

Niloy J. Mitra

Symmetry Detection and Symmetrization

joint work with M. Pauly and L. Guibas

Goals

Detect symmetries in 3D geometry

Symmetrize 3D shapes

Symmetry Detection

Symmetry

"Symmetry is a complexity-reducing concept [...]; seek it everywhere."
- Alan J. Perlis

"Females of several species, including [...] humans, prefer symmetrical males."

- Chris Evans

What is Symmetry?

Invariance under a class of transformations

Reflection

Translation

Rotation

Reflection + Translation + Rotation + Scaling

- global vs. partial
- exact vs. approximative

Symmetry Detection

Given

Object/shape (represented as point cloud, mesh, ...)

Goal

Identify and extract *similar* (symmetric) patches of different *size* across different *resolutions*

Partial Symmetry

Transform Types:

- Reflection
- Rotation + Translation
- Uniform Scaling

Reflective Symmetry

Reflective Symmetry: A Pair Votes

Reflective Symmetry: Voting Continues

Reflective Symmetry: Voting Continues

Reflective Symmetry: Voting Continues

Reflective Symmetry: Largest Cluster

- Spread of cluster → approximation level
- Height of cluster → size of patch

Symmetry Detection

Accumulation of local evidence

- clustering to extract symmetry transformation
- verification to extract symmetric patches

Pipeline

Pruning: Local Signatures

- Local signature → invariant under transforms
- Signatures disagree → points don't correspond

Use (κ_1, κ_2) for curvature based pruning

Transformations

- Reflection → point-pairs
- Rigid transform → more information

Robust estimation of principal curvature frames [Cohen-Steiner et al. `03]

Mean-Shift Clustering

Kernel:

- Type → radially symmetric hat
- Radius

Compression: Chambord

Compression: Chambord

Approximate Symmetry: Dragon

detected symmetries

correction field
UNITS: fraction of bounding box diagonal

Symmetrization

Symmetrization

Goal: Symmetrize 3D geometry

Approach: Minimally *deform* the model in the *spatial* domain by optimizing the distribution in transformation space

Optimal Displacements

Goal: Minimally displace two points to make them symmetric with respect to a *given transformation*

 \mathbf{p}_i

Optimal Displacements

Goal: Minimally displace two points to make them symmetric with respect to a *given transformation*

Optimal Displacements

Goal: Minimally displace two points to make them symmetric with respect to a *given transformation*

Optimal Transformation

Goal: Find *optimal transformation* and *minimal displacements* for a set of point-pairs

Optimal Transformation

Goal: Find *optimal transformation* and *minimal displacements* for a set of point-pairs

closed form solution

object domain

transform domain

pair of points

 \rightarrow

point

2D Example: Another point-pair votes

2D Example: Voting Continues

pairs of sample points define reflective symmetry transform

2D Example: Density Plot

density plot \rightarrow accumulation of symmetry evidence

2D Example: Density Peaks

transformation space

density cluster → reflective symmetry

2D Example: Symmetry Detection

transformation space

2D Example: Symmetry Detection

a set of potential corresponding point pairs extracted

2D Example: Symmetry Detection

spread of such points \rightarrow *deviation* from exact symmetry

shape after cluster contraction

Recap

- Object space *point pairs* → *points* in transform space
- Cluster in transform space corresponds to approximate symmetry
- Cluster contraction in transform space corresponds to constrained deformation in object space that enhances object symmetry

transformation space

cluster merging \rightarrow global symmetrization

cluster merging \rightarrow global symmetrization

cluster merging/contraction \rightarrow global symmetrization

cluster merging/contraction \rightarrow global symmetrization

cluster merging/contraction \rightarrow global symmetrization

Sub-problems

Local Symmetrization

Cluster contraction
 Where to move in transform space?
 How to deform in the spatial domain?

Global Symmetrization

Cluster merging

Goal: Find *optimal transformation* and *minimal displacements* for a set of point-pairs

minimize displacements in object space

closed form solution to compute optimal transformation

Reflection

eigenvalue problem

Rigid Transform

- SVD problem
- similar to one step of ICP (Iterative Closest Point)

Sub-problems

Local Symmetrization

Cluster contraction
 Where to move in transform space?
 How to deform in the spatial domain?

Global Symmetrization

Cluster merging

2D: Igarashi, Moscovich, Hughes: *As-Rigid-As-Possible Shape Manipulation*, SIGGRAPH 2005

3D: Botsch, Pauly, Gross, Kobbelt: *PriMo: Coupled Prisms for Intuitive Surface Modeling*, SGP 2006

Stanford Bunny

6D transform space \rightarrow

2D for visualization

Symmetrizing the Bunny

Symmetrized Bunny

Bunny Feet

Dragon

Symmetry Detection and Symmetrization

Dragon

Symmetry Detection and Symmetrization

Dragon

Symmetry Detection and Symmetrization

Symmetrizing the Dragon

Symmetrized Dragon

Symmetric Meshing

3000 faces

2000 faces

Registration: Articulated Bodies

Registration: Articulated Bodies

Registration: Articulated Bodies

Registration: Geometric Distortion

Conclusion

Optimization that *couples* symmetry transformation space and object space to enhance approximate symmetries while minimally altering the shape

Future Work

- symmetry respecting geometry processing
- hierarchical shape semantics
- perception, art, design
- other data, e.g. motion data, derived spaces

Acknowledgments

Mario Botsch
Takeo Igarashi
Helmut Pottmann
Benjamin Schneider

Funding:

Austrian Science Foundation Swiss National Science Foundation NSF, DARPA, NIH

References

Symmetrization

Mitra, Guibas, Pauly
ACM SIGGRAPH 2007 (TOG)

Partial and Approximate Symmetry Detection for 3D Geometry

Mitra, Guibas, Pauly
ACM SIGGRAPH 2006 (TOG)

Thank you!

http://graphics.stanford.edu/~niloy/research/