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Problem Formulation

We want to tile a free-form surface using 
planar hexagonal mesh  -- P-Hex mesh.

Wish to have regular titling with every vertex 
valence = 3, (which is not possible for closed surface 
if genus g ≠ 1).



Approach proposed

Computing P-Hex mesh from regular 
triangulation of smooth surface.



Introduction

Applications in architectural design 
-- glass/metal panels

[Liu et al, 2006]



P-Quad Meshes

P-Quad meshes, related to conjugate curve networks 
[SAUER 1970, Bobenko and Suris 2005]

Conical P-Quad meshes, related to curvature lines [Liu 
et al, 2006]



Beyond Quad Meshes ..



P-Hex Mesh for Quadrics via Power Diagram 
[Diaz et al, 2006]



Parallel Meshes [Pottmann et al, 2007]



Support Functions [Almegaard et al, 07]

P-Hex mesh from piecewise linear support function over 
triangulation of Gaussian sphere.

Courtesy of Bert Juettler



Planar Clustering [Cutler & Whiting, 2007]
(based on [Cohen-Steiner et al, 2004])



Projective Duality [Karahawada & Sugihara, 2006]

Projective duality: correspondence between planes and 
points:

plane ax + by + cz - 1 =0 point  (a, b, c)
in  prime space  P in dual space D

in D by affine trans.in P



Anomalies of Projective Duality
-- not a one-to-one mapping in many cases

A developable in P yields a curve D
Parabolic lines on surface in P correspond to singularity 
on surface in D
High metric distortion



Triangle mesh in D P-Hex mesh in P

What is a good triangulation in dual space?



Triangle mesh in D P-Hex mesh in P

Self-intersecting P-Hex Mesh



Main Results

1. A new method for computing P-Hex meshes 
from regular triangle meshes using Dupin 
duality, a new concept to be introduced.

2. Conditions on P-Hex meshes thus computed 
to be free of self-intersecting faces



Assume a sequence of P-hex meshes converging to a 
given smooth surface.

----- discrete differential geometry.

In the limit …



Shape of P-Hex Face on Surface

Theorem:  Suppose that a P-Hex mesh M
approximates a surface S. In the limit, the six 
vertices of P-Hex face of M at a point v of S lie on 
a homothetic copy of Dupin conic of S at v. 



Which one is P-Hex mesh of cylinder?Which P-Hex mesh is possible?



Conjugate directions on a developable

-- Any direction is conjugate to ruling direction 
on a developable.



Discrete Developable Strip

Strip direction and rulings are conjugate on a 
developable strip of P-Hex faces





Construction of P-Hex mesh using developable 
strips

Step 2:
brick-wall

Step 1:
conjugate network

Step 3: Optimize: P-Hex



Optimization

Objective function: 

Constraint: face planarity
Minimize distances to target surface

Solver:

Lagrange-Newton method, or
Penalty method

Initialization is key!



P(s,t) = (sin(s)+2cos(t/2), sin(s/4)+t,  s+sin(t/2))

0 <= s <= 2Pi ,   0 <= t <= 2Pi

Example of translational surface



Trapezoidal P-Hex Mesh



Does brick-wall initialization always work?

Correspondence between brick wall and triangulation

This leads us to consider triangulation as a means of 
initialization.



A possible scheme -- center duality



Does center duality always work?

Connecting centers of adjacent triangles yields a 
hex mesh, which is not necessarily planar. 

1) Can such a hex mesh always be 'pressed' into a 
good P-Hex mesh? Or,

2) what kind of regular triangle mesh corresponds to a 
good P-Hex mesh?

Good P-Hex mesh = all P-Hex faces have no self-intersection



P-Hex Mesh from Regular Triangle Mesh

Consider computing P-Hex mesh from 
regular triangle mesh of surface S.

Regular triangle mesh -- valence is 6, 
locally composed of congruent triangles, 
and characterized by three
principal line directions (in green).

Any of the six congruent triangles is called 
a fundamental triangle, t. 

t



Dupin Duality

Let D denote Dupin conic of surface S at v. Suppose that D is 
either elliptic or hyperbolic. 

Dupin center of triangle t is the center of the (unique) 
circumscribing Dupin conic of t. 

D
t

D

t



Dupin Dual of Triangle Mesh

Given a regular triangle mesh T
approximating surface S. 

Dupin dual of T is the hex mesh formed by 
connecting Dupin centers of all adjacent 
triangles.

Consider the assembly of 6 triangles 
incident to vertex v.

Theorem (Dupin Duality): The hex 
formed by Dupin centers of the 6 triangles 
is inscribed in Dupin conic.

v



Non-convex P-Hex ---- Hyperbolic Case



What triangulation produces good P-Hex mesh?

For this regular triangular mesh of ellipsoid, its Dupin dual 
contains self-intersecting P-Hex faces



Conditions on P-Hex Free of Self-intersection

Theorem:  P-Hex mesh is free of self-intersecting faces if and 
only if locally everywhere the Dupin center of fundamental 
triangle t is contained in t.

Or, equivalently, t is an acute triangle with respect to inner 
product induced by Dupin conic.



v 2
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Traversal 1 > 3’ > 2 > 1’ > 3 > 2’ > 1 gives the P-Hex face
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Traversal of 1 > 3’ > 2 > 1’ > 3 > 2’ > 1 gives 
self-intersecting P-Hex face



Good triangular mesh of torus

Dupin dual as nearly P-Hex mesh



Hyperbolic case – avoidance of self-intersection

Theorem: A P-Hex face is free of self-intersection if and 
only if three vertices of fundamental triangle t lie on 
different branches of Dupin hyperbola.



Theorem: Suppose that vertices of fundamental 
triangle t are on different branches of Dupin 
hyperbola. Then P-Hex face is star-shaped if and 
only if center of Dupin hyperbola is contained in t.

Hyperbolic case -- star-shaped non-convex P-Hex

Star-shaped P-Hex Non-star-shaped P-Hex



Hyperbolic case
– characterization in terms of asymptotic lines

1:2 3:00:32:1

Two asymptotic lines divide 2D direction field originated 
at surface point v into two ranges, with opposite directions 
being identified.



Condition on non-self-intersection of P-Hex faces

Theorem: P-Hex mesh is free of self-intersecting faces 
if only if locally everywhere the three principal line 
directions of regular triangle mesh  are NOT contained 
in the same range (i.e., 1+2 or 2+1 occurs).

1:2 3:00:32:1



Example 1



Example 1:  Case of 1 + 2



Example 1: Dupin dual (1+2)



Example 2



Example 2: Case of 2 +1



Example 2: Dupin dual (2+1)



Example 3



Example 3: Case of 0 + 3



Example 3: Dupin dual (0+3)



Example 4



Example 4: Case of 2+1



Example 4: Dupin dual (2+1)



Example 5



Example 5: case of 3+0



Example 5: Dupin dual (3+0)



Example 6: Enneper surface



Example 6: Enneper surface – check asymptotic directions



Example 6: Enneper surface – Dupin dual



Example 7: Catalan surface – triangulation



Example 7: Catalan surface – check asymptotic directions



Example 7: Catalan surface – Dupin dual



Example 8: Kinky torus  – triangulation and Dupin dual



Example 8: Kinky torus  – close-up views



Computational Issues
1) Computing Dupin center using curvature information 

at all three vertices

2) Detecting if Dupin center falls in triangle 
– done by sign-testing of inner products



Summary

We have provided local shape characterization of P-Hex 
meshes obtained from regular triangle mesh via Dupin 
duality. 

--- Dupin duality allows establishment of simple 
conditions on existence of valid P-Hex meshes; 

--- it also produces good initial hex mesh 
for effective optimization.



What's next

Develop a complete algorithm for computing P-
Hex meshes based on good understandings of 
properties and constraints.  

--- Design triangle meshes for computing P-Hex 
meshes

--- Control of shape, size, edge lengths and angles 
of P-hex faces

--- Compute P-Hex mesh with special properties, 
e.g., with vertex offset or edge offset property



Thank you
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