Meshes with offset properties

Johannes Wallner, TU Graz

Workshop "Polyhedral Surfaces and Industrial Applications", Strobl. September 16, 2007.

- Nodes without torsion
- Parallel meshes and geometric support structure
- offsets and discrete Gauss image
- circular meshes, conical meshes, EO meshes
- mesh optimization
- References: [Liu et al. SIGGRAPH 06], [Pottmann et al. SIGGRAPH 07], [Bobenko and Suris 2007]

Beams and Nodes in meshes

(Image courtesy Waagner Biro, Vienna)

Example of node

(Image courtesy Waagner Biro, Vienna)

19/1,

Node Torsion

3/30

- Problems with node geometry:
- Symmetry planes
 of beams do
 not intersect

 Meshes are parallel, if they are combinarially equivalent, and corresponding edges are parallel.

Mesh parallelity / Node torsion

- Suppose symmetry
 planes of beams co incide with planes
 spanned by corr.

 parallel edges
 → node axes exist,
 - no torsion

Parallel triangle meshes

- For 2 triangles Δ , Δ' with parallel edges there exists a central similarity transformation with $\Delta \mapsto \Delta'$
- Factor of similarity determined by edge length ratio
- If connected triangle meshes are parallel then they are homothetic.

Geometric support structure

- consists of 2 parallel meshes plus
 - connecting planes
- plus node axes

7/30

neighbouring node
 axes intersect
 each other

Geometric Support Structure

- Structure of the system of node axes:
- They form discrete developable surfaces
- (just like the normals of a principal curvature line parametrization)
- Parallel mesh can be reconstructed from axes

Meshes at constant distance

- Offsets meshes are used for multilayer constructions
- Beams also count as multilayer constructions (faces are not physically realized)

Meshes at constant distance

- Parallel meshes \mathcal{M} , \mathcal{M}' are:
- **edge offsets** \iff corr. edges have constant distance
- **face offsets** \iff corr. faces have constant distance
- approximate offsets <--> corresponding vertices/

edges/faces are at approximately constant distance.

Discrete Gauss image: v-offsets

- If meshes \mathcal{M} , \mathcal{M}' are at constant **vertex-vertex** distance d, then the **vertices** of $\mathcal{S} = \frac{\mathcal{M}' \mathcal{M}}{d}$ have distance 1 from the origin.
- \implies There is a 'spherical' mesh S with $\mathcal{M}' = \mathcal{M} + dS$.
- View vertices of \mathcal{S} as unit normal vectors

(S is Gauss image)

 $\bullet \ \mathcal{M} \parallel \mathcal{M}' \implies \mathcal{M} \parallel \mathcal{S}$

Discrete Gauss image: f-offsets

• If meshes \mathcal{M} , \mathcal{M}' are at constant **face-face** distance d, then the **faces** of $\mathcal{S} = \frac{\mathcal{M}' - \mathcal{M}}{d}$ have distance 1 from the origin.

• \implies There is a 'spherical' mesh S with $\mathcal{M}' = \mathcal{M} + dS$.

• View vertices of \mathcal{S} as unit normal vectors

(S is Gauss image)

$$\bullet \ \mathcal{M} \parallel \mathcal{M}' \implies \mathcal{M} \parallel \mathcal{S}$$

Discrete Gauss image: e-offsets

- If meshes \mathcal{M} , \mathcal{M}' are at constant **edge-edge** distance d, then the **edges** of $\mathcal{S} = \frac{\mathcal{M}' \mathcal{M}}{d}$ have distance 1
 - from the origin.

Discrete Gauss image: v-offsets

- A quad mesh ${\mathcal M}$ has vertex offsets
 - \implies \exists a quad mesh \mathcal{S} with $\mathcal{S} \parallel \mathcal{M}$ and vertices in \mathcal{S}^2
 - \implies Every quad of ${\mathcal M}$ has a circumcircle
 - $\implies \mathcal{M}$ is a circular quad mesh
- The converse is true for simply connected meshes. [Konopelchenko and Schief 1998], [Pottmann et al 2007]

Discrete Gauss image: f-offsets

- A mesh ${\mathcal M}$ has face offsets
- \iff \exists a mesh S with $S \parallel \mathcal{M}$ and faces tangent to S^2
- \iff for \mathcal{S} , the faces adjacent to a vertex lie in a cone

of revolution

- \iff for $\mathcal M$ the same is true
- $\iff \mathcal{M}$ is a conical mesh
- [Liu et al SIGGRAPH 2006]

Discrete Gauss image: e-offsets

- A mesh $\mathcal M$ has edge offsets \iff
- \exists a mesh S with $S \parallel \mathcal{M}$ and edges tangent to S^2
- \mathcal{S} is then a Koebe polyhedron
 - cf. [Bobenko, Springborn 2005ff]
- Edges emanating from a vertex are tangent to a cone
 (for both *S* and *M*)

Example

18/30

EO meshes

are realizable as

beams of

constant height

• Here:

3D printout

Geometric Transformations: Möbius

- Apply a Möbius transformation to vertices of quad mesh which has v-offsets: result has v-offsets.
- Passage to parallel mesh keeps v-offset property

Geometric Transformations: Laguerre

- A sphere with center (m₁, m₂, m₃) and radius r ∈ ℝ is identified with a point of ℝ⁴.
- For J = diag(1, 1, 1, -1), an affine mapping $x \mapsto Ax + a$ in \mathbb{R}^4 is an L-transformation $\iff A^T J A = J$.
- spheres tangent to a plane/cone retain this property

 \implies L-transformation applies to planes/cones.

L-trafos keep contact sphere/plane/cone.

Geometric Transformations: Laguerre

- Apply a Laguerre transformation to faces of mesh which has f-offsets: Result has f-offsets
- Apply a Laguerre transformation to edge cones associated with the vertices of an EO mesh: Result consists
 - of edge cones of an e-offset mesh. [Pottmann 06]

L-trafo example for conical mesh

L-trafo example for EO mesh

- Start with a Koebe polyhedron ${\mathcal S}$
- Find an EO mesh ${\mathcal M}$ parallel to ${\mathcal S}$

L-trafo example for EO mesh

- Apply Laguerre transformation
 - \implies EO mesh again.

Approximation problems

Given is a surface " Φ ". We ask:

- Does some quad mesh (triangle mesh, hex mesh) with planar faces approximate Φ ? YES
- Does some circular/conical mesh approximate Φ ? YES
- are exactly constant beam heights possible? NO
- are approximately constant beam heights possible?

- Beam layout: To avoid node torsion, beams are bounded by corresponding edges of a parallel mesh pair
- First Task: Find mesh

- A quad-dominant mesh with planar faces is a discrete network of conjugate curves
- Choose from several conjugate networks

- Construct mesh from curve network
- Planarize [Liu et al. 2006]

$$\sum_{\text{faces angles}} (\sum_{j=1}^{n} \alpha_j - (n-2)\pi)^2 \to \min$$

- **2nd Task:** Find spherical mesh S parallel to \mathcal{M} .
- fairness functional
- face functional
- vertex functional
- \implies optimize

(small weight for fairness)

$$\sum_{\text{vertices } \mathbf{s}_i} \left(\mathbf{s}_i - \frac{1}{\deg(\mathbf{s}_i)} \sum_{\mathbf{s}_j \in \text{link}(\mathbf{s}_i)} \mathbf{s}_j \right)^2$$
$$\sum_{\text{faces } F} (\mathbf{n}_F \cdot (\mathbf{s}_{i(F)} - \mathbf{n}_F))^2$$
$$\sum_{\text{vertices } \mathbf{s}_i} (\mathbf{s}_i - \widetilde{\mathbf{n}}_i)^2$$

S

- 3rd Task: Use meshes $\mathcal M$ and $\mathcal M + d\mathcal S$
 - for beam layout.

Conclusion

- Parallel meshes: for nodes without torsion
- Offsets: for multilayer constructions,

including beam layout

- Edge offset meshes (exactly constant beam heights)
- Geometric transformations
- Mesh optimization (approximately constant beam heights)