w}_{i,1} \mathbf{v}_{i,1} + \tilde{w}_{i,2} \mathbf{v}_{i,2} + (1 \tilde{w}_{i,1} \tilde{w}_{i,2}) \mathbf{v}_{i,3}$
- Geometry information
  Height  $\tilde{h}_i$
- The encoding  $(\widetilde{w}_{i,1}, \widetilde{w}_{i,1}, \widetilde{h}_i)$ 
  - Uniquely defined
  - Rotation-invariant



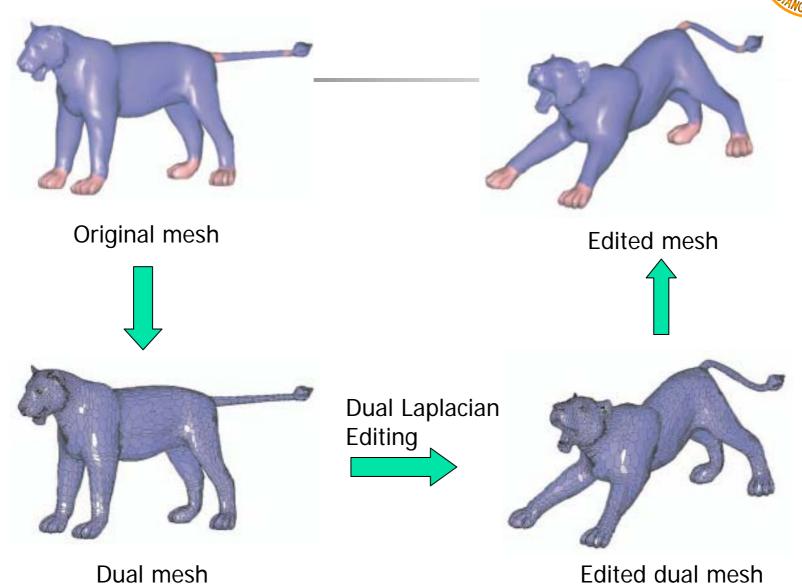


# **Dual Laplacian Editing**

- Perform alternating iterations on dual mesh
- $\gamma$  Update the dual vertex positions
  - Keep the parameterization information
  - Update the dual Laplacian coordinates
    - Keep the geometry information
- Always convergent due to its stable 1ring structures
  - Fast convergent

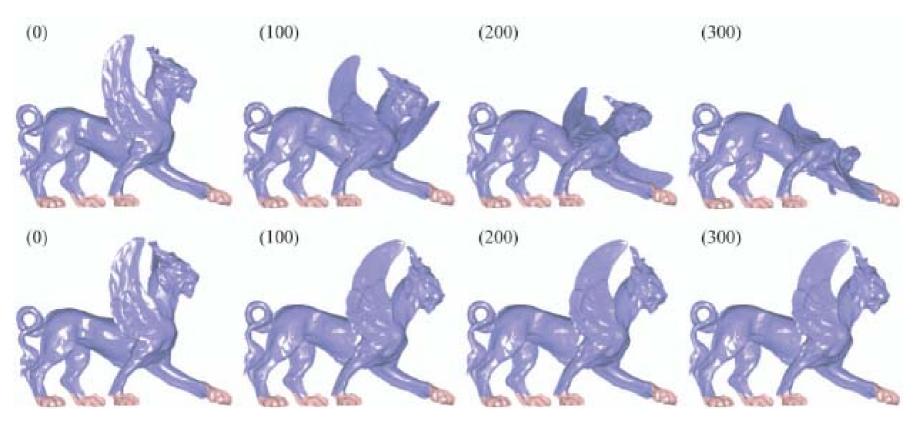
### **Dual Laplacian Editing**







# **Experimental Result**



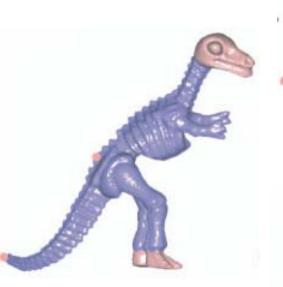
**Dual Laplacian Editing** 



Dr

# Reorienting the Dual LCs

#### Translational handles



Without reorientation



With reorientation



### Examples

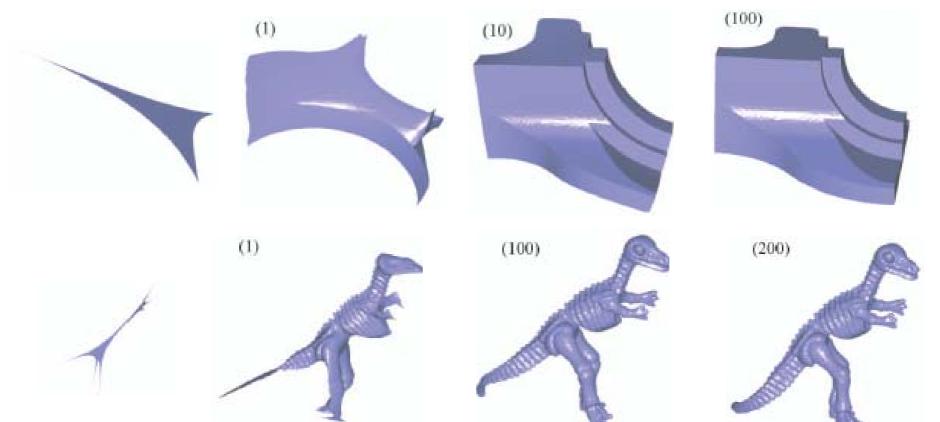
#### Fine details





Robust

#### Zero vectors as initial value





# Implementation

Solving the sparse linear system

- Factorization of normal equation
- Back-substitution at each steps

#### 10-20 iterations for all examples

| Model     | Number of | Factorization | Back-        |
|-----------|-----------|---------------|--------------|
|           | vertices  |               | substitution |
| Lion      | 5000      | 0.360         | 0.016        |
| Feline    | 4176      | 0.28          | 0.016        |
| Dinosaur  | 14000     | 1.63          | 0.047        |
| Skull     | 20002     | 3.38          | 0.078        |
| Armadillo | 60000     | 31.7          | 0.43         |

Pentium IV, 2.0GHz, 512M



### Dual Laplacian Morphing

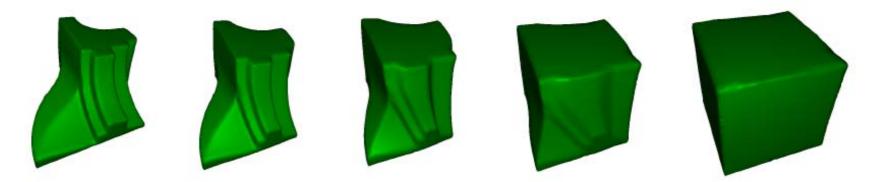
#### [Joint work with Hu et al.]

# Mesh Morphing



#### Input

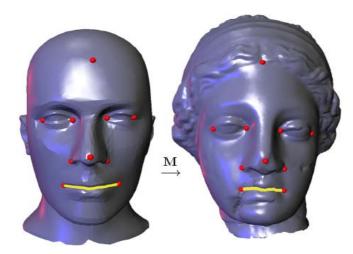
- Source mesh and target mesh
- Output
  - generate a sequence of intermediate meshes which gradually change from the source mesh to the target one



# Two Subproblems



- Vertex Correspondence Problem
  - To find a correspondence between vertices of the two shapes
- Vertex Path Problem
  - To find paths that the corresponding vertices traverse during the morphing process





# Motivation

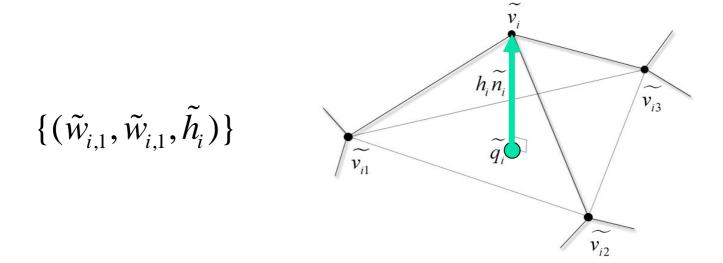
#### Novel path interpolation solution

- Assume the vertex correspondence between meshes has been established
- Goal
  - Avoid shrinkage and kink in intermediate meshes



### **Basic Idea**

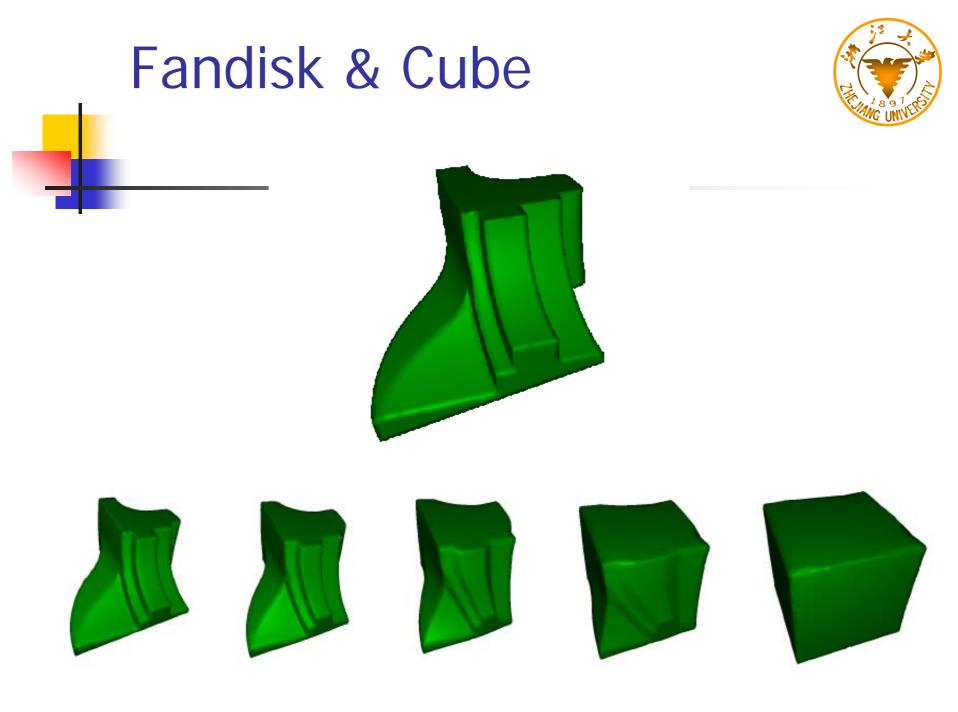
- Both parameterization and geometry information are linearly interpolated
- The interpolated intrinsic information are used to construct the intermediate shapes





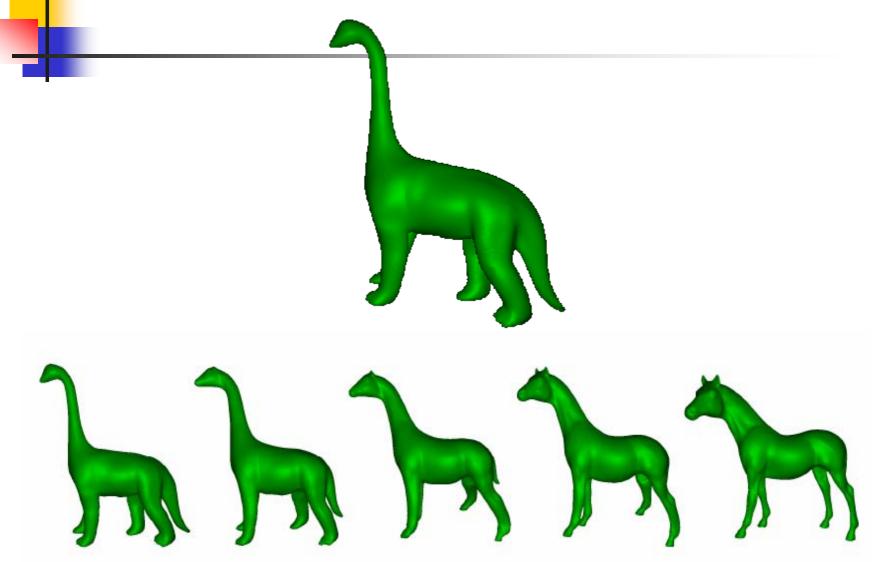
# **Dual Laplacian Morphing**

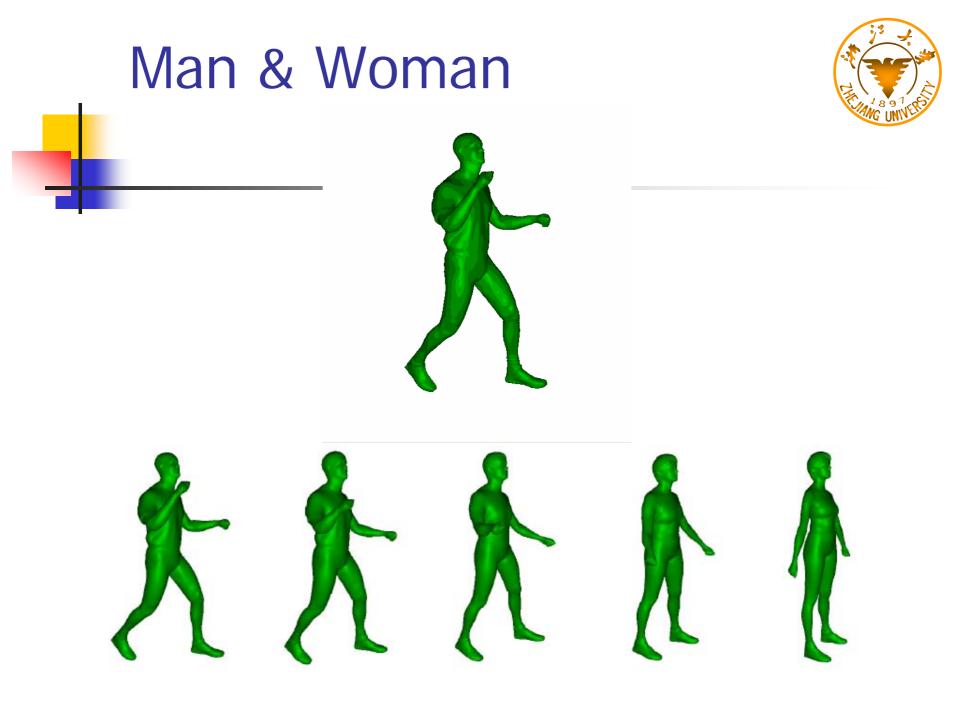
- Interpolating the intrinsic information of the two meshes
  - Parameterization and geometry information
- Performing on the dual meshes
  - Stable
- Reconstruction from intrinsic information
  - Non-linear process: linear iterative approximation

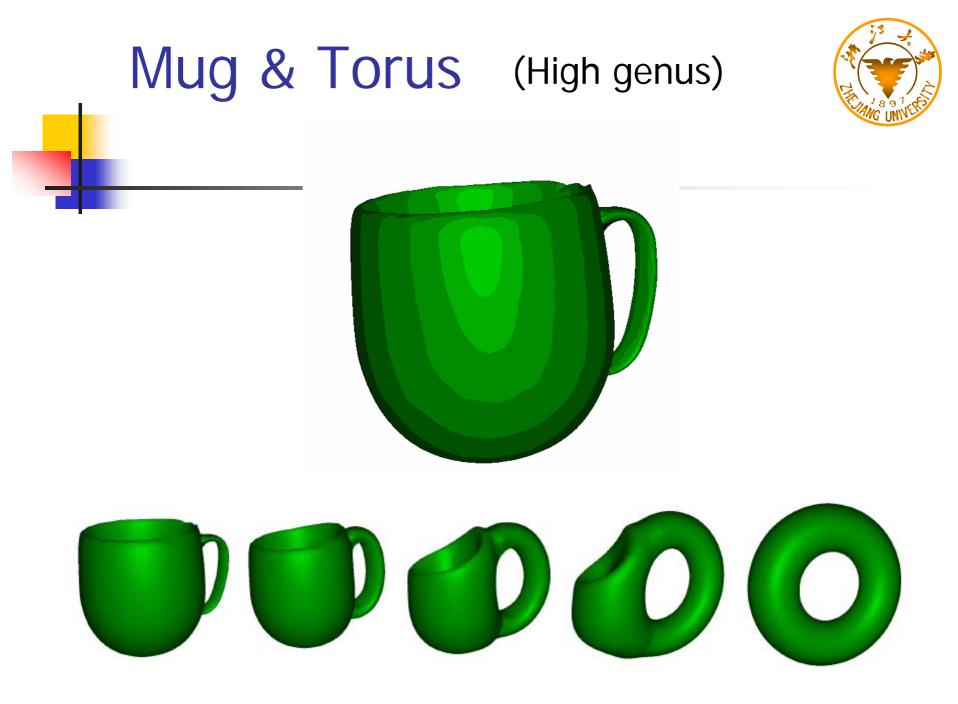


### **Dinosaur & Horse**



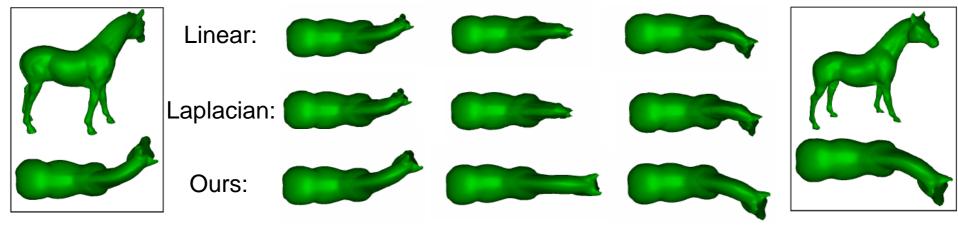














# **Dual Laplacain Morphing**

- Reconstruct the in-between shapes by dual Laplacian coordinates
- Construct the intermediate meshes by using an iterative framework
- Avoid the shape shrinkages and kinks



# Other Manipulations

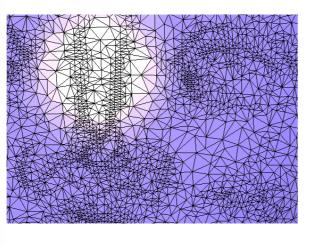


# **Spherical Parameterization**

# Assign constant mean curvatures to all vertices No overlapped







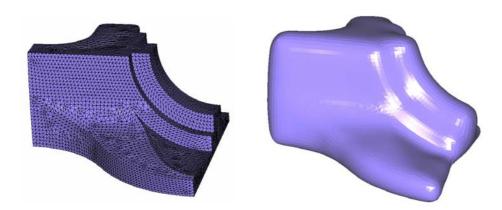


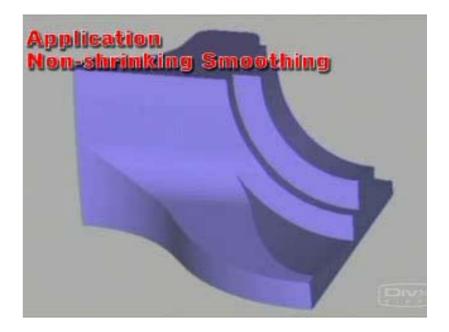


# Smoothing

#### Filtering curvature field

No shrinking effect



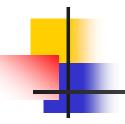




# Conclusion

- Dual Laplacian processing
  - Mean curvature flow
    - Intrinsic information
  - Perform on dual domain
    - Stable solution
  - Linear iteration framework
    - Fast
  - Many applications





### Thank you!