Geometry and Computation of Mesh Surfaces with Planar Hexagonal Faces

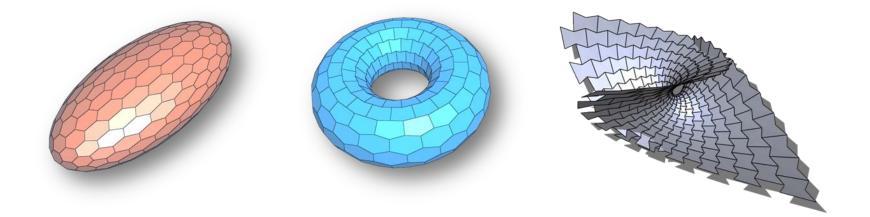
Wenping Wang and Yang Liu

The University of Hong Kong

Sept. 15-18, 2007, Workshop on Polyhedral Surfaces and Industrial Applications Strobl, Austria

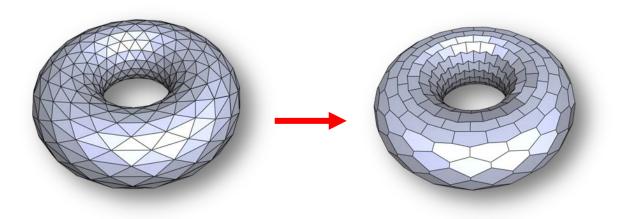
Problem Formulation

- We want to tile a free-form surface using planar hexagonal mesh -- P-Hex mesh.
- Wish to have regular titling with every vertex valence = 3, (which is not possible for closed surface if genus g ≠ 1).



Approach proposed

Computing P-Hex mesh from regular triangulation of smooth surface.



Introduction

Applications in architectural design

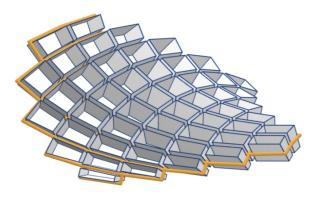
-- glass/metal panels

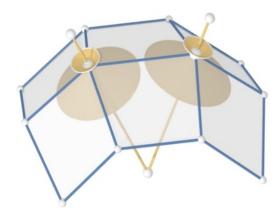


[Liu et al, 2006]

P-Quad Meshes

- P-Quad meshes, related to conjugate curve networks [SAUER 1970, Bobenko and Suris 2005]
- Conical P-Quad meshes, related to curvature lines [Liu et al, 2006]





Beyond Quad Meshes ...



P-Hex Mesh for Quadrics via Power Diagram [Diaz et al, 2006]

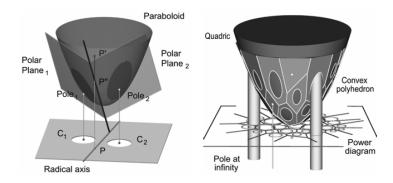


Fig. 1. Spatial interpretation of the chordal as the intersection of polar planes (*left*). Polyhedron that materializes the paraboloid of revolution through cylindrical projection of a power diagram (*right*).

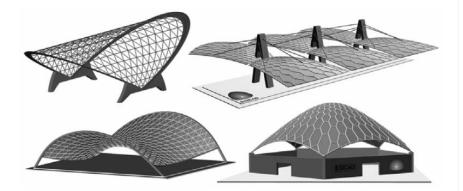
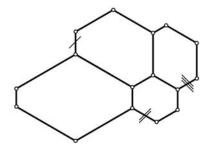
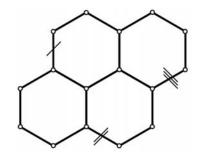
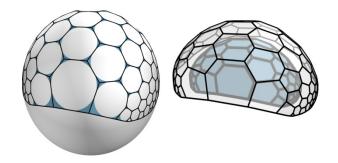


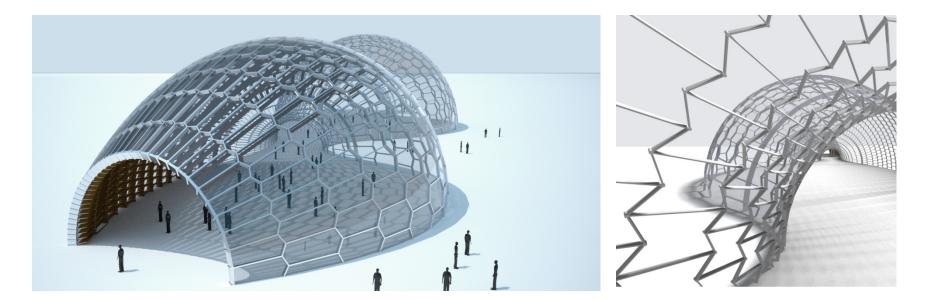
Fig. 16. Portions of quadrics used as space enclosures

Parallel Meshes [Pottmann et al, 2007]



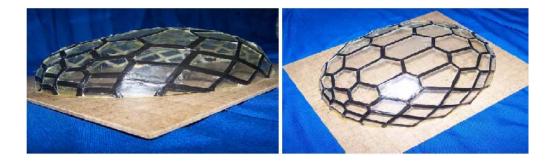






Support Functions [Almegaard et al, 07]

 P-Hex mesh from piecewise linear support function over triangulation of Gaussian sphere.



Courtesy of Bert Juettler

Planar Clustering [Cutler & Whiting, 2007] (based on [Cohen-Steiner et al, 2004])

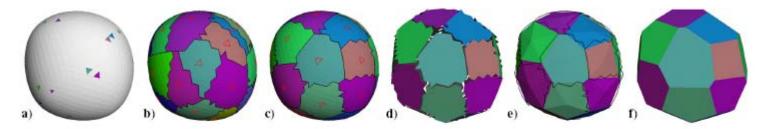
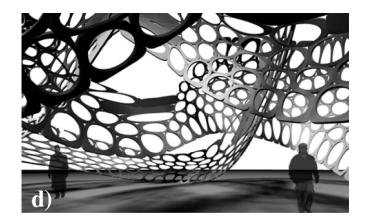
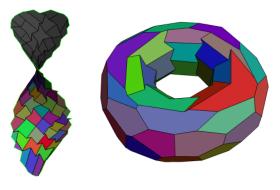


Figure 5: The basic algorithm begins by a) selecting random seed triangles from the original mesh. Next the mesh is b&c) iteratively clustered about these seeds and the seeds are repositioned; d) shows a visualization of the original mesh triangles projected onto the corresponding proxy planes; e) using the vertices and neighbors from the clusters we render non-planar polygons, similar to Cohen-Steiner et al. [6]; and f) the proper intersection of the neighboring planes.

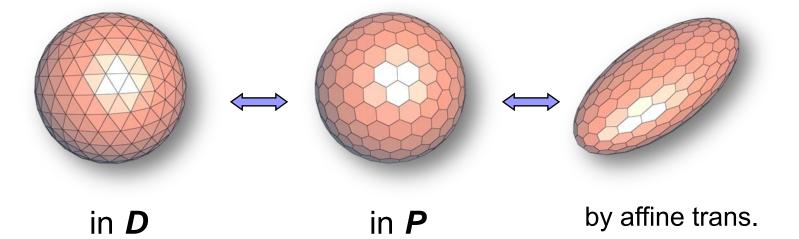




Projective Duality [Karahawada & Sugihara, 2006]

Projective duality: correspondence between planes and points:

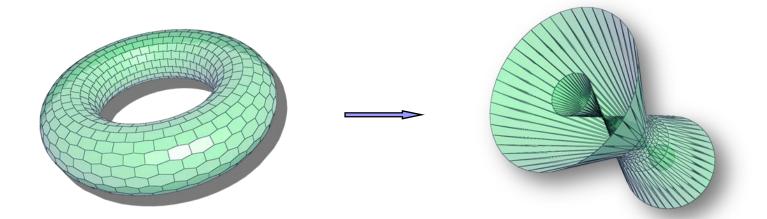
plane ax + by + cz - 1 = 0 \iff point (a, b, c)in prime space **P** in dual space **D**



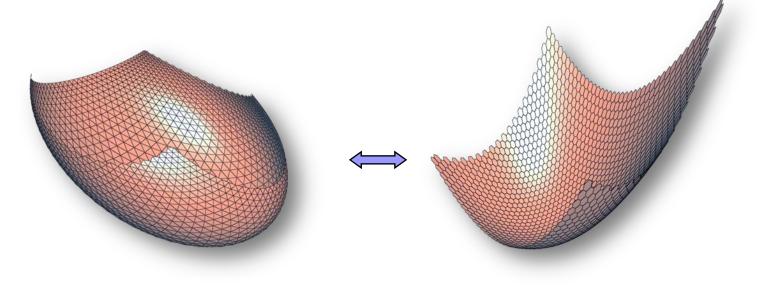
Anomalies of Projective Duality

-- not a one-to-one mapping in many cases

- A developable in *P* yields a curve *D*
- Parabolic lines on surface in *P* correspond to singularity on surface in *D*
- High metric distortion



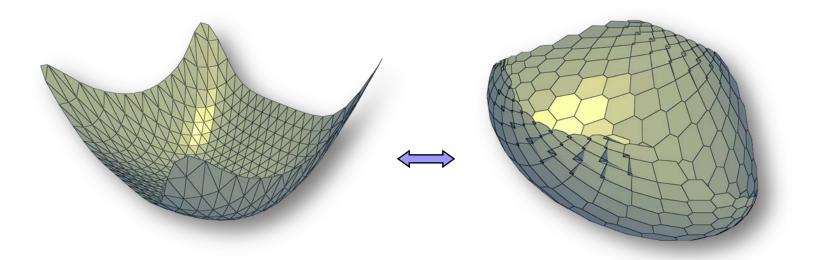
What is a good triangulation in dual space?



Triangle mesh in **D**

P-Hex mesh in *P*

Self-intersecting P-Hex Mesh



Triangle mesh in **D**

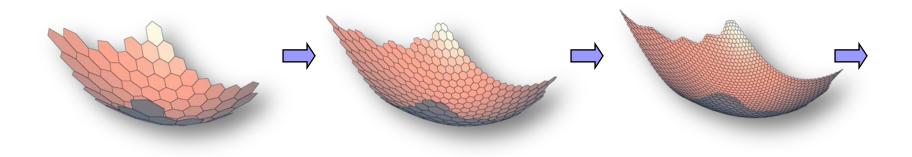
P-Hex mesh in *P*

Main Results

- 1. A new method for computing P-Hex meshes from regular triangle meshes using *Dupin duality*, a new concept to be introduced.
- 2. Conditions on P-Hex meshes thus computed to be free of self-intersecting faces

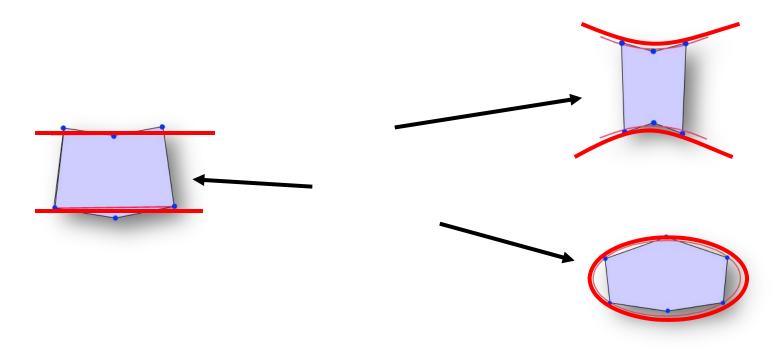
Assume a sequence of P-hex meshes converging to a given smooth surface.

----- discrete differential geometry.

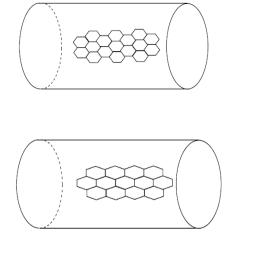


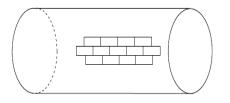
Shape of P-Hex Face on Surface

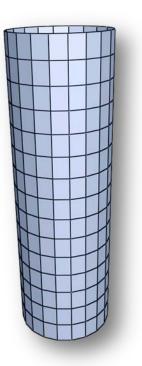
Theorem: Suppose that a P-Hex mesh M approximates a surface S. In the limit, the six vertices of P-Hex face of M at a point v of S lie on a homothetic copy of Dupin conic of S at v.

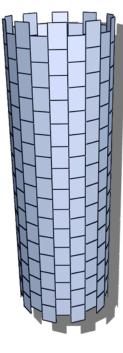


Which P-Hex mesh is possible?



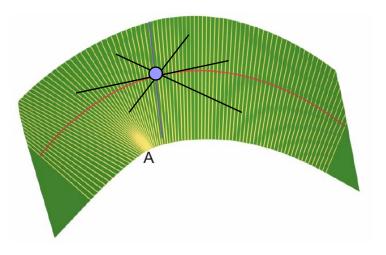






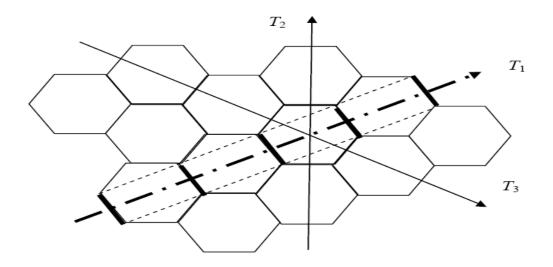
Conjugate directions on a developable

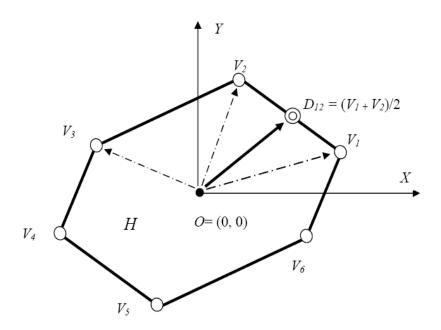
-- Any direction is conjugate to ruling direction on a developable.



Discrete Developable Strip

Strip direction and rulings are conjugate on a developable strip of P-Hex faces





A centrically symmetric hex is uniquely determined by V_1, V_2, V_3 . Denote $V_i = (\ell_i \cos \theta_i, \ell_i \sin \theta_i)^T$, i = 1, 2, 3.

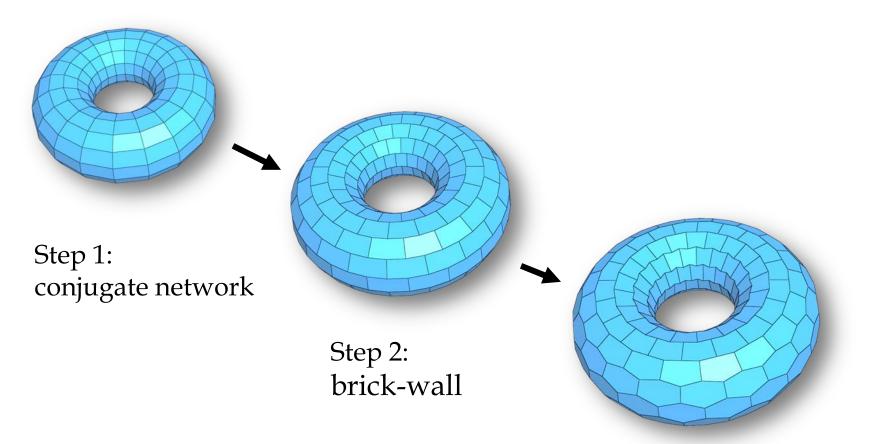
Since $D_{12} = (V_1 + V_2)/2$ is conjugate to the ruling $V_2 - V_1$,

$$\kappa_1(\ell_1^2 \cos^2 \theta_1 - \ell_2^2 \cos^2 \theta_2) + \kappa_2(\ell_1^2 \sin^2 \theta_1 - \ell_2^2 \sin^2 \theta_2) = 0.$$

Therefore,

$$\kappa(\theta_1)\ell_1^2 - \kappa(\theta_2)\ell_2^2 = 0,$$

Construction of P-Hex mesh using developable strips



Step 3: Optimize: P-Hex

Optimization

Objective function:

- Constraint: face planarity
- Minimize distances to target surface

Solver:

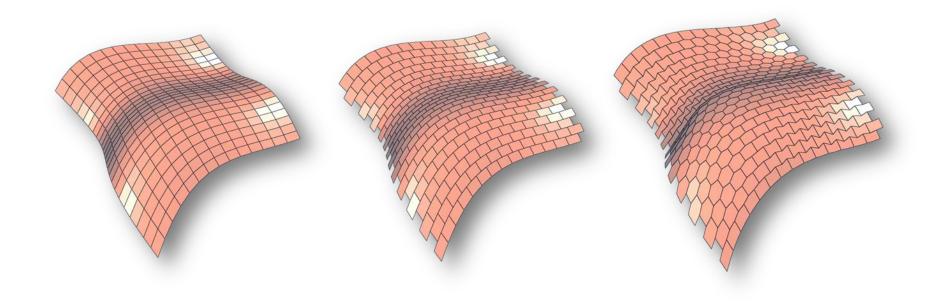
- Lagrange-Newton method, or
- Penalty method

Initialization is key!

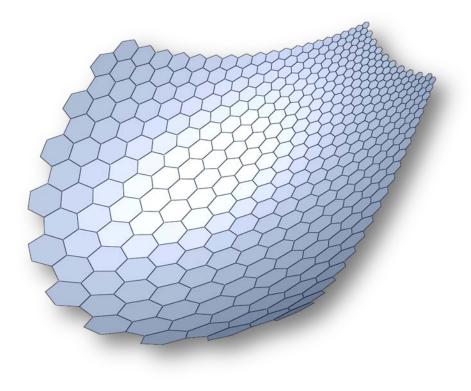
Example of translational surface

$$P(s,t) = (sin(s)+2cos(t/2), sin(s/4)+t, s+sin(t/2))$$

0 <= s <= 2Pi . 0 <= t <= 2Pi

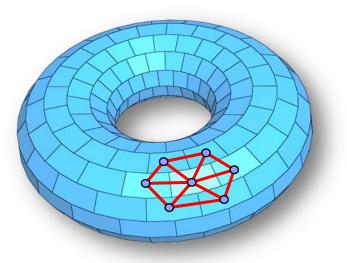


Trapezoidal P-Hex Mesh



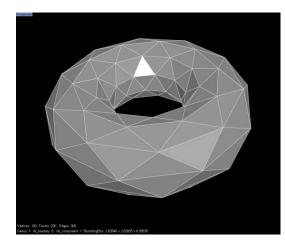
Does brick-wall initialization always work?

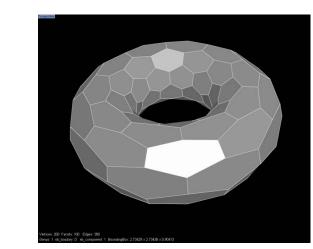
Correspondence between brick wall and triangulation

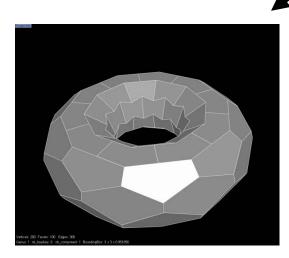


This leads us to consider triangulation as a means of initialization.

A possible scheme -- center duality







Does center duality always work?

Connecting centers of adjacent triangles yields a hex mesh, which is not necessarily planar.

1) Can such a hex mesh always be 'pressed' into a good P-Hex mesh? Or,

2) what kind of regular triangle mesh corresponds to a good P-Hex mesh?

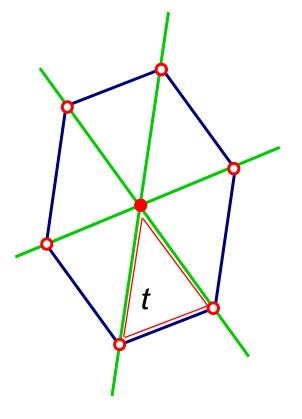
Good P-Hex mesh = all P-Hex faces have no self-intersection

P-Hex Mesh from Regular Triangle Mesh

Consider computing P-Hex mesh from regular triangle mesh of surface *S*.

Regular triangle mesh -- valence is 6, locally composed of congruent triangles, and characterized by three **principal line directions** (in green).

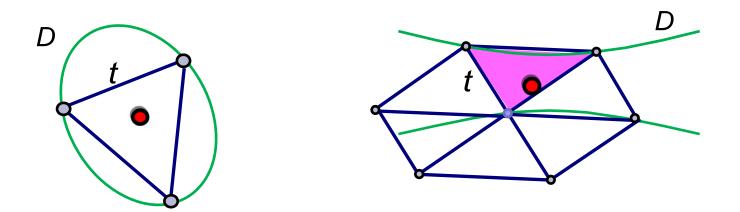
Any of the six congruent triangles is called a *fundamental triangle, t*.



Dupin Duality

Let *D* denote Dupin conic of surface *S* at *v*. Suppose that *D* is either elliptic or hyperbolic.

Dupin center of triangle *t* is the center of the (unique) circumscribing Dupin conic of *t*.



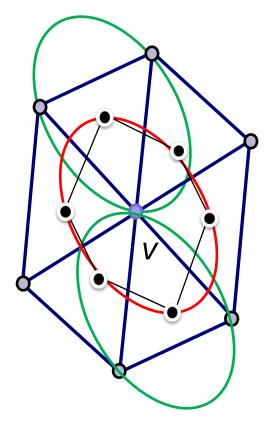
Dupin Dual of Triangle Mesh

Given a regular triangle mesh T approximating surface S.

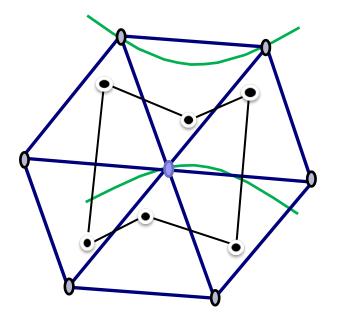
Dupin dual of *T* is the hex mesh formed by connecting Dupin centers of all adjacent triangles.

Consider the assembly of 6 triangles incident to vertex *v*.

Theorem (Dupin Duality): The hex formed by Dupin centers of the 6 triangles is inscribed in Dupin conic.

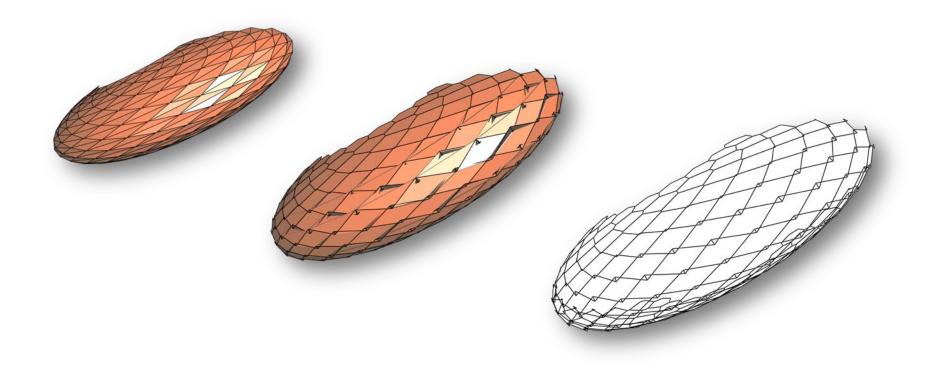


Non-convex P-Hex ---- Hyperbolic Case



What triangulation produces good P-Hex mesh?

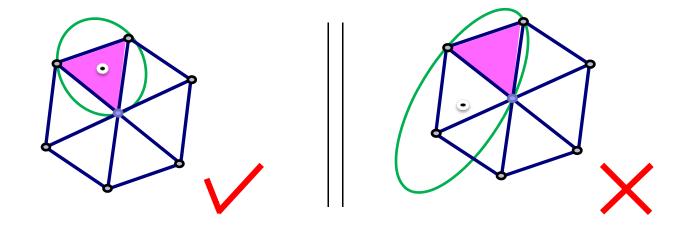
For this regular triangular mesh of ellipsoid, its Dupin dual contains self-intersecting P-Hex faces

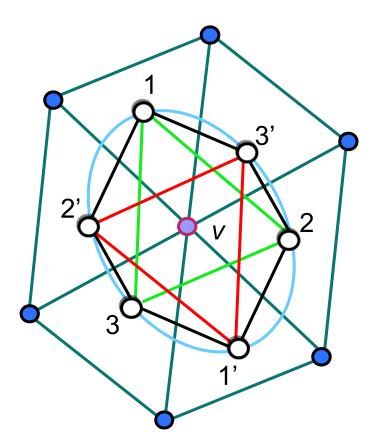


Conditions on P-Hex Free of Self-intersection

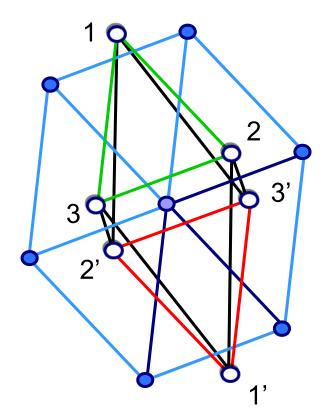
Theorem: *P*-Hex mesh is free of self-intersecting faces if and only if locally everywhere the Dupin center of fundamental triangle t is contained in t.

Or, equivalently, *t* is an acute triangle with respect to inner product induced by Dupin conic.

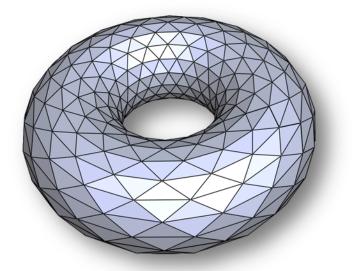




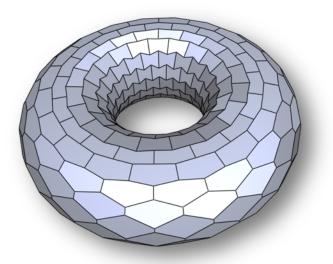
Traversal 1 > 3' > 2 > 1' > 3 > 2' > 1 gives the P-Hex face



Traversal of 1 > 3' > 2 > 1' > 3 > 2' > 1 gives self-intersecting P-Hex face



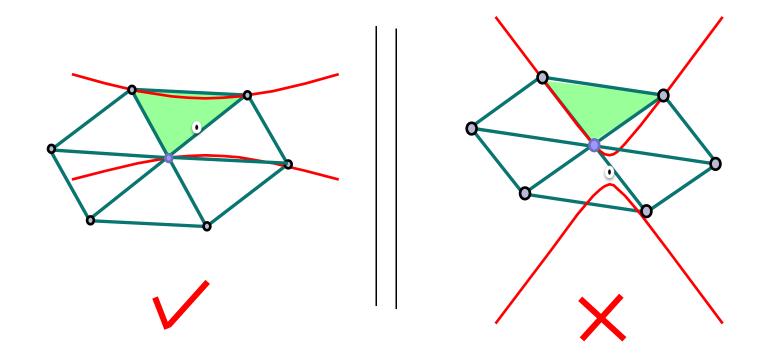
Good triangular mesh of torus



Dupin dual as nearly P-Hex mesh

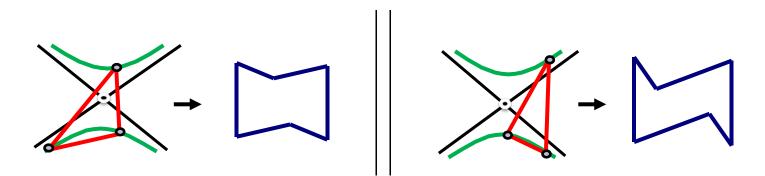
Hyperbolic case – avoidance of self-intersection

Theorem: A P-Hex face is free of self-intersection if and only if three vertices of fundamental triangle t lie on different branches of Dupin hyperbola.



Hyperbolic case -- star-shaped non-convex P-Hex

Theorem: Suppose that vertices of fundamental triangle t are on different branches of Dupin hyperbola. Then P-Hex face is star-shaped if and only if center of Dupin hyperbola is contained in t.



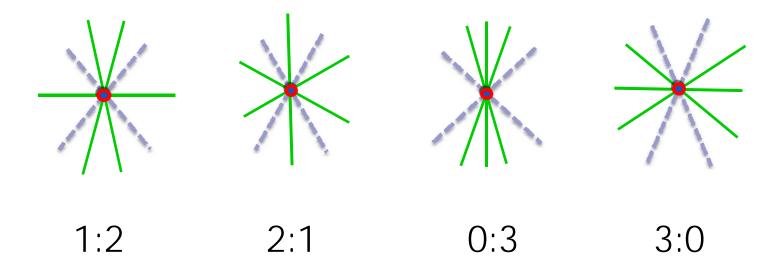
Star-shaped P-Hex

Non-star-shaped P-Hex

Hyperbolic case

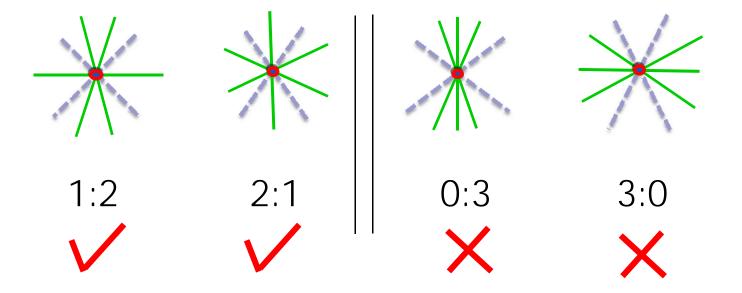
- characterization in terms of asymptotic lines

Two asymptotic lines divide 2D direction field originated at surface point *v* into two ranges, with opposite directions being identified.

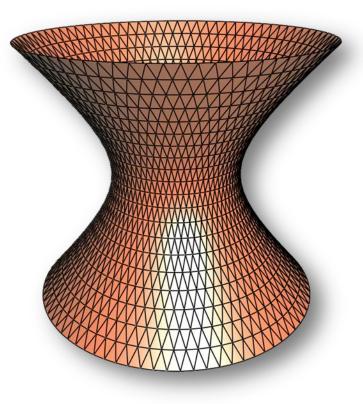


Condition on non-self-intersection of P-Hex faces

Theorem: P-Hex mesh is free of self-intersecting faces if only if locally everywhere the three principal line directions of regular triangle mesh are NOT contained in the same range (i.e., 1+2 or 2+1 occurs).



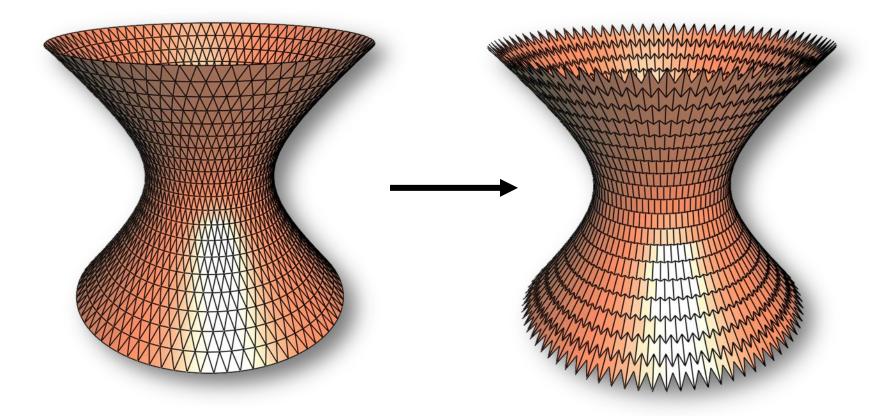
Example 1



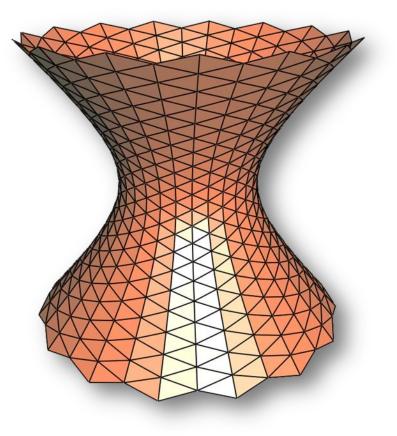
Example 1: Case of 1 + 2

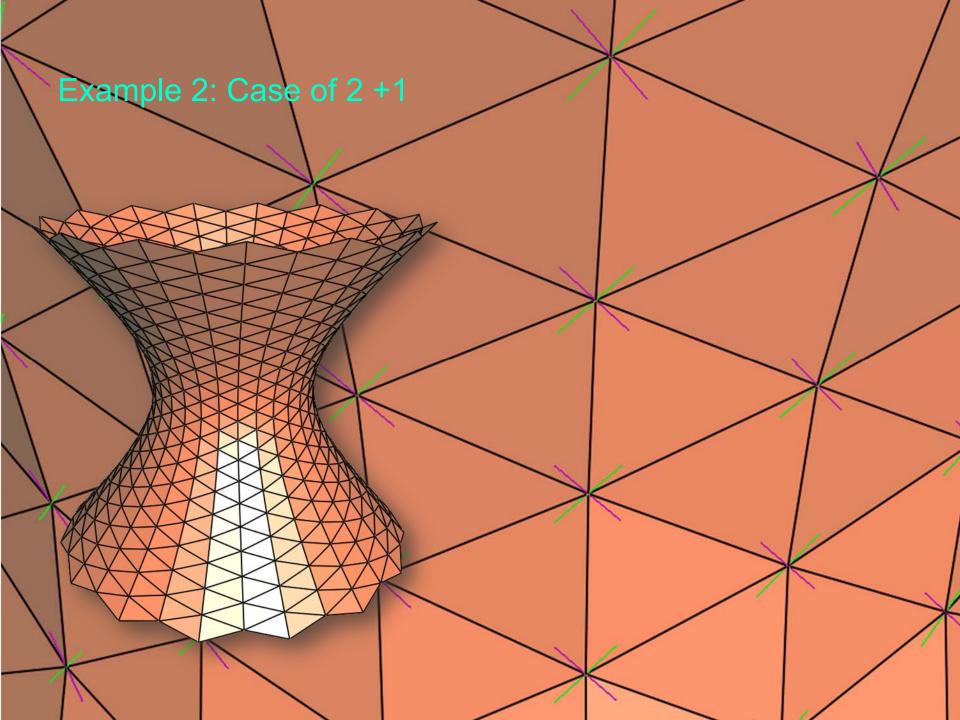
Vertices: 1680 Pacets: 3160 Edges: 4054 Genus: 0 nb_pourlary: 1 nb_component: 1 EqundingBox: 4:4(037 x 4 47125)

Example 1: Dupin dual (1+2)

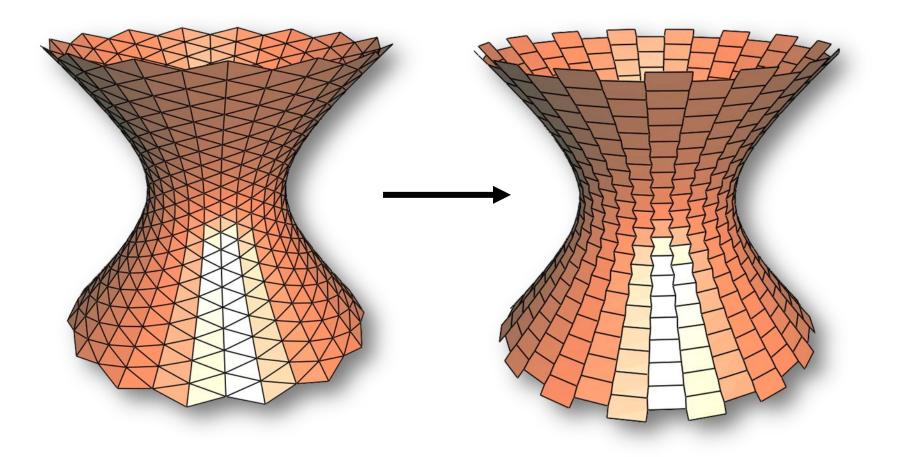


Example 2

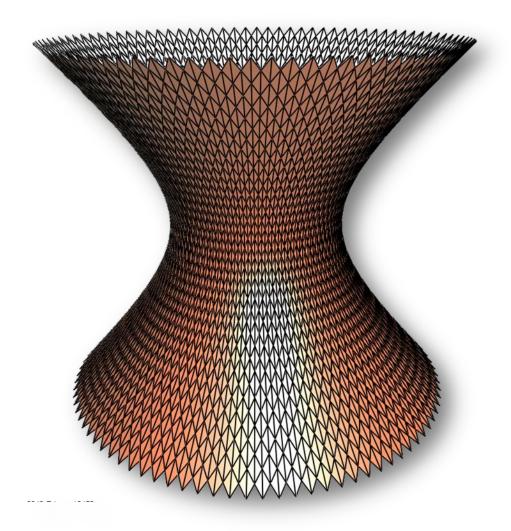




Example 2: Dupin dual (2+1)

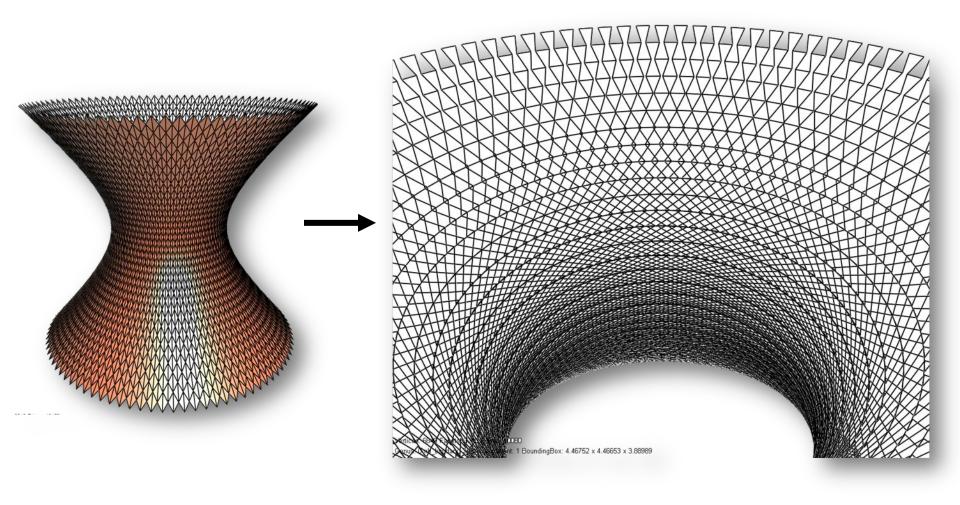


Example 3

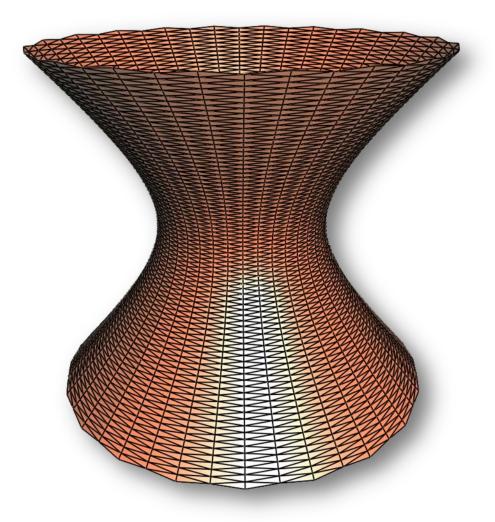


Example 3: Case of 0 + 3

Example 3: Dupin dual (0+3)



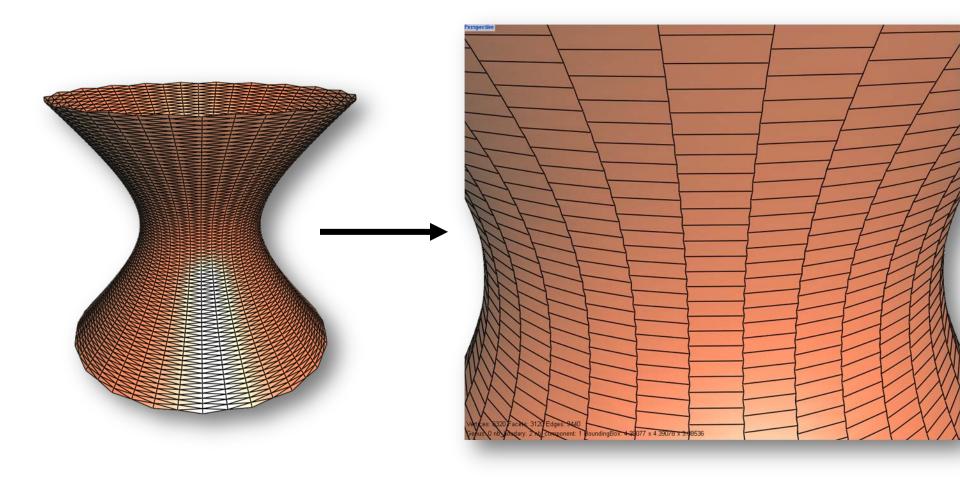
Example 4



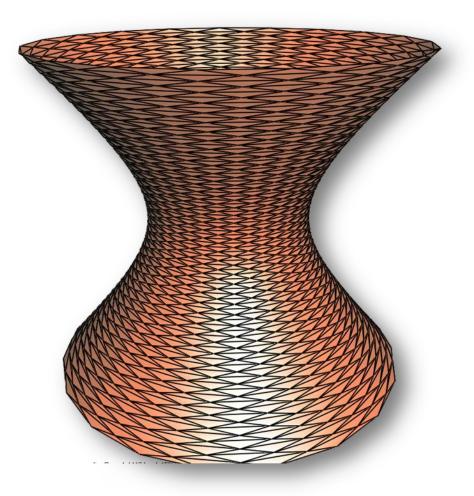
Example 4: Case of 2+1

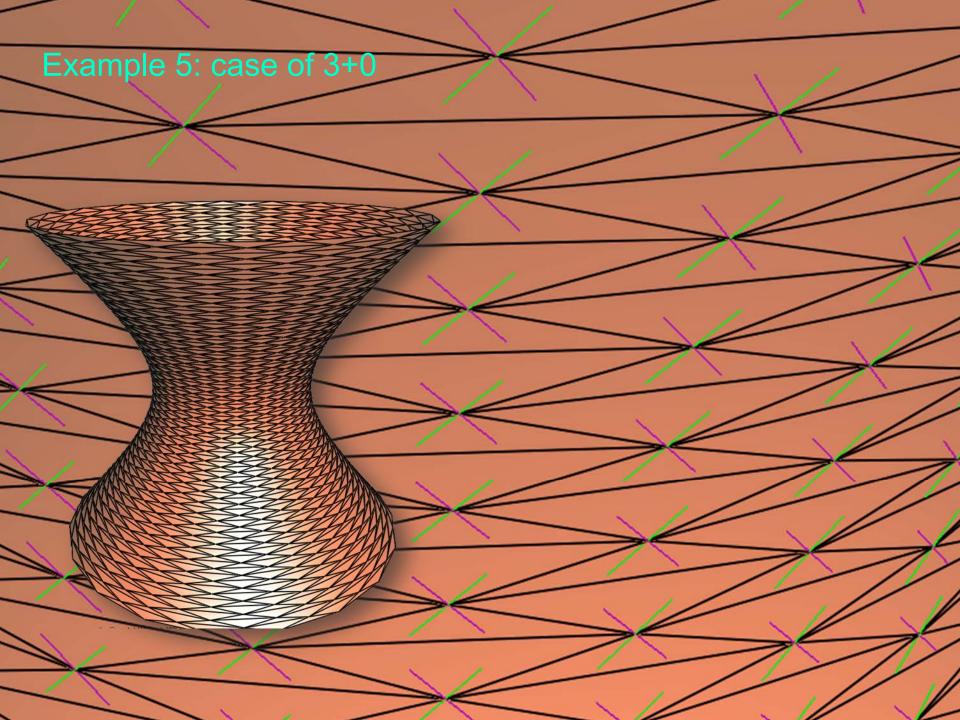
Edges: 9599

Example 4: Dupin dual (2+1)

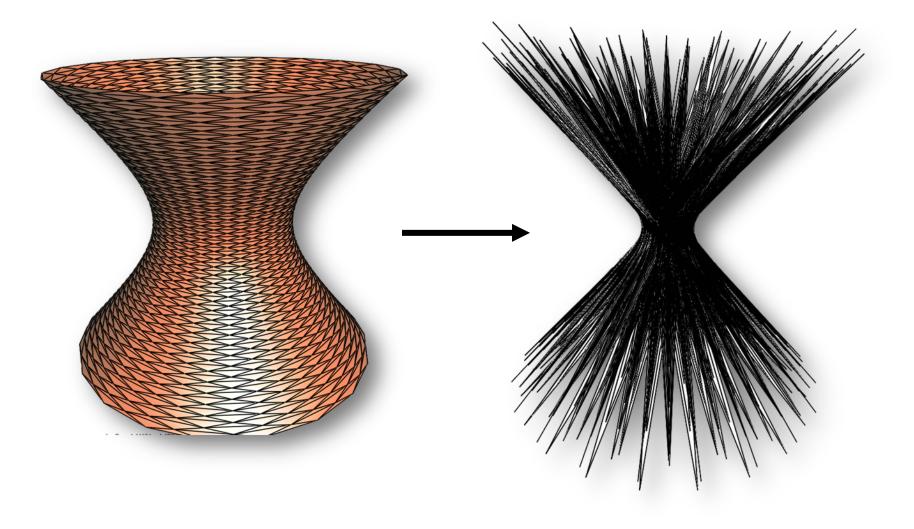


Example 5

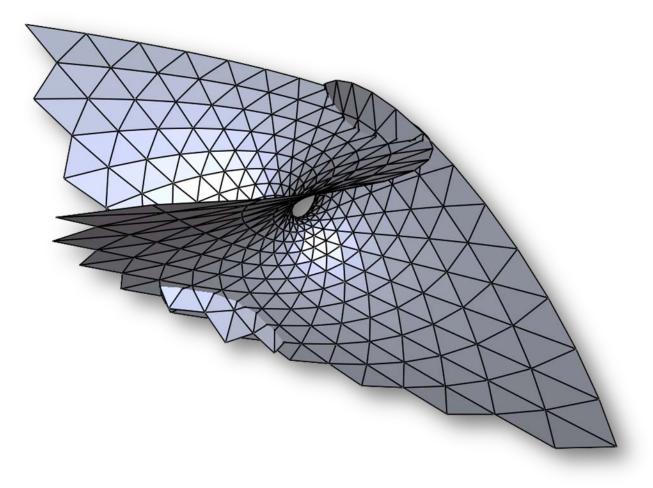




Example 5: Dupin dual (3+0)

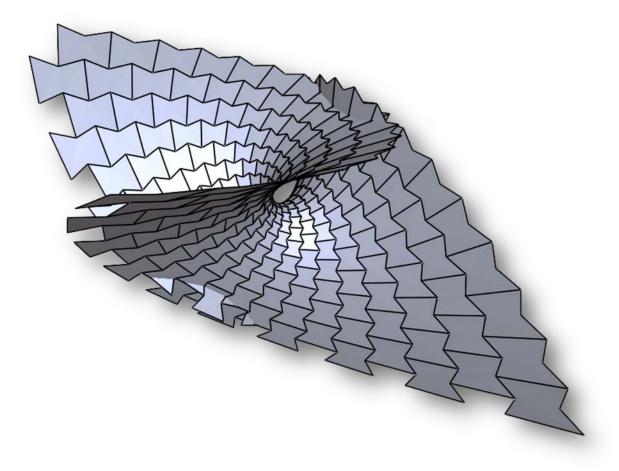


Example 6: Enneper surface

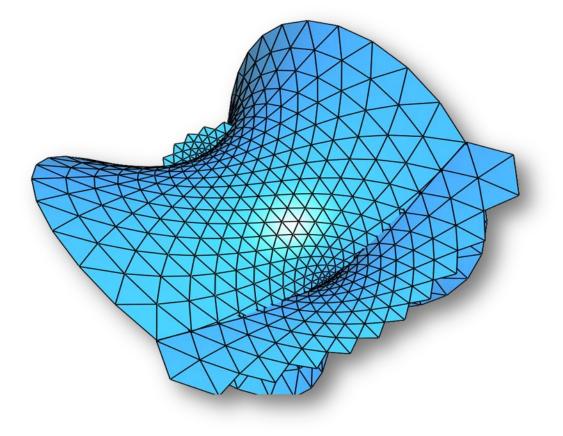


Example 6: Enneper surface – check asymptotic directions

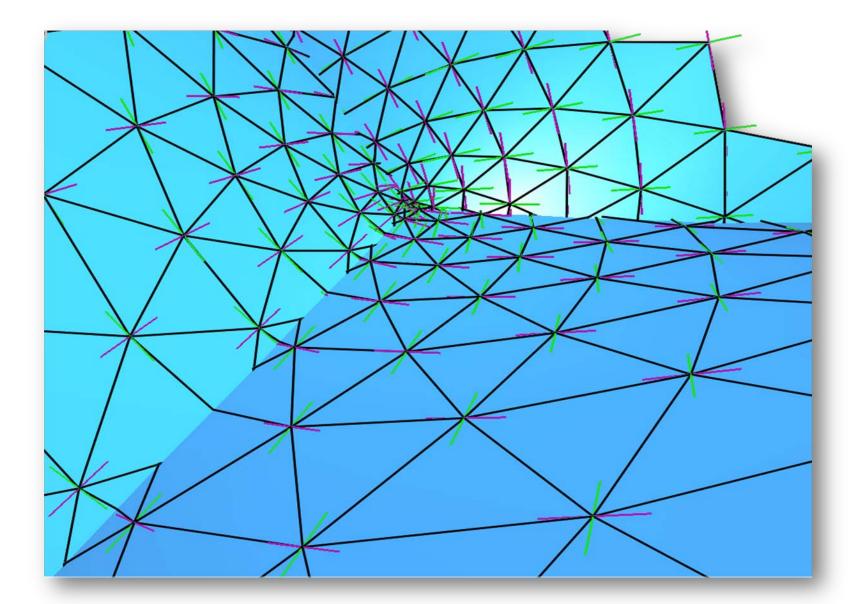
Example 6: Enneper surface – Dupin dual



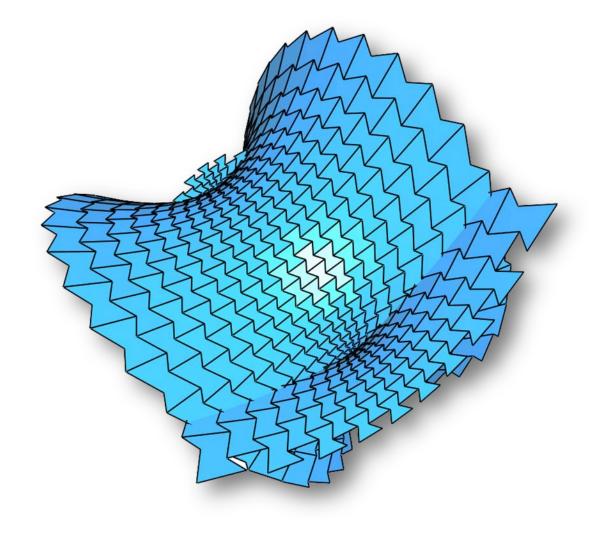
Example 7: Catalan surface – triangulation



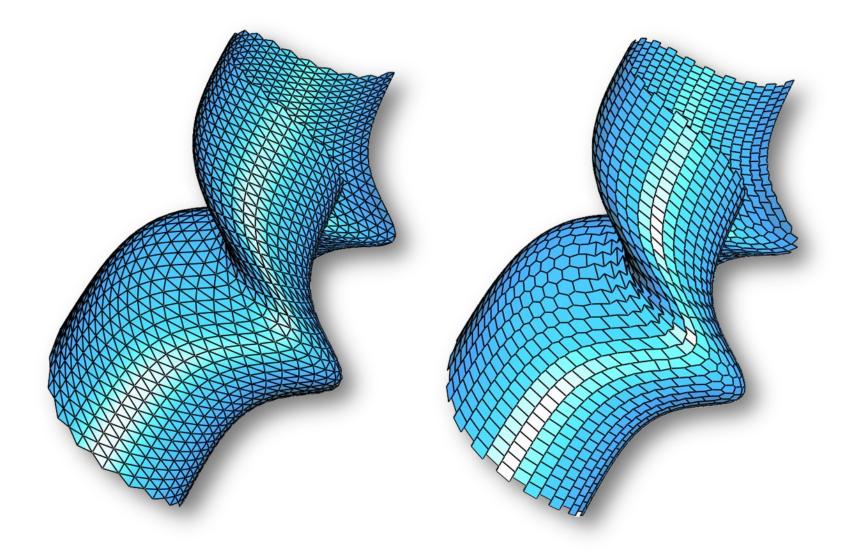
Example 7: Catalan surface – check asymptotic directions



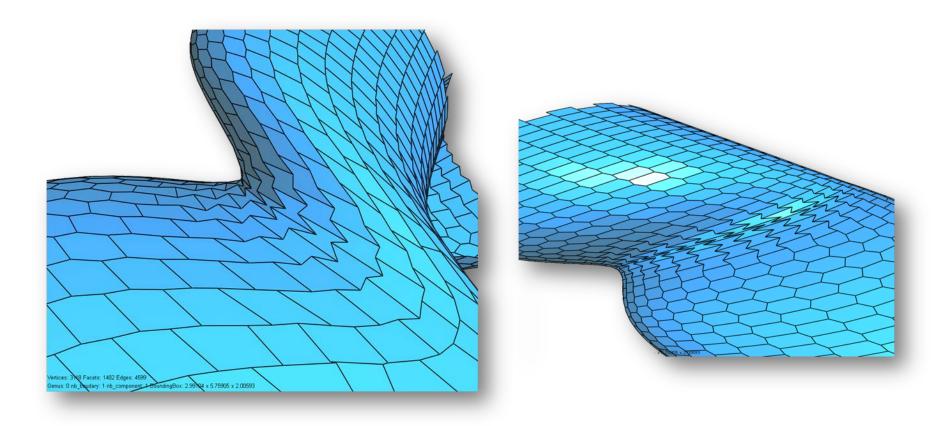
Example 7: Catalan surface – Dupin dual



Example 8: Kinky torus – triangulation and Dupin dual



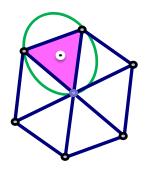
Example 8: Kinky torus – close-up views

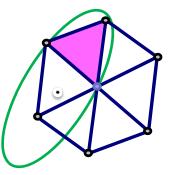


Computational Issues

1) Computing Dupin center using curvature information at all three vertices

2) Detecting if Dupin center falls in triangle– done by sign-testing of inner products





Summary

- We have provided local shape characterization of P-Hex meshes obtained from regular triangle mesh via Dupin duality.
- --- Dupin duality allows establishment of simple conditions on existence of valid P-Hex meshes;
- --- it also produces good initial hex mesh for effective optimization.

Develop a complete algorithm for computing P-Hex meshes based on good understandings of properties and constraints.

--- **Design** triangle meshes for computing P-Hex meshes

- --- **Control** of shape, size, edge lengths and angles of P-hex faces
- --- Compute P-Hex mesh with **special properties**, e.g., with vertex offset or edge offset property

Thank you