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pair of parallel meshes M, M’

+ M’ and M have same combinatorics

» corresponding edges e’ and e; are parallel
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Notation

vertex offset mesh M’ to M at constant distance d

« M'is a parallel mesh to M

e ||m; — m;|| = d for all vertices
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Notation

discrete Gauss image

e o(M) =M —-M)/d

« = The vertices of o(M) are contained in the unit

sphere.




Notation

Two planar polygons P = (pq, . . ., pPx—1) and
QR =(qo. ..., gk—1) are called parallel, if

Pi — Pi+1 H di — qj+1

QP2
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» oriented area defined by
k—1

1
area(P + dQ) — 5 Z det(,D/ + dq/, Pit1 + dq,'_|_1, n)
1=0

. area(P+dQ) = area(P) + 2d area(P, Q) + d”?area(Q)




Notation

The mixed area of two parallel polygons P and Q is

defined as
1 k—1
area(P' Q) = Z Z(det(plv QI'—I—].) —I_ det(CIlv pll—l—l))
1=0
(see e.g. [Pottmann et al. SIGGRAPH 07])
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Definitions

surface f(U)

smooth

offset surface f9(U) where f=f +d-n

mesh M

offset mesh MY where M9 = M +d - (M)

discrete
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Definitions

smooth

Steiner’s formula:

area(ri(V)) = (

f(U)

1 — 2dH(x) + d*K(x))dx

discrete

area(M?) =

2

F;: Face of M

(1 — 2dHEg + d’°Kg) area(F;)




Definitions

Steiner’s formula:

area(r(U)) = f(U)(1 — 2dH(x) + d*K(x))dx

smooth

area(M%) = > (1—2dHg + d°Kg)area(F)
F,: Face of M

where Hr, and Kr, are discrete analogues of mean

discrete

and Gaussian curvature



Definitions

— discrete mean curvature

He =

/

_area(F;, o(F))

area(f)

[Pottmann et al. SIGGRAPH 07]




Definitions

— discrete mean curvature

He =

/

_area(F,, o(F))

area(F;)

— discrete Gaussian curvature

/

Kp =

~area(o(F)))
area(F;)

[Pottmann et al. SIGGRAPH 07]
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Definitions

f(U) is a minimal surface <= H(x) = 0 for all

smooth

x e U

M is a discrete minimal surface <— Hg = 0 for all

faces F; of the mesh M

discrete



Definitions

/—//:I.:O<=>—

area(f;, o(F))

area(f;)

=0« area(F;,0(F)) =0




Definitions

area(f;, o(F;))
area(f;)

He =0 & — =0« area(F;,0(F)) =0

M is a discrete minimal surface if and only if

area(f;, o(F;)) = 0 for all faces F; of the mesh M.




Vanishing mixed area

Two parallel quads have vanishing mixed area if and only
If they have antiparallel diagonals.

[Pottmann et al. SIGGRAPH 07]
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Vanishing mixed area

In the following:

Assume that k is even, and that P = (pyo, . . .,

QR =1(qo, ..., dx—1) are planar polygons.

So P and 2 have an even number of vertices.



Vanishing mixed area

Notation:

L(x,v) = {x+ v | X € R} denotes astraight line through

the point x with the direction v.
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Vanishing mixed area

For two parallel polygons

P and @, the mixed area

area(P, Q) is zero|, if either

{L(q), pj—1 — pj+1) | J odd} or

{L(QJH Pj—1 — pj+1) J even}

IS concurrent.



Vanishing mixed area

For two parallel hexagons P and @, the mixed area

area(P, Q) is zero

if and only if {L(Qj, Pj—1 — Pj+1) |

Jjodd} and {L(q,, pj-1 — pj+1) | J even} are concurrent.

3 5
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Vanishing mixed area

For two parallel hexagons P and @, the mixed area

area(P, Q) is zero

if and only if {L(Qj, Pj—1 — Pj+1) |

Jjodd} and {L(q,, pj-1 — pj+1) | J even} are concurrent.




Vanishing mixed area

P rOOf = The ‘only if’ part follows from a Lemma before.

In order to show the ‘if’ part we assume area(P, Q) = 0 and show that the lines L(g1, po—p2), L(qs, po—pa), and L(gs, ps— po) are concurrent. The proof that L (qo, ps—p1),
L(g2, p1 — p3), and L(qa, ps — ps) are concurrent works analogously.
The considered lines are concurrent if and only if

q1 Po — p2 as P2 — Pa ds Pa — Po _
e[ (3 ) (7o) () ("™ ) () =("™ )]
(this follows imediately from the formulae for the span of two points when using homogeneous coordinates). Because vanishing mixed area is affinely invariant, we can
assume without loss of generality that po = (0, 0), p» = (1,0), and ps = (1, 0). Then the determinant simplifies to

0 1 —1
det -1 1 0 =
detgipo — p2  detqasp> — psa detqgsps — po
= det q1po — p2 + det gap2 — pa + det gspa — po. (1)

We have already shown that area(P, Q) = 0 <= Z?:o det(pi, gi+1 — gi—1) = 0 <= Z?:o det(qi, pi+1 — pi—1) = 0. In view of these equations, (1) equals
— (det gops — p1 + det g2p1 — ps + det gaps — ps). ()
The expression in (1) also equals

det gipo — p1 +det gip1 — p2 + det gz3p> — ps+
+ det gsps — pa + det gsps — ps + det gsps — po.

Now we use the parallelity of the edges which means det g; — gi+1pi — pi+1 = 0 and det —q; + gi+1pi — pi+1 = 0, respectively, and get

det gopo — p1 + det gop1 — po + det gopo — p3+
+ det gaps — ps + det gaps — ps + det qops — po =
= det qops — p1 + det gap1 — p3 + det gaps — ps ()

We know that (2) equals (3) which is only possible when it is 0. This shows that the determinant considered above equals 0, which proves the propsition.



Vanishing mixed area

For two parallel hexagons P, Q:

area(P, Q) = 0| is equivalent to the concurrence of the

following sets of lines:
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Vanishing mixed area

For two parallel hexagons P, Q:

area(P, Q) = 0| is equivalent to the concurrence of the

following sets of lines:
1. {L(QO, Ps — Pl), L(Cb, P1 — P3), L(CM, P3 — P5)}; or
2.{L(q1, po — pP2), L(q3. po — Pa), L(qs, pa — po)}; or

3.both {L(q1, po — p2), L(q3, P2 — Pa), L(Gs, p4 — Po)},
{L(qo, ps — p1), L(qo, p1 — P3), L(qa, p3 — P5)}
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Construction

Given: hexagon P
Look for a parallel hexagon Q

with area(P, Q) = 0.

» choose one arbitrary point g \\ .
\ /
: : —_—— \ 7/
» draw straight lines parallel to Rk S
SG T
Ps — P1, P1 — P3; P3 — Ps SN
/ \
/ \
through g / \
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Construction

choose points qg, §», G

Get hexagon Q by drawing
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Construction

» The vector space of all hexagons parallel to a given
one has dimension 4.
e Having vanishing mixed area is a linear condition.

So these hexagons form a 3 dimensional subspace.



Quads as hexagons
3

501

501

2



Pentagons as hexagons
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5 3
0 a2
3
5

 —



Discrete minimal surfaces

given mesh
dual mesh




Discrete minimal surfaces

given mesh
dual mesh




Discrete minimal surfaces

given mesh
dual mesh




Discrete minimal surfaces

given mesh
dual mesh




Discrete minimal surfaces

Christoffel dual construction

 f isothermic parametrisation



Discrete minimal surfaces

Christoffel dual construction

 f isothermic parametrisation
» construction of the dual surface f*

f i
fu* _ u fv* — 4
I7ull? 1717
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Discrete minimal surfaces

Christoffel dual construction

 f isothermic parametrisation

« construction of the dual surface f*

f f
fu* _ u fv* — 4
1|2 1112
» sphere: | = (&) 1= (;* )

o 1" = (55 "= (5 _%) = mean curvature H =0



Discrete minimal surfaces

Discrete Christoffel dual construction
[Bobenko, Pinkall 96]

[Bobenko, Hoffmann, Springborn 06]

[Bobenko, Hoffmann, Springborn 06]
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Discrete minimal surfaces

hexagonal mesh with vertices
on the unit sphere
Christoffel dual construction

— discrete minimal surface




Discrete minimal surfaces

I
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Summary

» relation between discrete minimal surfaces and mixed
area
* pairs of hexagons with vanishing mixed area

o discrete Christoffel dual construction



