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Abstract

Persistent homology enables the analysis of evolving topological properties of
general data sets through different scales. The standard case is persistent ho-
mology of filtrations, a sequence of nested complexes K0 ↪→ ... ↪→ Km. The
persistent homology is represented by a barcode consisting of the birth and
death times of the different cycle classes evolving through the growing complex.
Filtrations can be generalized, two examples are towers and zigzag filtrations.
The first allows more general simplicial maps instead of inclusion maps and the
latter allows the inclusion map to also go backwards. This thesis is about algo-
rithms for standard filtrations, but also for those different types of sequences.

We first give an efficient way to transform a tower into a filtration with the
same persistent homology. Using an improved version of the coning strategy
defined by Dey, Fang and Wang [29], we managed to give a construction whose
resulting filtration has a size m of at most O(∆ · n log n0), where ∆ is the
dimension, n the number of inclusions and n0 the number of included vertices
in the original tower. Moreover we give a streaming algorithm to compute the
filtration and its persistent homology in O(∆·m·Cω) time and space complexity
O(∆ · ω), where ω is the size of the largest complex in the original tower and
Cω the cost of an operation in a dictionary with ω elements.

The second part yields to reduce the proceeded data size for zigzag filtrations
using discrete Morse theory. The idea is to pair cells in the complexes together
such that the removal of those pairs does not affect the homology of the complex,
reducing this way the size of the complex. The complexity of the pairing of each
new inserted face depends mainly on the complexity of computing the boundary
and coboundary of the simplex in the Morse complex, and is compensated by
the new size of the filtration.

Finally, we discuss the average complexity of the standard persistence algo-
rithm, through different variations of filtrations. We give promising experimen-
tal results and first theoretical results for two kinds of filtration.
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Chapter 1

Introduction

1.1 TDA and persistent homology

Topological Data Analysis (TDA) aims to analyze a dataset by first associating it
to a “shape” (i.e., its topology), which is then interpreted (e.g. by comparison).
A main tool for TDA is persistent homology, an algebraic method which enables
to study the evolution of the topology in a sequences of spaces X1 ⊆ . . . ⊆ Xn,
called a filtration. At each inclusion, it enables to keep track of the births and
deaths of cycle classes in different dimensions — we will go deeper into details of
the idea in Section 1.3. The birth/death pairs are then stored in what is called
the barcode or persistence diagram of the filtration. It found many applications
in various fields. To cite a few examples:

- In material science, TDA was used to study granular crystallization arising
from irregular clusters. The crystallization was represented by 3- dimensional
packings of frictional spheres and was studied at the grain-scale. The center of
the spheres were measured by X-ray tomography, which were then used to build
a Čech filtrations [56].

- TDA can also be a tool for shape classification. Using the tangents and
information about the curvature of each point in the shape, one can define a
tangent complex and a filtered tangent complex [11].

- In [15], a clustering scheme is defined which combines a common cluster algo-
rithm with a cluster merging step guided by persistence.

- In genetics, persistence homology can help to characterize vertical evolution
(mutations over a number of generations) and horizontal evolution (mixture of
genomic material between individuals of different lineages). Both can be rep-
resented as a graph with a poset structure whose 1-homology can be studied.
Horizontal evolution can also be represented as a filtration with a growing pa-
rameter representing the genetic distance for a given population of genomic
sequences [12].

- In medicine, TDA support non supervised diagnostic of symptoms with dis-
tinct signatures, as for a particular type of breast cancer [53].

The success of persistent homology relies on sound theoretical foundations [33,
34, 59], favorable stability properties [4, 14, 19], but also on fast algorithms in

9



10 1.2. Our contributions

practice despite a theoretical cubical1 worst case complexity. The worst case
complexity arises from the reduction — a variation of Gaussian elimination —
of the boundary matrix, representing the boundaries of the cells in the last com-
plex in order of inclusion. One reason for the good practical results in practice
is a range of improvements discovered in the last years which improve the run-
time. One line of research exploits the special structure of the boundary matrix
to speed up the reduction process [16]. This idea has led to efficient parallel
algorithms for persistence in shared [1] and distributed memory [2]. Moreover,
of same importance as the reduction strategy is an appropriate choice of data
structures in the reduction process as demonstrated by the PHAT library [3]. A
parallel development was the development of dual algorithms using persistent
cohomology, based on the observation that the resulting barcode is identical [23].
The annotation algorithm [29, 5] is an optimized variant of this idea realized in
the GUDHI library [58]. It is commonly considered as an advantage of annota-
tions that only a cohomology basis must be kept during the process, making it
more space efficient than reduction-based approaches.

Generalizations. The annotation algorithm [29] just cited was in fact de-
veloped for a more general type of filtration: simplicial map filtrations or also
called towers, which allows not only inclusions but also contractions of vertices
(or compositions of the two). It keeps track of the cohomology basis with help of
annotations assigned to each simplex. When including a simplex, it is assigned a
annotation depending of the annotations of its boundary. Then the annotation
of the other simplices are updated depending on the new annotation. For the
contraction of two vertices, it uses the homology preserving property of the link
condition to update correctly the annotation of the simplices before contract-
ing. In practice, towers allow for example to simplify approximation schemes
for Vietoris-Rips and Čech filtrations [8, 29], which exact computing is greatly
space consuming.

Another type of generalization are zigzag filtrations which allows the inclu-
sion maps to not only go forwards, but also to go backwards. It produces for
example better information in topology inference [54] as standard persistence
or can be useful to connect non-related spaces together through their union
Ki → Ki ∪ Ki+2 ← Ki+2 (or intersection), as for example in level set zigzag
persistence [10]. The theory of zigzag persistence was introduced in [9] and led
to theoretical [48] and practical [10, 45] algorithms to compute its barcode. The
latter are also based on matrix operations, as for standard persistence, but the
matrix encodes more information, needed because for the eventual removal of a
face. Moreover, in the standard case, the birth times were recorded in the order
of inclusion, but the removal of a face in a complex can lead to a reordering of
the birth times of cycle classes which are not dead yet. Some older columns can
therefore be updated and even reordered.

1.2 Our contributions

This work will be a recollection of three different contributions in the just men-
tioned subjects about persistence homology.

1The current best upper bound is actually O(nω), where ω is the matrix multiplication
exponent [48], but the corresponding algorithm is not used in practice.
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From towers to filtrations. The first contribution will concern an algorithm
for towers. As mentioned in Section 1.1, there already exists an algorithm for
such type of sequences by Dey, Fang and Wang [29] which uses persistent coho-
mology. But the standard persistent homology for filtrations were extensively
studied and optimized, and therefore, we were interested by making use of it.
Our contribution is an algorithm which transforms a tower T into a standard
filtration F with same persistence barcode. We then use the known algorithms
to compute the persistence from the resulting filtration. The method we used
is a slightly modified version of the coning strategy that Dey, Fang and Wang
introduced in [29]. The original version could lead to an exponential growth
of the resulting filtration and thus we introduced two simple heuristics, which
gave us a good guarantee: if n is the number of simplices included in T , n0 the
number of vertices and ∆ the maximal dimension of any complex in T , then the
size of F is in the order of O(∆ · n · log n0). In our experiments, the resulting
filtration was even way smaller. Then the algorithm we use to compute the
final barcode is based on the usual persistence algorithm but transformed into
a streaming algorithm. The reason is that, contrary to standard filtration, the
maximal width of a tower does not depend of its length. So, we can build a very
long tower without having systematically memory issues and thus we would like
to be able to compute its barcode without loading the whole filtration. Addi-
tionally, we use some simple characteristic of a tower to maintain a memory
use in the order of O(ω2), with ω being the width of the tower. The streaming
algorithm has then a time complexity in the order of O(ω2 ·∆ · n · log n0).

Zigzag filtrations and discrete Morse theory. Our second contribution
proposes a preprocess for the algorithms for zigzag persistence. Even though
the worst case complexity is the same than for standard persistence, in practice,
zigzag persistence does not perform as well. To partially remedy to this prob-
lem, we use discrete Morse theory to “shrink” all the complexes in the zigzag
filtration, such that less has to be processed by a zigzag persistence algorithm.
The idea of discrete Morse theory is to pair together different cells of a complex
such that removing those cells does not modify the homology of the complex.
The resulting complex is called a Morse complex. This strategy was already
applied for standard persistence [49] by reducing the set of cells added at each
inclusion. The difficulty with zigzag persistence is that a cell which was included
can change its status in the zigzag filtration when it is removed. If this cell was
paired, its assigned pair needs to be included in the Morse complex, which is
not a trivial operation. Escolar and Hiraoka [36] went around this problem by
making sure that their do not pair cells together which are not removed at the
same time. But this require to look at the whole filtration. As for towers, the
complexes in a zigzag filtration can remain relatively small, such that we want
to be able to proceed very long filtrations. Our contribution is a streaming like
algorithm which reduces the complexes and is able to deal with the eventual
separation of a pair, such that it only has to know the currently proceeded
complex in the zigzag filtration.

Standard filtrations and average complexity. All algorithms used in
practice for standard persistence are based on a left-to-right column additions,
a variation of the classical Gaussian elimination process. Therefore the worst
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case complexity is cubic in the number of simplices. Unfortunately, there exists
filtrations reaching this worst case. But the reason that this algorithm is never-
theless so popular is that in practice, we observe a behavior which seems to be
linear and thus far from being cubical. We measured experimentally different
interesting parameters for four different types of filtrations. The most “random”
filtration behaves around a squared complexity, whereas more “organized” fil-
trations are clearly below. We also give two theoretical results concerning two
opposite types of filtration. We prove that the first has a quasi-linear complex-
ity, whereas a variant of the second looses in average an order of magnitude
with respect to its worst case.

Software. We would like to point out that both algorithms for towers and
zigzag filtrations were implemented by the author, with help from Clément
Maria2 for the latter, and integrated in the in the generic open source library
GUDHI [58] (to be released).

Outline. In the remaining of this work, the next chapters will specify our
contributions. But first, the general topic is introduced in more details and
more formally in the next section. Then, Chapter 2 will cover our contribution
for towers, Chapter 3 the one for zigzag filtrations and finally, we will discuss
and analyze in Chapter 4 the expected complexity for standard persistence.

1.3 From data to barcode

The typical TDA pipeline is composed of three steps:

1. Convert the input data (usually a point cloud, for example obtained from
scanning a 3D object) into a convenient representation and practical data struc-
ture from which the necessary topological information can be retrieved;

2. Compute a range of topological information;

3. Analyze the results.

The first step arises from the necessity of discretizing an element in order
to digitally analyze it. As a simplified example, take an annulus-shaped object
you would like to create a digital model of. As first step, you could scan it. For
obvious technical reasons, you cannot expect retrieving every single point of the
surface of your object, but only a (hopefully) representative sample. The result
is what is called a point cloud, a finite set of coordinates in a metric space, as
in the left part of Figure 1.1. But now that you are only left with a bunch of
points, how do we retrieve the connection between them? Because an annulus
is not an annulus without a hole in the middle — if it seems obvious for human
eyes to identify the lack of points in the middle of the Figure as being a hole,
it is not obvious at all for the computer. We first need to associate a shape to
those point.

2INRIA Sophia Antipolis-Méditerranée, France – clement.maria@inria.fr
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Simplicial complexes. Given a finite vertex set V , a simplex is a non-empty
subset of V . We call it a d-simplex if the subset contains exactly d+ 1 vertices;
d is then the dimension of the simplex. A vertex is therefore a 0-dimensional
simplex and we call a 1-dimensional simplex an edge, and 2-dimensional simplex
a triangle. Let σ be a d-simplex and τ a d′-simplex. We say that τ is a face
of σ and σ a coface of τ , if τ ⊆ σ. When the inclusion is strict, we talk about
a proper face or coface. Moreover, τ is a facet of σ and σ a cofacet of τ , if
d = d′ + 1.

An (abstract) simplicial complex K over V is a set of simplices that is closed
under taking faces, i.e., if σ ∈ K and τ ⊂ σ, then τ ∈ K. The dimension of K
is the maximal dimension of its simplices. A simplex σ ∈ K is maximal in K if
none of its cofaces is contained in K.

Figure 1.1: Example of 2D point cloud shaped as an annulus (left)
and of a simplicial complex defined on those points (right).

Simplicial complexes are commonly used as data structure in TDA. Back
to our point cloud, an example of simplicial complex over the set of points is
shown in the right part of Figure 1.1. We will mainly make use of simplicial
complexes, but we will also need a more general definition of complexes:

Cell Complexes. An abstract complex over a principal ideal domain D (such
as the ring of integers Z or a field Z/pZ for p prime) is a graded finite collection
X =

⊔
d∈ZXd of elements, called cells or faces, together with an incidence

function [· : ·]X : X × X → D. The dimension of a cell σ ∈ Xd is dimσ = d.
The incidence function satisfies, for any cells σ, τ , and µ:

[σ : τ ]
X 6= 0⇒ dimσ = dim τ + 1 and

∑
τ∈X

[σ : τ ]
X · [τ : µ]

X
= 0.

Then, τ is a facet of σ, and σ a cofacet of τ , if [σ : τ ]
X 6= 0. And a cell is called

maximal, if it has no cofacet.

In this new context, a simplicial complex is a complex, where the cells of
dimension d are d-simplices with a fixed orientation. The principal ideal domain
D is then the ring of integers Z, and the incidence function takes values in
{−1, 0, 1} ⊂ Z.

In this work, the topological invariant we are interested to measure is the
homology of our data (or more exactly, we will look at the persistent homology
as we will see later). For this purpose, we will need the notion of boundary:
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Boundary Operator. For a field F of coefficients, we associate to a complex
X a chain complex C(X,F) =

⊕
d Cd(X,F), where Cd(X,F) is the F-vector

space freely generated by the d-dimensional cells in Xd of X. To simplify the
notations, we fix F from now on and remove it from any notation. For every
dimension d, the boundary operator ∂Xd : Cd(X)→ Cd−1(X) is generated by:

∂Xd σ =
∑

τ∈Xd−1

[σ : τ ]
X · τ.

When there is no ambiguity, we remove the superscript X from the notation:
∂d. To put emphasis on the boundary operator, we denote a complex by (X, ∂),
where ∂ : C(X) → C(X) is ∂ =

⊕
d ∂

X
d . For a cell σ, we call ∂σ the boundary

of σ. We say that a cell τ is in the boundary of σ if dimσ = dim τ + 1 and the
coefficient of τ is non-zero in ∂σ.

By a small abuse of notation, we refer also to X as a chain complex provided
there is no ambiguity in the definition of their incidence function and boundary
maps.

Homology. In a complex (X, ∂), the d-cycles are defined as Zd(X) = ker ∂d
and the d-boundaries as Bd(X) = im ∂d+1. Then the dth homology group is the
quotient

Hd(X) = Zd(X)�Bd(X).

We also use the notation H(X), when the dimension does not matter and the
context or properties can be applied to any dimension.

To visualize, homology gather cycles which can be continuously transformed
into each other through the faces in a same class. In Figure 1.1 (right), the com-
plex has one non-trivial 0-homology class, which can be seen as the representa-
tive of the single connected component. It also has one non-trivial 1-homology
class representing the cycles going around the middle hole, and therefore are
not continuously contractible to a point.

Another way to express the homology of a complex X are Betti numbers.
The dth Betti number βd(X) is the rank of Hd(X). For Figure 1.1 (right), we
have β0 = β1 = 1 and βi = 0 for i ≥ 2.

But now, we are still left with a problem: how do we determine the right
complex with the right homology for a set of point? If we look at Figure 1.2,
why should the complex on the right be more or less valid than the complex on
the left for our initial set of points? The solution is quit simple: we construct
not one complex, but a whole range of complexes — filtrations — and see which
homology features persist the most through the different complexes — persistent
homology.

Filtrations. A filtration F of length m is sequence of complexes X0 ⊆ ... ⊆
Xm connected by inclusion maps ij , j ∈ {0, ...,m− 1}:

F : X0
� � i0 // X1

� � i1 // · · · � � im−2
// Xm−1

� �im−1
// Xm .
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Figure 1.2: Example of two different simplicial complexes defined
on the same set of vertices.

We can generalize a filtration with a zigzag filtration Z for which the inclusion
maps are also allowed to go backwards:

Z : X0
oo
i0 // X1

oo
i1 // · · · oo im−2

// Xm−1
oo
im−1

// Xm ,

where an arrow ↔ is either going forward or going backward. Sometimes, we
will call a filtration a standard filtration, to clearly distinguish it from a zigzag
filtration.

If the complexes are simplicial complexes, we can also generalize a filtration
with a tower T or also called a simplicial map filtration. As the second name
indicates, in this case, the inclusion maps are replaced by more general simplicial
maps (sj)j∈{0,...,m−1}, which we will define later:

T : K0
s0 // K1

s1 // · · · sm−2
// Km−1

sm−1
// Km .

The dimension of F , Z and T is the maximal dimension among the com-
plexes respectively composing them, and their width is the maximal size of
those complexes. For filtrations, dimension and width are determined by the
dimension and size of Xm, but this is not necessarily true for towers.

Standard filtrations are the most commonly used contructions, as for ex-
ample Vietoris-Rips and Čech filtrations which take account of the distances
between the vertices to be constructed. One reason for their popularity is that
the algorithm for persistent homology is then not only quite simple, but also
well performing in practice, see Chapter 4. But their properties are clearly lim-
ited and it would be interesting to also have well performing algorithms for the
other two types of filtrations. That is the purpose of Chapter 2 and 3 for towers
and zigzag filtrations respectively.

Modules and morphisms. For our fixed base field F and a complex X, it is
well-known that Hd(X) is a F-vector space and that an inclusion or simplicial
map f : X → X ′ induces a linear map f∗ : Hd(X) → Hd(X

′). In categorical
terms, the equivalent statement is that homology is a functor from the category
of simplicial complexes and simplicial maps to the category of vector spaces and
linear maps. Therefore, on each of the above defined filtrations, we can apply
the homology functor to obtain the corresponding persistence module:

H(F) : H(X0) oo
f∗0 // H(X1) oo

f∗1 // · · · oo
f∗m−2

// H(Xm−1) oo
f∗m−1

// H(Xm) ,
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where each f∗j is a linear map induced by the initial inclusion or simplicial map.
Persistence modules are realizations of representations:

An Am-type quiver Q is a directed graph:

•1 oo // •2 oo // · · · oo // •m−1
oo // •m ,

where bidirectional arrows are either going forward or going backward.
An F-representation of Q is an assignment of a finite dimensional F-vector

space Vi for every node •i and an assignment of a linear map fi : Vi ↔ Vi+1

for every arrow •i ↔ •i+1, the orientation of the map being the same as that of
the arrow. We denote such a representation by V = (Vi, fi). In our context, an
F-representation of an Am-type quiver is called a zigzag module (Or just module
if all arrows are going forward).

Let V = (Vi, fi) and W = (Wi, gi) be two F-representations of a same quiver
Q. A morphism of representations Φ : V → W is a set of linear maps {Φi :
Vi →Wi}i=1...n such that the following diagram commutes for every arrow of Q:

Vi oo
fi //

Φi

��

Vi+1

Φi+1

��

Wi
oo

gi // Wi+1 .

The morphism is called an isomorphism (denoted by ∼=) if every Φi is bijective.
V and W are then said to be isomorphic.

The direct sum of two F-representations V = (Vi, fi), W = (Wi, gi), denoted
by V ⊕W, is the representation of Q with spaces Vi ⊕Wi for every node •i,
and with map fi⊕ gi =

(
fi 0
0 gi

)
for every arrow •i ↔ •i+1. An F-representation

V is decomposable if it can be written as the direct sum of two non-trivial
representations. It is otherwise said to be indecomposable.

Persistent Homology. For any 1 ≤ b ≤ d ≤ m, define the interval represen-
tation I[b; d] as follows:

0 oo
0 // · · · oo 0 // 0 oo

0 // F oo 1 // · · · oo 1 // F oo 0 // 0 oo
0 // · · · oo 0 // 0︸ ︷︷ ︸

b−1 times

︸ ︷︷ ︸
d−b+1 times

︸ ︷︷ ︸
m−d times

,

where the maps 0 and 1 stand respectively for the null map and the identity
map.

Theorem 1.1 (Krull-Remak-Schmidt, Gabriel). Every F-representation V of
an Am-type quiver can be decomposed as a direct sum of indecomposables: V ∼=
V1⊕V2⊕· · ·⊕VN , where each indecomposable Vj is isomorphic to some interval
representation I[bj ; dj ]. This decomposition is unique up to permutation of the
indecomposables.

Such a decomposition of a persistence module is called an interval decompo-
sition. Because this decomposition is uniquely defined up to isomorphisms and
re-ordering, the pairs (b1, d1), ..., (bN , dN ) are an invariant of the persistence
module, called its barcode or persistence diagram. Important homological fea-
tures are represented by pairs (b, d), where d − b is big enough: the higher the
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value of d−b, the longer the corresponding feature persists through the filtration
when read from left to right. Therefore, computing the persistent homology of
a filtration means computing exactly those pairs, called persistence pairs. See
Figure 1.3 as example of barcode.

(dim)

filtration value

1
0
0
0

Figure 1.3: Example of filtration and its persistence barcode: each
bar corresponds the appearance and disappearance of a cycle class.

Matrix Reduction. As already mentioned, computing the persistent homo-
logy of a standard filtration is relatively simple. All algorithm used in practice
are based on matrix reduction. To simplify the explanation, assume we have
a filtration F : X0 → ... → Xm where Xi \ Xi−1 = {σi} for i ∈ {1, ...,m},
that is, Xi has exactly one more cell than Xi−1. Then F can be encoded by
a boundary matrix B: each column and row represent a cell in Xm, and are
ordered with respect to the order the cells where inserted in F . Therefore, the
column i represents the cell σi and the row j the cell σj . Then the matrix cell
(i, j) contains the coefficient of σj in ∂σi if σj is a facet of σi, and zero otherwise.
In other words, the ith column of B encodes the facets of σi, and the jth row
of B encodes the cofacets of σj . Note that B is upper-triangular. Moreover, we
will sometimes identify rows and columns in B with the corresponding cell in
Xm.

Adding the d-cell σi to Xi either introduces one new homology class of
dimension d in Xi, or turns a non-trivial homology class of dimension d − 1
trivial. We call σi and the i-th column of B positive or negative respectively
(with respect to the given filtration).

In an arbitrary matrix M , a left-to-right column addition is an operation
of the form Mk ← Mk + M` with ` < k, where Mk and M` are respectively
the kth and `th columns of the matrix. The pivot of a non-zero column is the
largest non-zero index of the corresponding column. A non-zero entry (i, j) is
also called a pivot if j is the pivot of the column i. A matrix R is called a
reduction of M if R is obtained by a sequence of left-to-right column additions
from M and no two columns in R have the same pivot. Usually, R is computed
as shown in Algorithm 1.

It is well-known that, although B does not have a unique reduction, the
pivots of all its reductions are the same. And those pivots (b1, d1), ..., (bN , dN )
are exactly the persistence pairs of F we wanted to compute. Note, that a
direct consequence is that a cell σi is positive if and only if the ith column in
the reduction of B is zero.
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Algorithm 1: Reduction algorithm for the boundary matrix M .

input : M
output: R

1 The function pivot returns the index of the lowest non-zero entry of the
given column.

2 for i = 1 . . . nd+1 do
3 while ∃ j ∈ {1, ..., i− 1} pivot(M [j]) == pivot(M [i]) do
4 M [i]←M [i] +M [j];
5 end

6 end



Chapter 2

Towers to Filtrations

This chapter is based on the paper Barcodes of Towers and a Streaming Algo-
rithm for Persistent Homology [43] which is joint work with Michael Kerber1.

2.1 Introduction

Motivation and problem statement. In this chapter, we consider the per-
sistent homology of towers. We recall that a tower of length m is a sequence of
simplicial complexes (Ki)i=0,...,m and simplicial maps si : Ki → Ki+1 connec-
ting them. Applying the homology functor with an arbitrary field, we obtain a
persistence module, a sequence of vector spaces connected by linear maps. Such
a module decomposes into a barcode, a collection of intervals, each representing
a homological feature in the tower that spans over the specified range of scales.

Our computational problem is to compute the barcode of a given tower
efficiently. As considerable amount of work went into the study of fast algorithms
for the more prominent filtration case, see Section 1.1, we will make use of it.
The more general case of towers recently received growing interest in the context
of sparsification technique for the Vietoris-Rips and Čech complexes; see the
related work section below for a detailed discussion.

Results. As our first result, we show that any tower can be efficiently con-
verted into a small filtration with the same barcode. Using the well-known
concept of mapping cylinders from algebraic topology [41], it is easy to see that
such a conversion is possible in principle. Dey, Fan, and Wang [29] give an
explicit construction, called “coning”, for the generalized case of zigzag towers.
Using a simple variant of their coning strategy, we obtain a filtration whose
size is only marginally larger than the length of the tower in the worst case.
Furthermore, we experimentally show that the size is even smaller on realistic
instances.

To describe our improved coning strategy, we discuss the case that a sim-
plicial map in the tower contracts two vertices u and v. The coning strategy
by Dey et al. proposes to join u with the closed star of v, making all incident
simplices of v incident to u without changing the homotopy type. The vertex u

1Graz University of Technology, Austria – kerber@tugraz.at
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is then taken as the representative of the contracted pair in the further process-
ing of the tower. We refer to the number of simplices that the join operation
adds to the complex as the cost of the contraction. Quite obviously, the method
is symmetric in u and v, and we have two choices to pick the representative,
leading to potentially quite different costs. We employ the self-evident strategy
to pick the representative that leads to smaller costs (somewhat reminiscent of
the “union-by-weight” rule in the union-find data structure [21, §21]). Perhaps
surprisingly, this idea leads to an asymptotically improved size bound on the
filtration. We prove this by an abstraction to path decompositions on weighted
forest which might be of some independent interest. Altogether, the worst-case
size of the filtration is O(∆ · n · log(n0)), where ∆ is the maximal dimension of
any complex in the tower, and n/n0 is the number of simplices/vertices added
to the tower.

We also provide a conversion algorithm whose time complexity is roughly
proportional to the total number of simplices in the resulting filtration. One
immediate benefit is a generic solution to compute barcodes of towers: just
convert the tower to a filtration and apply one of the efficient implementations
for barcodes of filtrations. Indeed, we experimentally show that on not-too-large
towers, our approach is competitive with, and sometimes outperforms Simpers,
an alternative approach that computes the barcode of towers with annotations,
a variant of the persistent cohomology algorithm.

Our second contribution is a space-efficient version of the just mentioned
algorithmic pipeline that is applicable to very large towers. To motivate the
result, let the width of a tower denote the maximal size of any simplicial complex
among the Ki. Consider a tower with a very large length (say, larger than the
number of bytes in main memory) whose width remains relatively small. In this
case, our conversion algorithm yields a filtration that is very large as well. Most
existing implementations for barcode computation read the entire filtration on
initialization and must be converted to streaming algorithm to handle such
instances. Moreover, algorithms based on matrix reduction are required to
keep previously reduced columns because they might be needed in subsequent
reduction steps. This leads to a high memory consumption for the barcode
computation.

We show that with minor modifications, the standard persistent algorithm
can be turned into a streaming algorithm with smaller space complexity in the
case of towers. The idea is that upon contractions, simplices become inactive
and cannot get additional cofaces. Our approach makes use of this observation
by modifying the boundary matrix such that columns associated to inactive
simplices can be removed. Combined with our conversion algorithm, we can
compute the barcode of a tower of width ω keeping only up to O(ω) columns of
the boundary matrix in memory. This yields a space complexity of O(ω2) and
a time complexity of O((∆ · n · log(n0))ω2) in the worst case. We implemented
a practically improved variant that makes use of additional heuristics to speed
up the barcode computation in practice and resembles the chunk algorithm
presented in [1].

We tested our implementation on various challenging data sets. The source
code of the implementation is available2 and the software was named Sophia.

2at https://bitbucket.org/schreiberh/sophia/ and soon in the open library GUDHI [58]
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Related work. Dey et al. [29] described the first efficient algorithm to com-
pute the barcode of towers. Instead of the aforementioned coning approach
explained in their paper, their implementation handles contractions with an
empirically smaller number of insertions, based on the link condition. Recently,
the authors have released the SimPers library3 that implements their annota-
tion algorithm from the paper.

The case of towers has received recent attention in the context of approxi-
mate Vietoris-Rips and Čech filtrations. The motivation for approximation is
that the (exact) topological analysis of a set of n points in d-dimensions requires
a filtration of size O(nd+1) which is prohibitive for most interesting input sizes.
Instead, one aims for a filtration or tower of much smaller size, with the gua-
rantee that the approximate barcode will be close to the exact barcode (“close”
usually means that the bottleneck distance between the barcodes on the loga-
rithmic scale is upper bounded; we refer to the cited works for details). The first
such type of result by Sheehy [57] resulted in a approximate filtration; however,
it has been observed that passing to towers allows more freedom in defining the
approximation complexes and somewhat simplifies the approximation schemes
conceptually. See [29, 8, 44, 18] for examples. Very recently, the SimBa li-
brary [30] brings these theoretical approximation techniques for Vietoris-Rips
complexes into practice. The approach consists of a geometric layer to com-
pute a tower, and an algebraic layer to compute its barcode, for which they
use SimPers. Our approach can be seen as an alternative realization of this
algebraic layer.

Outline. We introduce the necessary basic concepts in Section 2.2. We de-
scribe our conversion algorithm from general towers to barcodes in Section 2.3.
The streaming algorithm for persistence is discussed in Section 2.4.

2.2 Background

Joins and Simplicial Subcomplexes. We denote the vertex set of a sim-
plicial complex K over the vertex set V by V(K) and define it to be exactly
V . A simplicial complex L is a subcomplex of the complex K if L ⊆ K. Given
W ⊆ V(K), the induced subcomplex by W is the set of all simplices σ in K with
σ ⊆ W. For a simplex σ and a vertex v /∈ σ, we define the join v ∗ σ as the
simplex {v} ∪ σ. And for a subcomplex L ⊆ K and a vertex v ∈ V(K) \ V(L),
we define the join v ∗ L := {v ∗ σ | σ ∈ L}. For a vertex v ∈ K, the star of v in
K, denoted by St(v,K), is the set of all cofaces of v in K. In general, the star is
not a subcomplex, but we can make it a subcomplex by adding all faces of star
simplices, which is denoted by the closed star St(v,K). Equivalently, the closed
star is the smallest subcomplex of K containing the star of v. The link of v,
Lk(v,K), is defined as St(v,K) \ St(v,K). It can be checked that the link is a
subcomplex of K. When the complex is clear from context, we will sometimes
omit the K in the notation of stars and links.

Simplicial maps. A map s : K → K′ between simplicial complexes is called
simplicial if, with σ = {v0, . . . , vk} ∈ K, s(σ) is equal to {s(v0), . . . , s(vk)}

3http://web.cse.ohio-state.edu/~tamaldey/SimPers/Simpers.html
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and s(σ) is a simplex in K′. By definition, a simplicial map maps vertices to
vertices and is completely determined by its action on the vertices. Moreover,
the composition of simplicial maps is again simplicial.

A simple example of a simplicial map is the inclusion map s : L ↪→ K
where L is a subcomplex of K. If K = L ∪ {σ} with σ /∈ L, we call s an
elementary inclusion. The simplest example of a non-inclusion simplicial map
is s : K→ K′ such that there exist two vertices u, v ∈ K with V(K′) = V(K)\{v},
s(u) = s(v) = u, and s is the identity on all remaining vertices of K. We call
s an elementary contraction and write (u, v) u as a shortcut. These notions
were introduced by Dey, Fan and Wang in [29] and they also showed that any
simplicial map s : K → K′ can be written as the composition of elementary
contractions4 and inclusions.

We recall that a tower of length m is a collection of simplicial complexes
K0, . . . ,Km and simplicial maps si : Ki → Ki+1 for i = 0, . . . ,m− 1. From this
initial data, we obtain simplicial maps si,j : Ki → Kj for i ≤ j by composition,
where si,i is simply the identity map on Ki. The term “tower” is taken from
category theory, where it denotes a (directed) path in a category with morphisms
from objects with smaller indices to objects with larger indices. Indeed, since
simplicial complexes form a category with simplicial maps as their morphisms,
the specified data defines a tower in this category. Remind that the dimension
of a tower is the maximal dimension among the Ki, and the width of a tower is
the maximal size among the Ki.

Homology and Collapses. We will make use of the following homology-
preserving operation: a free face in K, is a simplex with exactly one proper
coface in K. An elementary collapse in K is the operation of removing a free
face and its unique coface from K, yielding a subcomplex of K. We say that
K collapses to L, if there is a sequence of elementary collapses transforming K
into L. The following result is then well-known:

Lemma 2.1. Let K be a simplicial complex that collapses into the complex L.
Then, the inclusion map s : L ↪→ K induces an isomorphism s∗ between H(L)
and H(K).

Matrix reduction. In this chapter, we assume for simplicity that the compu-
tation of the barcode is done over the base field Z2, and interpret the coefficients
of the boundary matrix accordingly.

The standard persistence algorithm processes the columns from left to right;
recall Algorithm 1. In the jth iteration, as long as the jth column is not empty
and has a pivot that appears in a previous column, it performs a left-to-right
column addition. We will use a simple improvement of this algorithm that is
called compression: before reducing the jth column, it first scans through the
non-zero entries of the column. If a row index i corresponds to a negative
simplex (i.e., if the ith column is not zero at this point in the algorithm), the
row index can be deleted without changing the pivots of the matrix. After this
initial scan, the column is reduced in the same way as in the standard algorithm.

4They talk about “collapses” instead of “contractions”, but this notion clashes with the
standard notion of simplicial collapses of free faces that we use later. Therefore, we decided to
use “contraction”, even though the edge between the contracted vertices might not be present
in the complex.
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See [1, §. 3] for a discussion (we remark that this optimization was also used
in [59]).

2.3 From towers to filtrations

We phrase now our first result which says that any tower can be converted
into a filtration of only marginally larger size with a space-efficient streaming
algorithm:

Theorem 2.2 (Conversion Theorem). Let

T : K0
s0 // K1

s1 // . . .
sm−1

// Km

be a tower where, w.l.o.g., K0 = ∅ and each si is either an elementary inclusion
or an elementary contraction. Let ∆ denote the dimension and ω the width of
the tower, and let n ≤ m denote the total number of elementary inclusions, and
n0 the number of vertex inclusions. Then, there exists a filtration

F : K̂0
� � // K̂1

� � // . . . �
�

// K̂m,

where the inclusions are not necessarily elementary, such that T and F have
the same barcode, and the width of the filtration is:

|K̂m| = O(∆ · n log n0).

Moreover, F can be computed from T with a streaming algorithm with a com-
plexity of

O(∆ · |K̂m| · Cω) (time)

O(∆ · ω) (space),

where Cω is the cost of an operation in a dictionary with ω elements.

The remainder of the section is organized as follows. We define F in Sec-
tion 2.3.1 and prove that it yields the same barcode as T in Section 2.3.2. In
Section 2.3.3, we prove the upper bound on the width of the filtration. In Sec-
tion 2.3.4, we explain the algorithm to compute F and analyze its time and
space complexity.

2.3.1 Active and small coning

Coning. We briefly revisit the coning strategy introduced by Dey, Fan and
Wang [29]. Let s : K→ L be an elementary contraction (u, v) u and define

L∗ = K ∪
(
u ∗ St(v,K)

)
.

An example is shown in Figure 2.1.
Dey et al. show that L ⊆ L∗ and that the map induced by inclusion is

an isomorphism between H(L) and H(L∗). By applying this result at any
elementary contraction, this implies that every zigzag tower can be transformed
into a zigzag filtration with identical barcode.
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u

v
w

u

v

contraction of u and v to w

K L

L∗

Figure 2.1: Construction example of L∗, were u and v in K are
contracted to w in L

Given a tower T , we can also obtain an non-zigzag filtration using coning,
if we continue the operation on L∗ instead of going back to L. More precisely,
we set K̃0 := K0 and if si is an inclusion of simplex σ, we set:

K̃i+1 := K̃i ∪ {σ}.

If si is a contraction (u, v) u, we set:

K̃i+1 := K̃i ∪
(
u ∗ St(v, K̃i)

)
.

Indeed, it can be proved that (K̃i)i=0,...,m has the same barcode as T . However,
the filtration will not be small, and we will define a smaller variant now.

Our new construction yields a sequence of complexes K̂0, . . . , K̂m with K̂i ⊆
K̂i+1. During the construction, we maintain a flag for each vertex in K̂i, which
marks the vertex as active or inactive. A simplex is called active if all its
vertices are active, and inactive otherwise. For a vertex u and a complex K̂i,
let ActSt(u, K̂i) denote its active closed star, which is the set of active simplices

in K̂i in the closed star of u.
The construction is inductive, starting with K̂0 := ∅. If si : Ki → Ki+1 is

an elementary inclusion with Ki+1 = Ki ∪ {σ}, set:

K̂i+1 := K̂i ∪ {σ}.

If σ is a vertex, we mark it as active. It remains the case that si : Ki →
Ki+1 is an elementary contraction of the vertices u and v. If |ActSt(u, K̂i)| ≤
|ActSt(v, K̂i)|, we set

K̂i+1 := K̂i ∪
(
v ∗ActSt(u, K̂i)

)
and mark u as inactive. Otherwise, we set

K̂i+1 := K̂i ∪
(
u ∗ActSt(v, K̂i)

)
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and mark v as inactive. This ends the description of the construction. We write
F for the filtration (K̂i)i=0,...,m.

There are two major changes compared to the construction of (K̃i)i=0,...,m.
First, to counteract the potentially large growth of the involved cones, we restrict
coning to active simplices. We will show below that the subcomplex of K̂i
induced by the active vertices is isomorphic to Ki. As a consequence, we add
the same number of simplices by passing from K̂i to K̂i+1 as in the approach
by Dey et al. does when passing from K to L∗.

A second difference is that our strategy exploits that an elementary contrac-
tion of two vertices u and v leaves us with a choice: we can either take u or v as
the representative of the contracted vertex. In terms of simplicial maps, these
two choices correspond to setting si(u) = si(v) = u or si(u) = si(v) = v, if si
is the elementary contraction of u and v. It is obvious that both choices yield
identical complexes Ki+1 up to renaming of vertices. However, the choices make
a difference in terms of the size of K̂i+1, because the active closed star of u to
v in K̂i might differ in size. Our construction simply choose the representative
which causes the smaller K̂i+1.

2.3.2 Topological equivalence

We make the following simplifying assumption for T . Let si be an elementary
contraction of u and v. If our construction of K̂i+1 turns v inactive, we assume
that si(u) = si(v) = u. Otherwise, we assume si(u) = si(v) = v. Indeed,
this is without loss of generality because it corresponds to a renaming of the
simplices in eachKi and yields equivalent persistence modules. The advantage of
this convention is the following property, which follows from a straight-forward
inductive argument.

Lemma 2.3. For every i in {0, ...,m}, the set of vertices of Ki is equal to the

set of active vertices in K̂i.

This allows us to interpret Ki and K̂i as simplicial complexes defined over a
common vertex set. In fact, Ki is the subcomplex of K̂i induced by the active
vertices:

Lemma 2.4. A simplex σ is in Ki if and only if σ is an active simplex in K̂i.

Proof. We use induction on i. The statement is true for i = 0, because K0 =
∅ = K̂0.

So assume first si : Ki → Ki+1 is an elementary inclusion that adds a d-
simplex σ = (v0, . . . , vd) to Ki+1. If σ is a vertex, it is set active in K̂i+1 by

construction. Otherwise, v0, . . . , vd are active in K̂i by induction and stay active
in K̂i+1. In any case, σ is active in K̂i+1. The equivalence for the remaining
simplices is straight-forward.

If si is an elementary contraction (u, v)  u, we prove both directions of
the equivalence separately. For “⇒”, fix a d-simplex σ ∈ Ki+1. It suffices to
show that σ ∈ K̂i+1, as in this case, it is also active by Lemma 2.3. If σ ∈ Ki,
this follows at once by induction because Ki ⊆ K̂i ⊆ K̂i+1. If σ /∈ Ki, u must
be a vertex of σ. Moreover, writing σ = {u, v1, ..., vd} and σ′ = {v, v1, . . . , vd}
we have that σ′ ∈ Ki and si(σ

′) = σ. In particular, the vertices v1, . . . , vd are
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active in K̂i by induction, hence {v1, . . . , vd} is in the active closed star of v in

K̂i. By construction, {u, v1, ..., vd} = σ is in K̂i+1.

For “⇐”, let σ ∈ K̂i+1 \ Ki+1. We show that σ is an inactive simplex in

K̂i+1. By Lemma 2.3, this is equivalent to show that σ contains a vertex not in
Ki+1.

Case 1: σ ∈ K̂i. If σ is inactive in K̂i, it stays inactive in K̂i+1. So, assume
that σ is active in K̂i and thus σ ∈ Ki by induction. But σ /∈ Ki+1, so σ must
have v as a vertex and is therefore inactive in K̂i+1.

Case 2: σ ∈ K̂i+1 \ K̂i. By construction, σ is of the form {u, v1, . . . , vd}
such that {v1, . . . , vd} is in the active closed star of v in K̂i. Assume for a
contradiction that v 6= vj for all j = 1, . . . , d. Then, σ′ = {v, v1, . . . , vd} is active

in K̂i and thus, by induction, a simplex in Ki. But then, si(σ
′) = σ ∈ Ki+1

which is a contradiction to our choice of σ. It follows that v is a vertex of σ
which proves our claim.

Lemma 2.5. For every 0 ≤ i ≤ m, the complex K̂i collapses to Ki.

Proof. We use induction on i. For i = 0, K0 = K̂0, and the statement is
trivial. Suppose that the statement holds for K̂i and Ki using the sequence ci of
elementary collapses. Note that these collapses only concern inactive simplices
in K̂i. For an inactive vertex v ∈ K̂i, the construction of K̂i+1 ensures that v
does not gain any additional coface. This implies that ci is still a sequence of
elementary collapses for K̂i+1, yielding a complex K̂∗i+1 with Ki+1 ⊆ K̂∗i+1 ⊆
K̂i+1. In particular, K̂∗i+1 only contains vertices that are still active in K̂i.
If si is an elementary inclusion, K̂∗i+1 = Ki+1, because any all vertices in K̂i
remain active in K̂i+1. For si being an elementary contraction (u, v)  u, set

S := K̂∗i+1 \Ki+1 as the remaining set of simplices that still need to be collapsed
to obtain Ki+1. All simplices of S have v as vertex. More precisely, S is the
set of all simplices of the form {v, v1, . . . , vd} with v1, . . . , vd active in K̂i+1. We
split S = Su∪S¬u where Su ⊂ S are the simplices in S that contain u as vertex,
and S¬u = S \ Su.

We claim that the mapping that sends {u, v, v1, . . . , vd} ∈ Su to {v, v1,
. . . , vd} ∈ S¬u is a bijection. This map is clearly injective. If σ = {v, v1,

. . . , vd} ∈ S¬u, then σ ∈ K̂i (because every newly added simplex in K̂i+1 con-

tains u). Also, σ ∈ K̂∗i+1, and is therefore active in K̂i. By construction,

{u, v, v1, . . . , vd} ∈ K̂i+1, proving surjectivity.

We now define a sequence of elementary collapses from K̂∗i+1 to Ki+1. Choose
a simplex σ = {v, v1, . . . , vd} ∈ S¬u of maximal dimension, and let τ = {u, v, v1,
. . . , vd} denote the corresponding simplex in Su. Then σ is indeed a free

face in K̂∗i+1, because if there was another coface τ ′ 6= τ , it takes the form
{w, v, v1, . . . , vd} with w 6= u active. So, τ ′ ∈ S¬u, and τ ′ has larger dimen-
sion than σ, a contradiction. Therefore, the pair (σ, τ) defines an elementary

collapse in K̂∗i+1. We proceed with this construction, always collapsing a re-
maining pair in S¬u × Su of maximal dimension, until all elements of S have
been collapsed.

Proposition 2.6. T and F have the same barcode.

Proof. Let ŝi : K̂i → K̂i+1 denote the inclusion map from K̂i to K̂i+1. By
combining Lemma 2.5 with Lemma 2.1, we have an isomorphism i∗i : H(Ki)→
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H(K̂i), for all 0 ≤ i ≤ m, induced by the inclusion maps ii : Ki → K̂i, and
therefore the following diagram connecting the persistence modules induced by
T and F :

H(K0)
s∗0 //

i∗0
��

H(K1)
s∗1 //

i∗1
��

· · ·
s∗m−1
// H(Km)

i∗m
��

H(K̂0)
ŝ∗0 // H(K̂1)

ŝ∗1 // · · ·
ŝ∗m−1
// H(K̂m) .

(2.1)

The Persistence Equivalence Theorem [33, p.159] asserts that (Kj)j and (K̂j)j ,
with j = 0, ...,m, have the same barcode if (2.1) commutes, that is, if i∗i+1 ◦s∗i =
ŝ∗i ◦ i∗i , for all 0 ≤ i < m.

Two simplicial maps s : K → K′ and s′ : K → K′ are contiguous if, for all
σ ∈ K, s(σ)∪ s′(σ) ∈ K′. Two contiguous maps are known to be homotopic [51,
Theorem 12.5.] and thus equal at homology level, that is, s∗ = s′∗. We show
that ii+1 ◦ si and ŝi ◦ ii are contiguous. This implies that (2.1) commutes,
because, by functoriality, i∗i+1 ◦ s∗i = (ii+1 ◦ si)∗ = (ŝi ◦ ii)∗ = ŝ∗i ◦ i∗i .

To show contiguity, fix σ ∈ Ki and observe that (ŝi ◦ ii)(σ) = σ because ŝi
and ii are inclusions. If si(σ) = σ, (ii+1 ◦ si)(σ) = σ as well, and the contiguity
condition is clearly satisfied. So, let si(σ) 6= σ. Then si is an elementary
contraction (u, v)  u, and σ is of the form {v, v1, . . . , vd}, where one of the
vj might be equal to u. Then, (ii+1 ◦ si)(σ) = {u, v1, ..., vd}. Consequently,
(ii+1 ◦ si)(σ)∪ (ŝi ◦ ii)(σ) = {u, v, v1, ..., vd}. By Lemma 2.4, σ = {v, v1, . . . , vd}
is in the active closed star of v in K̂i, and by construction {u, v, v1, ..., vd} ∈ K̂i+1,
which proves contiguity of the maps.

2.3.3 Size analysis

The contracting forest. Let Tj denote the prefix of length j ≤ m, of T :

Tj : ∅ = K0
s0 // . . .

sj−1
// Kj

We associate a rooted labeled forest Fj to Tj inductively as follows: For j = 0,
F0 is the empty forest. Let Fj−1 be the forest of Tj−1. If sj−1 is an elementary
inclusion of a d-simplex, we have two cases: if d > 0, set Fj := Fj−1. If a vertex
v is included, Fj := Fj−1∪{x}, with x a single node tree labeled with v. If sj−1

is an elementary contraction contracting two vertices u and v in Kj−1, there are
two trees in Fj−1, whose roots are labeled u and v. In Fj , these two trees are
merged by making their roots children of a new root, which is labeled with the
vertex that u and v are mapped to.

We can read off from the construction immediately that the roots of Fi are
labeled with the vertices of the complex Ki, for every i = 0, . . . ,m. Moreover,
each leaf corresponds to the inclusion of a vertex in Ti, and each internal node
corresponds to a contraction of two vertices. In particular, Fi is a full forest,
that is, every node has 0 or 2 children.

Let F := Fm denote the forest of the tower T = Tm. Let Σ denote the set
of all simplices that are added at elementary inclusions in T , and recall that
n = |Σ|. A d-simplex σ ∈ Σ added by si is formed by d + 1 vertices, which
correspond to d+ 1 roots of Fi+1, and equivalently, to d+ 1 nodes in F . For a
node x in F , we denote by E(x) ⊆ Σ the subset of simplices with at least one
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vertex that appears as label in the subtree of F rooted at x. If y1 and y2 are
the children of x, E(y1) and E(y2) are both subsets of E(x), but not disjoint in
general. However, the following relation follows at once:

|E(x)| ≥ |E(y1)|+ |E(y2) \ E(y1)| (2.2)

We say that the set N of nodes in F is independent, if there are no two nodes
x1 6= x2 in N , such that x1 is an ancestor of x2 in F . A vertex in Ki appears
as label in at most one F -subtree rooted at a vertex in the independent set N .
Thus, a d-simplex σ can only appear in up to d+1 E-sets of vertices in N . That
implies:

Lemma 2.7. Let N be an independent set of vertices in F . Then,∑
x∈N
|E(x)| ≤ (∆ + 1) · n,

The cost of contracting. Recall that a contraction si : Ki → Ki+1 yields an
inclusion K̂i ↪→ K̂i+1 that potentially adds more than one simplex. Therefore, in
order to bound the total size of K̂m, we need to bound the number of simplices
added in all these contractions.

We define the cost of a contraction si as |K̂i+1 \ K̂i|, that is, the number of
simplices added in this step. Since each contraction corresponds to a node x in
F , we can associate these costs to the internal nodes in the forest, denoted by
c(x). The leaves get cost 0.

Lemma 2.8. Let x be an internal node of F with children y1, y2. Then,

c(x) ≤ 2 · |E(y1) \ E(y2)|.

Proof. Let si : Ki → Ki+1 denote the contraction that is represented by the
node x, and let w1 and w2 be the labels of its children y1 and y2, respectively.
By construction, w1 and w2 are vertices in Ki that are contracted by si. Let
C1 = St(w1,Ki) \ St(w2,Ki) and C2 = St(w2,Ki) \ St(w1,Ki). By Lemma 2.4,

St(w1,Ki) = ActSt(w1, K̂i), and the same for w2. So, because the simplices
the two active closed stars have in common will not influence the cost of the
contraction, we have,

c(x) ≤ min{|C1|, |C2|}.
In particular, c(x) ≤ |C1|. We will show that |C1| ≤ 2 · |E(y1) \ E(y2)|.
For every d-simplex σ ∈ Ki, there is some d-simplex τ ∈ Σ that has been

added in an elementary inclusion sj with j < i, such that si−1 ◦ si−2 ◦ . . . ◦
sj+1(τ) = σ. We call τ an origin of σ. There might be more than one origin
of a simplex, but two distinct simplices in Ki cannot have a common origin.
Moreover, for every vertex v of σ, the tree in Fi whose root is labeled with v
contains exactly one vertex v′ of τ as label. We omit the proof which works by
simple induction.

We prove the inequality by a simple charging argument. For each vertex
in C1, we charge a simplex in |E(y1) \ E(y2)| such that no simplex is charged
more than twice. Note that C1 = (St(w1,Ki) ∪ Lk(w1,Ki)) \ St(w2,Ki). If
σ ∈ St(w1,Ki), then fix an origin τ of σ. Then τ has a vertex that is a label
in the subtree rooted at y1, so τ ∈ E(y1). At the same time, since w2 is
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not a vertex of σ, τ has no vertex in the subtree rooted at y2, so τ /∈ E(y2).
We charge τ for the existence of σ. Because different simplices have different
origins, every element in E(y1) \ E(y2) is charged at most once for St(w1,Ki).
If σ ∈ Lk(w1,Ki), σ′ := w1 ∗ σ ∈ St(w1,Ki), and we can choose an origin τ ′ of
σ′. As before, τ ′ ∈ E(y1)\E(y2) and we charge τ ′ for the existence of σ. Again,
each element in E(y1) \ E(y2) is charged at most once among all elements in
the link. This proves the claim.

An ascending path (x1, ..., xL), with L ≥ 1, is a path in a forest such that
xi+1 is the parent of xi, for 1 ≤ i < L. We call L the length of the path and xL
its endpoint. For ascending paths in F , the cost of the path is the sum of the
costs of the nodes. We say that the set P of ascending paths is independent, if
the endpoints in P are pairwise different and form an independent set of nodes.
We define the cost of P as the sum of the costs of the paths in P .

Lemma 2.9. Let (x1, ..., xL) be an ascending path and P an independent set of
ascending paths in F . Then the cost of both is respectively:

c(x1, ..., xL) ≤ 2 · |E(xL)|
c(P ) ≤ 2 · (∆ + 1) · n.

Proof. For the first statement, let p be the ascending path (x1, ..., xL). Without
loss of generality, we can assume the the path starts with a leaf x1, because
otherwise, we can always extend the path to a longer path with at least the same
cost. We let pi = (x1, . . . , xi) denote the subpath ending at xi, for i = 1, . . . , L,
so that pL = p. We let c(pi) denote the cost of the path pi and show by
induction that c(pi) ≤ 2 · |E(xi)|. For i = 1, this follows because c(p1) = 0.
For i = 2, . . . , L, xi is an internal node, and its two children are xi−1 and some
other node x′i−1. Using induction and Lemma 2.8, we have that

c(pi) = c(pi−1) + c(xi)

≤ 2 · (|E(xi−1)|+ |E(x′i−1) \ E(xi−1)|)
≤ 2 · |E(xi)|,

where the last inequality follows from (2.2). The second statement follows from
Lemma 2.7 because the endpoints of the paths form an independent set in F .

Ascending path decomposition. An only-child-path in a binary tree is an
ascending path starting in a leaf and ending at the first encountered node that
has a sibling, or at the root of the tree. An only-child-path can have length 1, if
the starting leaf has a sibling already. Examples of only-child-paths are shown
in Figure 2.2. We observe that no node with two children lies on any only-child-
path, which implies that the set of only-child-paths forms an independent set
of ascending paths.

Consider the following pruning procedure for a full binary forest F . Set
F(0) ← F . In iteration i, we obtain the forest F(i) from F(i−1) by deleting the
only-child-paths of F(i−1). We stop when F(i) is empty; this happens eventually

because at least the leaves of F(i−1) are deleted in the ith iteration. Because
we start with a full forest, the only-child-paths in the first iteration are all of
length 1, and consequently F(1) arises from F(0) by deleting the leaves of F(0).
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W(0)

W(1)

W(2)

W(3) = ∅

Figure 2.2: Iterations of the pruning procedure; the only-child-paths
are marked in color.

Note that the intermediate forests F(1), F(2), . . . are not full forests in general.
Figure 2.2 shows the pruning procedure on an example.

To analyze this pruning procedure in detail, we define the following integer
valued function for nodes in F :

r(x) =


1, if x is a leaf

r(y1) + 1, if x has children y1, y2 and r(y1) = r(y2)

max{r(y1), r(y2)}, if x has children y1, y2 and r(y1) 6= r(y2)

Lemma 2.10. A node x of a full binary forest F is deleted in the pruning
procedure during the r(x)-th iteration.

Proof. We prove the claim by induction on the tree structure. If x is a leaf, it
is removed in the first iteration, and r(x) = 1. If x is an internal node with
children y1 and y2, let r1 := r(y1) and r2 := r(y2). By induction, y1 is deleted
in the r1-th iteration and y2 is deleted in the r2-th iteration. There are two
cases: if r1 = r2, x still has two children after r1 − 1 iterations. This implies
that x does not lie on an only-child- path in the forest F(r1−1) and is therefore
not deleted in the r1-th iteration. But because its children are deleted, x is a
leaf in F(r1) and therefore deleted in the (r1 + 1)-th iteration. It remains the
second case that r1 6= r2. Assume without loss of generality that r1 > r2, so
that r(x) = r1. In iteration r1, y1 lies on an only-child-path in F(r1−1). Because
y2 /∈ F(r1−1), y1 has no sibling in F(r1−1), so the only-child-path extends to x.
Consequently, x is deleted in the r1-th iteration.

Lemma 2.11. For a node x in a full binary forest, let s(x) denote the number
of nodes in the subtree rooted at x. Then s(x) ≥ 2r(x) − 1. In particular,
r(x) ≤ log2(s(x) + 1).

Proof. We prove the claim by induction on r(x). Note that r(x) = 1 if and
only if v is a leaf, which implies the statement for r(x) = 1. For r(x) > 1, it is
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sufficient to prove the statement assuming that v has a minimal s-value among
all nodes with the same r-value. Since x is not a leaf, it has two children y1 and
y2. They satisfy r(y1) = r(y2) = r(x) − 1, because otherwise r(x) = r(y1) or
r(x) = r(y2), contradicting the minimality of x. By induction hypothesis, we
obtain that

s(x) = 1 + s(y1) + s(y2)

≥ 1 +
(

2r(y1) − 1
)

+
(

2r(y2) − 1
)

= 2r(x) − 1.

Proposition 2.12. Let n0 be the number of vertices included in T . Then:

|K̂m| ≤ n+ 2 · (∆ + 1) · n · (1 + log2(n0))

= O(n ·∆ · log2(n0)).

Proof. Applying the pruning procedure to the contraction forest F of T , we
obtain in every iteration a set of independent ascending paths of F , and the cost
of this set is bounded by 2 · (∆ + 1) · n by Lemma 2.9. Because F has at most
2·n0−1 nodes, any node x satisfies r(x) ≤ log2(2·n0) by Lemma 2.11. It follows
that the pruning procedure ends after 1+log2(n0) iterations, so the total cost of
the contraction forest is at most 2 · (∆+1) ·n · (1+ log2(n0)). By definition, this
cost is equal to the number of simplices added in all contraction steps. Together
with the n simplices added in inclusion steps, the bound follows.

2.3.4 Algorithm

We will make frequent use of the following concept: a dictionary is a data
structure that stores a set of items of the form (k,v), where k is called the key
and v is called the value of the item. We assume that all keys stored in the
dictionary are pairwise different. The dictionary support three operations:

- insert(k,v): adds a new item to the dictionary,

- delete(k): removes the item with key k from the dictionary (if it exists),

- search(k): returns the item with key k, or returns that no such item exists.

Common realizations are balanced binary search trees [21, §12] and hash ta-
bles [21, §11].

Simplicial complexes by dictionaries. The main data structure of our
algorithm is a dictionary D that represents a simplicial complex. Every item
stored in the dictionary represents a simplex, whose key is the list of its vertices.
Every simplex σ itself stores an dictionary CoFσ. Every item in CoFσ is a
pointer to another item in D, representing a cofacet τ of σ. The key of the item
is a vertex identifier (e.g., an integer) for v such that τ = v ∗ σ.

How large is D for a simplicial complex K with n simplices of dimension ∆?
Observe that D stores n items, and each key is of size ≤ ∆ + 1. That yields a
size of O(n∆) plus the size of all CoFσ. Since every simplex is the cofacet of
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at most ∆ simplices, the size of all these inner dictionaries is also bounded by
O(n∆) (assuming that the size of a dictionary is linear in the number of stored
elements).

We can insert and delete simplices efficiently in D using dictionary opera-
tions. For instance, to insert a simplex σ given as a list of vertices, we insert
a new item in D with the key. Then we search for the ∆ facets of σ (using
dictionary search in D), and notify each facet τ of σ about the insertion by
adding a pointer to σ to CoFτ , using the vertex σ \ τ as the key. The deletion
procedure works similarly. Each simplex insertion and deletion requires O(∆)
dictionary operations. In what follows, it is convenient to assume that dictio-
nary operations have unit costs; we multiply the time complexity with the cost
of a dictionary operation at the end to compensate for this simplification.

The conversion algorithm. We assume that the tower T is given to us
as a stream where each element represents a simplicial map si in the tower.
Specifically, an element starts with a token {INCLUSION, CONTRACTION} that
specifies the type of the map. In the first case, the token is followed by a
non-empty list of vertex identifiers specifying the vertices of the simplex to be
added. In the second case, the token is followed by two vertex identifiers u and
v, specifying a contraction of type (u, v) u.

The algorithm outputs a stream of simplices specifying the filtration F .
Specifically, while handling the ith input element, it outputs the simplices of
K̂i+1 \ K̂i in increasing order of dimension (to ensure that every prefix is a
simplicial complex). For simplicity, we assume that output simplices are also
specified by a list of vertices — the algorithm can easily be adapted to return
the boundary matrix of the filtration in sparse list representation with the same
complexity bounds.

We use an initially empty dictionary D as above, and maintain the invariant
that after the ith iteration, D represents the active subcomplex of K̂i, which is
equal to Ki by Lemma 2.4.

If the algorithm reads an inclusion of a simplex σ from the stream, it simply
adds σ to D (maintaining the invariant) and writes σ to the output stream.

If the algorithm reads a contraction of two vertices u and v, from Ki to Ki+1,
we let ci denote the cost of the contraction, that is, ci = |K̂i+1 \ K̂i|. The first
step is to determine which of the vertices has the smaller active closed star in
K̂i, or equivalently, which vertex has the smaller closed star in Ki. The size of
the closed star of a vertex v could be computed by a simple graph traversal in D,
starting at a vertex v and following the cofacet pointers recursively, counting the
number of simplices encountered. However, we want to identify the smaller star
with only O(ci) operations, and the closed star can be much larger. Therefore,
we change the traversal in several ways:

First of all, observe that |St(u)| ≤ |St(v)| if and only if |St(u)| ≤ |St(v)| (in
Ki). Now define St(u,¬v) := St(u)\St(v). Then, |St(u)| ≤ |St(v)| if and only if
|St(u,¬v)| ≤ |St(v,¬u)|, because we subtracted the intersection of the stars on
both sides. Finally, note that min{|St(u,¬v)|, |St(v,¬u)|} ≤ ci, as one can easily
verify. Moreover, we can count the size of St(u,¬v) by a cofacet traversal from u,
ignoring cofacets that contain v (using the key of CoF∗), in O(|St(u,¬v)|) time.
However, this is still not enough, because counting both sets independently gives
a running time of max{|St(u,¬v)|, |St(v,¬u)|}. The last trick is that we count
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the sizes of St(u,¬v) and St(v,¬u) at the same time by a simultaneous graph
traversal of both, terminating as soon as one of the traversal stops. The running
time is then proportional to 2 ·min{|St(u,¬v)|, |St(v,¬u)|} = O(ci), as required.

Assume w.l.o.g. that |St(u)| ≤ |St(v)|. Also in time O(ci), we can obtain
St(u,¬v). We sort its elements by increasing dimension, which can be done in
O(ci+∆) using integer sort. For each simplex σ = {u, v1, . . . , vk} ∈ St(u,¬v) in
order, we check whether {v, v1, . . . , vk} is in D. If not, we add it to D and also
write it to the output stream. Then, we write {u, v, v1, . . . , vk} to the output

stream (note that we do not have to check it existence in K̂i, because it does
not by construction, and there is no need to add it to D because of the next
step). At the end of the loop, we wrote exactly the simplices in Ki+1 \ Ki to
the output stream, which proves correctness.

It remains to maintain the invariant on D. Assuming still that |St(u)| ≤
|St(v)|, u turns inactive in K̂i+1. We simply traverse over all cofaces of u and
remove all encountered simplices from D. After this operations, the invariant
holds. This ends the description of the algorithm.

Complexity analysis. By applying the operation costs on the above de-
scribed algorithm, we obtain the following statement. Combined with Proposi-
tions 2.6 and 2.12, it completes the proof of Theorem 2.2.

Proposition 2.13. The algorithm requires O(∆ · ω) space and O(∆ · |K̂m| ·
Cω) time, where ω = maxi=0,...,m |Ki| and Cω is the cost of an operation in a
dictionary with at most ω elements.

Proof. The space complexity follows at once from the invariant, because the size
of D is at most O(∆|Ki|) during the ith iteration.

For the time bound, we set S := |K̂m| for convenience and show that the
algorithm finishes in O(∆ · S) steps, assuming dictionary operations to be of
constant cost. We have one simplex insertion per elementary inclusion which
requires O(∆) operations. Thus, all inclusions are bounded by O(n∆), which
is subsumed by our bound as n ≤ S. For the contraction case, we need O(ci)
to identify the smaller star, O(ci + ∆) to get a sorted list of St(u,¬v) (or vice
versa), and O(∆ · ci) to add new vertices to D. Moreover, we delete the star
of u from D; the cost for that is O(∆ · di), where di is the number of deleted
simplices. Thus, the complexity of a contraction is O(∆ · (ci + di)).

Since ci is the number of simplices added to the filtration at step i, the sum
of all ci is bounded by O(S). Moreover, because every simplex that ever appears

in D belongs to K̂m and every simplex is inserted only once, the sum of all di
is bounded by O(S) as well. Therefore, the combined cost over all contractions
is O(∆ · S) as required.

Note that the dictionary D has lists of identifiers of length up to ∆ + 1 as
keys, so that comparing two keys has cost O(∆). Therefore, using balanced
binary trees as dictionary, we get a complexity of Cω = O(∆ logω). Using hash
tables, we get an expected worst-case complexity of Cω = O(∆).

Experimental results. The following tests where made on a 64-bit Linux
(Ubuntu) HP machine with a 3.50 GHz Intel processor and 63 GB RAM. The
programs were all implemented in C++ and compiled with optimization level
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-O2. Our algorithm was implemented in the software Sophia5 and will soon
appear in a release of GUDHI [58].

To test its performance, we compared it to the software Simpers6 (down-
loaded in August 2017), which is the implementation of the Annotation Al-
gorithm from Dey, Fan and Wang described in [29]. Simpers computes the
persistence of the given filtration, so we add to our time the time the library
PHAT [3] (version 1.5) needs to compute the persistence from the generated filtra-
tion. PHAT was used with its default parameters and its ’--ascii --verbose’ options
activated. Simpers also used its default parameters except for the dimension
parameter which was set to 5.

c n n0 ∆ ω

data1 495 4 833 500 4 2 908

data2 795 7 978 800 4 4 816

data3 794 8 443 800 5 5 155

GPS 1 746 8 585 1 747 3 1 747

KB 22 499 95 019 22 500 3 22 500

MC 23 074 143 928 23 075 3 28 219

S3 252 995 1 473 580 252 996 4 252 996

PC25 14 999 10 246 125 15 000 3 2 191 701

Sophia + PHAT Simpers

filtration
size

time
(s)

mem. peak (kB)
Sophia / total

time
(s)

mem. peak
(kB)

data1 19 747 0.07 4 752 / 6 472 0.54 10 030

data2 35 253 0.20 5 286 / 9 259 2.82 19 876

data3 38 101 0.21 5 638 / 9 487 3.88 25 104

GPS 9 063 0.02 4 234 / 5 027 0.07 5 849

KB 133 433 0.30 10 036 / 14 484 0.51 25 392

MC 185 447 0.51 13 730 / 18 792 0.77 26 718

S3 1 824 461 8.50 85 128 / 151 860 10.78 247 956

PC25 12 283 003 135.02 994 400 / 1 439 664 ∞ -

Table 2.1: Experimental results. The symbol ∞ means that the
calculation time exceeded 12 hours.

The results of the tests are in Table 2.1. The timings for File IO are not
included in any process time except the input reading of Sophia. The memory
peak was obtained via the ’/usr/bin/time -v’ Linux command. Each command
was repeated 10 times and the average was token. The first three towers in
the table, data1-3, were generated incrementally on a set of n0 vertices: In
each iteration, with 90% probability, a new simplex is included, that is picked
uniformly at random among the simplices whose facets are all present in the
complex, and with 10% probability, two randomly chosen vertices of the complex

5https://bitbucket.org/schreiberh/sophia/
6http://web.cse.ohio-state.edu/~tamaldey/SimPers/Simpers.html
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are contracted. This is repeated until the complex on the remaining k vertices
forms a k − 1-simplex, in which case no further simplex can be added. The
remaining data was generated from the SimBa (downloaded in June 2016) library
with default parameters using the point clouds from [30]. To obtain the towers
that SimBa computes internally, we included a print command at a suitable
location in the SimBa code.

To verify that the space consumption of our algorithm does not dependent on
the length of the tower, we constructed an additional example whose size exceeds
our RAM capacity, but whose width is small: we took 10 random points moving
on a flat torus in a randomly chosen fixed direction. When two points get in
distance less than t1 to each other, we add the edge between them (the edge
remains also if the points increase their distance later on). When two points get
in distance less than t2 from each other with t2 < t1, we contract the two vertices
and let a new moving point appear somewhere on the torus. This process yields
a sequence of graphs, and we take its flag complex as our simplicial tower. In this
way, we obtain a tower of length about 3.5 · 109 which has a file size of about 73
GB, but only has a width of 367. Our algorithm took about 2 hours to convert
this tower into a filtration of size roughly 4.6 · 109. During the conversion,
the virtual memory used was constantly around 22 MB and the resident set
size about 3.8 MB only, confirming the theoretical prediction that the space
consumption is independent of the length of the tower. The information about
the memory use was taken from the ’/proc/<pid>/stat’ system file every 100 000
insertions/contractions during the process.

2.3.5 Tightness and lower bounds

The conversion theorem (Theorem 2.2) yields an upper bound of O(∆ ·n log n0)
for the size of a filtration equivalent to a given tower. It is natural to ask whether
this bound can be improved. In this section, we assume for simplicity that the
maximal dimension ∆ is a constant. In that case, it is not difficult to show that
our size analysis cannot be improved:

Proposition 2.14. There exist an example of a tower with n simplices and n0

vertices such that our construction yields a filtration of size Ω(n log n0).

Proof. Let p = 2k for some k ∈ N. Consider a graph with p edges (ai, bi), with
a1, . . . , ap, b1, . . . , bp 2p distinct vertices. Our tower first constructs this graph
with inclusions (in an arbitrary order). Then, the a-vertices are contracted in
a way such that the contracting forest is a fully balanced binary tree — see
Figure 2.3 for an illustration.

To bound the costs, it suffices to count the number of edges added between a-
vertices and b-vertices in each step. We call them ab-edges from now on. Define
the level of a contraction to be its level in the contracting tree, where 0 is the
level of the leaves, and k is the level of the root. On level 1, a contraction of ai
and aj yields exactly one new ab-edge, either (ai, bj) or (aj , bi). The resulting
contracted vertex has two incident ab-edges. A contraction on level 2 yields two
novel ab-edges, and a vertex with four incident ab-edges. By a simple induction,
we observe that a contraction on level i introduces 2i−1 new ab-edges, and hence
has a cost of at least 2i−1, for i = 1, . . . , k. This means that the sum of the
costs of all level i contractions is exactly p

2 . Summing up over all i yields a cost
of at least k p2 . The result follows because k = log(n0

2 ) and p = n
3 .
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Figure 2.3: [In proof of Proposition 2.14] Sequence of contractions
in the described construction for p = 8 (right) and the correspond-
ing contracting forest (left), whose nodes contains the cost of the
contractions

Another question is whether a different approach could convert a tower into
a filtration with an (asymptotically) smaller number of simplices. For this ques-
tion, consider the inverse persistence computation problem: given a barcode,
find a filtration of minimal size which realizes this barcode. Note that solving
this problem results in a simple solution for the conversion problem: compute
the barcode of the tower first using an arbitrary algorithm; then compute a
filtration realizing this barcode. While useful for lower bound constructions,
we emphasize the impracticality of this solution, as the main purpose of the
conversion is a faster computation of the barcode.

Let b be the number of bars of a barcode. An obvious lower bound for the
filtration size is Ω(b), because adding a simplex causes either the birth or the
death of exactly one bar in the barcode. For constant dimension, O(b) is also
an upper bound:

Lemma 2.15. For a barcode with b bars and maximal dimension ∆, there exists
a filtration of size ≤ 2∆+2b realizing this barcode.

Proof. Begin with an empty complex. Now consider the birth and death times
represented by the barcode one by one. The first birth will be the one of a
0-dimensional class, so add a vertex v0 to the complex. From now, every time a
0-dimensional homology class is born add a new vertex to the complex. When
a 0-dimensional homology class dies, link the corresponding vertex to v0 with
an edge.

When a k-dimensional homology class is born, with k > 0, add the boundary
of a (k+1)-simplex to the complex that is incident to v0 and to k novel vertices.
When this homology class dies, add the corresponding (k + 1)-simplex. This
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way, the resulting filtration realizes the barcode. For a bar of the barcode in
dimension k, we have to add all proper faces of a (k + 1)-simplex (except for
one vertex). Since that number is at most 2k+2 − 3, the result follows.

If a tower has length m, what is the maximal size of its barcode? If the
size of the barcode is O(m), the preceding lemma implies that a conversion to a
filtration of linear size is possible (for constant dimension). On the other hand,
any example of a tower yielding a super-linear lower bound would imply a lower
bound for any conversion algorithm, because a filtration has to contain at least
one simplex per bar in its barcode.

To approach the question, observe that a single contraction might destroy
many homology classes at once: consider a “fan” of t empty triangles, all glued
together along a common edge ab (see Figure 2.4 (a)). Clearly, the complex
has t generators in 1-homology. When a and b are contracted, the complex
transforms to a star-shaped graph which is contractible. Moreover, a contraction
can also create many homology classes at once: consider a collection of t disjoint
triangulated spheres, all glued together along a common edge ab. For every
sphere, remove one of the triangles incident to ab (see Figure 2.4 (b)). The
resulting complex is acyclic. The contraction of the edge ab “closes” each of the
spheres, and the resulting complex has t generators in 2-homology. Finally, a
contraction might not not affect the homology at all — see Figure 2.4 (c).

a

b

b to a a

a

b

b to a

a

a

b
b to a

a

(a)

(b)

(c)

Figure 2.4: Examples of the influence of contractions on the ho-
mology classes: (a) destruction of four 1-homology generators, (b)
creation of two 2-homology generators, and (c) no influence at all

The above examples show that a single contraction can create and destroy
many bars. For a super-linear bound on the barcode size, however, we would
have to construct an example where sufficiently many contractions create a large
number of bars. So far, we did neither succeed in constructing such an example,
nor are we able to show that such an example does not exist.

2.4 Persistence by streaming

Even if the complex we need to maintain in memory during the conversion is
relatively small, at the end, the algorithm to compute the final persistence still
needs to memorize the whole filtration we give it as input. If the complex in
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the original tower has an interesting maximum size during the whole process,
we should be able to compute its persistence even if the tower is extremely
long. So we design here a streaming variation of the reduction algorithm that
computes the barcode of filtrations, such that it has an efficient memory use.
More precisely, we will prove the following theorem:

Theorem 2.16. With the same notation as in Theorem 2.16, we can compute
the barcode of a tower T in worst-case time O(ω2 · ∆ · n · log n0) and space
complexity O(ω2).

We describe the algorithm in Section 2.4.1 and prove the complexity bounds
in Section 2.4.2. The described algorithm requires various adaptations to be-
come efficient in practice, and we describe an improved variant in Section 2.4.3.
We present some experiments in Section 2.4.4.

2.4.1 Algorithmic description

On a high level, our algorithm converts the tower into an equivalent filtration
and computes the barcode of that filtration. We focus on the second part, which
we describe as a streaming algorithm. The input to the algorithm is a stream
of elements, each starting with a token {ADDITION, INACTIVE} followed by a
simplex identifier which represents a simplex σ. If the token is ADDITION, this
is followed by a list of simplex identifiers specifying the facets of σ. In other
words, the element encodes the next column of the boundary matrix. If the
token is INACTIVE, it means that σ has become inactive in the complex. In
particular, no subsequent simplex in the stream will contain σ as a facet. It is
not difficult to modify the algorithm from Section 2.3.4 to return a stream as
required, within the same complexity bounds.

The algorithm uses a matrix data type M as its main data structure. We
realize M as a dictionary of columns, indexed by a simplex identifier. Each
column is a sorted linked list of identifiers corresponding to the non-zero row
indices of the column. In particular, we can access the pivot of the column in
constant time and we can add two columns in time proportional to the maximal
size of the involved lists. Note that most algorithms store the boundary matrix
as an array of columns, but we use dictionaries for space efficiency.

There are two secondary data structures that we mention briefly: given a
row index r, we have to identify the column index c of the column that has r
as pivot in the matrix (or to find out that no such column exists). This can
be done using a dictionary with key and value type both simplex identifiers.
Finally, we maintain a dictionary representing the set of simplex identifiers that
represent active simplices of the complex, plus a flag denoting whether the
corresponding simplex is positive or negative. It is straight-forward to maintain
these structures during the algorithm, and we will omit the description of the
required operations.

The algorithm uses two subroutines. The first one, called reduce column,
takes a column identifier j as input is defined as follows: iterate through the non-
zero row indices of j. If an index i is the index of an inactive and negative column
in M , remove the entry from the column j (this is the “compression” described
at the end of Section 2.2). After this pre-processing, reduce the column: while
the column is non-empty, and its pivot i is the pivot of another column k < j
in the matrix, add column k to column j.
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The second subroutine, remove row, takes a index ` as input and clears out
all entries in row ` from the matrix. For that, let j be the column with ` as
pivot. Traverse all non-zero columns of the matrix except column j. If a column
i 6= j has a non-zero entry at row `, add column j to column i. After traversing
all columns, remove column j from M .

The main algorithm can be described easily now: if the input stream contains
an addition of a simplex, we add the column to M and call reduce column on
it. If at the end of that routine, the column is empty, it is removed from M .
If the column is not empty and has pivot `, we report (`, j) as a persistence
pair and check whether ` is active. If not, we call remove row(`). If the input
stream specifies that simplex ` becomes inactive, we check whether j appears
as pivot in the matrix and call remove row(`) in this case.

Proposition 2.17. The algorithm computes the correct barcode.

Proof. First, note that removing a column from M within the procedure re-

move row does not affect further reduction steps: Since the pivot ` of the column
is inactive, no subsequent column in the stream will have an entry in row `.
Moreover, the reduction process cannot introduce an entry in row ` because the
routine has removed all such entries.

Note that remove row might also include right-to-left column additions,
and we also have to argue that they do not change the pivots. Let R de-
note the matrix obtained by the standard compression algorithm that does not
call remove row (as described in Section 2.2). Just before our algorithm calls
reduce column on the jth column, let Mj−1 denote the matrix with (j − 1)
columns that is represented byM . It is straight-forward to verify by an inductive
argument that every column of Mj−1 is a linear combination of R1, . . . , Rj−1,
where Ri is the ith column in R. reduce column adds a subset of the columns
of Mj−1 to the jth column. Thus, the reduced column can be expressed by a
sequence of left-to-right column additions in R, and thus yields the same pivot
as the standard compression algorithm.

2.4.2 Complexity analysis

We analyze how large the structure M can become during the algorithm. After
every iteration, the matrix represents the reduced boundary matrix of some
intermediate complex L̂ with K̂i ⊆ L̂ ⊆ K̂i+1 for some i = 0, . . . ,m. Moreover,
the active simplices define a subcomplex L ⊆ L̂ and there is a moment during
the algorithm where L̂ = K̂i and L = Ki, for every i = 0, . . . ,m. We call this the
ith checkpoint. We will make frequent use of the following simple observation.

Lemma 2.18. |K̂i+1 \ K̂i| ≤ |Ki| ≤ ω.

Lemma 2.19. At every moment, the number of columns stored in M is at most
2ω.

Proof. It can be verified easily that, throughout the algorithm, a column is
stored in M only if not zero, and its pivot is active. So, assume first that we
are at the ith checkpoint for some i. Since L = Ki, there are not more than
|Ki| ≤ ω active simplices. Since each column has a different active pivot, their
number is also bounded by ω. If we are between checkpoint i and i + 1, there
have been not more than ω columns added to M since the ith checkpoint from
Lemma 2.18. The bound follows.
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The number of rows is more difficult to bound because we cannot guarantee
that each column in M corresponds to an active simplex. Still, the number of
rows is asymptotically the same as for columns:

Lemma 2.20. At every moment, the number of rows stored in M is at most
4ω.

Proof. Consider a row index ` and a time in the algorithm where M represents
L̂. By the same argument as in the previous lemma, we can argue that there are
at most 2ω active row indices at any time. Therefore, we restrict our attention
to the case that ` is inactive and distinguish three cases. If ` represents a
negative simplex, we observe that its row should have been was removed due to
the compression optimization, and after ` became inactive, no simplex can have
it as a facet either. It follows that row ` is empty in this case. If ` is positive
and was paired with another index j during the algorithm, then remove row

was called on `, either at the moment the pair was formed, or when ` became
inactive. Since the procedure removes the row, we can conclude that row ` is
empty also in this case. The final case is that ` is positive, but has not been
paired so far. It is well-known that in this case, ` is the generator of an homology
class of L̂. Let

β(L̂) :=

∆∑
i=0

βi(L̂)

denote the sum of the Betti numbers of the complex. Then, it follows that the
number of such row indices is at most β(L̂).

We argue that β(L̂) ≤ 2ω which proves our claim. Assume that K̂i ⊆ L̂ ⊂
K̂i+1. We have that β(K̂i) = β(Ki) by Lemma 2.5, and since Ki has at most

ω simplices, β(Ki) ≤ ω. Since we add at most ω simplices to get from K̂i
to L̂, and each addition can increase β by at most one, we have indeed that
β(L̂) ≤ 2ω.

Proposition 2.21. The algorithm has time complexity O(ω2 ·∆ ·n · log n0) and
space complexity O(ω2).

Proof. The space complexity is immediately clear from the preceding two lem-
mas, as M is the dominant data structure in terms of space consumption.
For the time complexity, we observe that both subroutines reduce column and
remove row need O(ω) column additions and O(ω) dictionary operations in the
worst case. A column addition costs O(ω), and a dictionary operation is not
more expensive (since the dictionaries contain at most O(ω) elements and their
keys are integers). So, the complexity of both methods is O(ω2). Since each
routine is called at most once per input element, and there are O(∆ · n · log n0)
elements by Theorem 2.2, the bound follows.

2.4.3 Implementation

The algorithm described in Section 2.4.1 is not efficient in practice for three
reasons: First, it has been observed as a general rule that the clearing optimiza-
tion [3] significantly improves the standard algorithm. However, in the above
form, that optimization is not usable because it requires to process the columns
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in a non-incremental way. Second, the remove row routine scans the entire ma-
trix M ; while not affecting the worst-case complexity, frequently scanning the
matrix should be avoided in practice. Finally, the above algorithm uses lists to
represent columns, but it has been observed that this is a rather inefficient way
to perform matrix operations [3].

We outline a variant of the above algorithm that partially overcomes these
drawbacks and behaves better in practice. In particular, our variant can be
implemented with all column representations available in the PHAT library. The
idea is to perform a “batch” variant of the previous algorithm: We define a chunk
size C and read in C elements from the stream; we insert added columns in
the matrix, removing row entries of already known inactive negative columns as
before, but not reducing the columns yet. After having read C elements, we start
the reduction of the newly inserted columns using the clearing optimization.
That is, we go in decreasing dimension and remove a column as soon as its
index becomes the pivot of another column; see [16] for details. After the
reduction ends, except for the last chunk, we go over the columns of the matrix
and check for each pivot whether it is active. If it is, we traverse its row entries
in decreasing order, but skipping the pivot. Let ` be the current entry. If ` is
the inactive pivot of some column j, we add j to the current column. If ` is
inactive and represents a negative column, we delete ` from the current column.
After performing these steps for all remaining columns of the matrix, we go over
all columns again, deleting every column with inactive pivot. (By the way, also
cleaning up the secondary data structures described in 2.4.1.)

It remains the question of how to choose the parameter C. The chunk provides
a trade-off between time and space efficiency. Roughly speaking, the matrix can
have up to O(ω + C) columns during this reduction, but the larger the chunks
are, the more benefit one can draw from the clearing optimization (the clearing
optimization fails for pairs where the simplices are in different chunks). We
therefore recommend to choose C rather large, but making sure that the matrix
will still fit into memory.

2.4.4 Experimental evaluation

The tests were made with the same setup as in Section 2.3.4. Figure 2.5 shows
the effect of the chunk size parameter C on the runtime and memory consump-
tion of the algorithm. The data used is S3 (see Section 2.3.4); we also performed
the tests on the other examples from Table 2.1, with similar outcome. The File
IO operations are included in the measurements. Confirming the theory, as the
chunk size decreases, our implementation needs less space but more computa-
tion time (while the running time seems to increase slightly again for larger
chunk sizes).

For the 4.6 · 109 inclusions tower from Section 2.3.4, with C = 200 000,
the algorithm took around 4.5 hours, the virtual memory used was constantly
around 68 MB and the resident set size constantly around 49 MB, confirming
the theoretical statement that the memory size does not depend on the length
of the filtration.
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Figure 2.5: Evolution of processing time (left Y-axis in sec) and
process memory peak (right Y-axis in kB) depending on the chunk
size (logarithmic X-axis)

2.5 Conclusion

In the first part of the paper, we have presented an efficient algorithm to reduce
the computation of the barcode of a simplicial tower to the computation of a
barcode of a filtration with slightly larger size. With our approach, every algo-
rithmic improvement for persistence computation on the filtration case becomes
immediately applicable to the case of towers as well. In the second part of the
paper, we present a streaming variant of the classical persistence algorithm for
the case of towers. In here, the extra information provided by the towers allows
a more space efficient storage of the boundary matrix.

There are various theoretical and practical questions remaining for further
work: as already exposed in Section 2.3.5, the question of how large can the
barcode of a tower become has immediate consequences on the conversion from
towers to filtrations. Moreover, while we focused on constant dimension in
Section 2.3.5, we cannot exclude the possibility that our algorithm achieves a
better asymptotic bound for non-constant dimensions.

We made our software publicly available in the Sophia library. There are
several open questions regarding practical performance. For instance, our com-
plex representation, based on hash table, could be replaced with other variants,
such as the Simplex tree [6]. Moreover, it would be interesting to compare our
streaming approach for the barcode computation with a version that converts
to a filtration and subsequently computes the barcode with the annotation al-
gorithm. The reason is that the latter algorithm only maintains a cohomology
basis of the currently active complex in memory and therefore avoids the storage
of the entire boundary matrix.

Since both the simplex tree and annotation algorithm are part of the GUDHI

library [58], we plan to integrate our conversion algorithm in an upcoming ver-
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sion of the GUDHI library, both to increase the usability of our software and to
facilitate the aforementioned comparisons.





Chapter 3

Zigzag Morse Filtrations

This chapter is based on the paper Discrete Morse Theory for Computing Zigzag
Persistence [47] which is joint work with Clément Maria1.

3.1 Introduction

As in Chapter 2, this chapter aims to optimize the computation of barcodes,
but this time for zigzag filtrations.

Problem statement and related work. The theory of zigzag persistence
was introduced in [9], and theoretical [48] and practical [10, 45] algorithms
have been introduced to compute it. Zigzag persistence has great applicative
potential, considering it provably produces better topological information in
topology inference [54], while maintaining the homology of smaller complexes
thanks to deletions of faces, and more generally allows a finer approach to data
analysis, such as density estimation and topological bootstrapping [9].

However, while computing the barcode of filtrations improved drastically in
the last years — as much theoretically [17, 20, 24, 48] as experimentally [1, 2, 5,
16] — computing zigzag persistence remains tedious. It is more intricate that
computing standard persistent homology, essentially due to the fact that the
full sequence of insertions and deletions of faces is unknown, which requires the
maintenance and update of heavier data structures. As a consequence, none
of the optimizations of persistence algorithms adapt to the zigzag case. The
relatively poor performance of zigzag persistence implementations, compared
with persistent homology ones, is a major hindrance to its practical use.

But there is another approach to fast computation: it consists of preprocess-
ing the input filtration in order to drastically reduce the size of the complexes,
while preserving the interval decomposition of the persistence module [7, 31, 49,
55]. This approach has the double advantage of reducing both time and memory
complexity. This goal has successfully been reached for standard filtrations by
the use of discrete Morse theory [31, 37, 49] (see also [22, 40]), and led to the im-
plementation of the efficient software, such as Perseus [52] and Diamorse [25].
Additionally, noticeable successes, at the crossroad of persistence and discrete
Morse theory, have been reached in the study of 3D images [55], allowing drastic

1INRIA Sophia Antipolis-Méditerranée, France – clement.maria@inria.fr
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improvements in memory and time performance, as well as the study of data
ranging from medical imaging to material science [26, 27, 38]. Therefore, we
will now adapt the theory used for standard filtrations for zigzag filtrations.

Motivation and applications for zigzag persistence. We give two im-
portant applications of zigzag persistence on which we test the experimental
performance of our method.

1. Topology inference from data points P . A standard approach [33] consists
of computing the persistent homology of the Rips complex Rρ(P ) on the set
of points P , for an increasing threshold ρ ≥ 0. We compute instead the zigzag
persistence of oscillating Rips zigzag filtrations [54]. These filtrations add data
points progressively while reducing the scale of reconstruction in order to adapt
to a more and more dense set of points. Specifically,

Rµεi(Pi)···oo � � // Rνεi(Pi ∪ {pi+1}) oo ? _Rµεi(Pi ∪ {pi+1}) ··· // , (3.1)

where Rα(P ) is the Rips complex of threshold α on points P , and εi a measure
of the “sparsity” of the set of points Pi := {p1, . . . , pi} that decreases when
points are added. Finally, 0 < µ ≤ ν are parameters. This filtration is known
to furnish provably correct persistence diagrams, with much less noise than
standard persistence [54], while naturally maintaining much smaller complexes
during computation. This application is of importance in data analysis [13, 15].

2. Levelset persistence of images. Given a function f : X → R on a domain X,
classical persistence studies the persistent homology of sublevel sets f−1(−∞, ρ]
for an increasing ρ. Levelset persistence [10] studies instead the zigzag persis-
tence of of the pre-images of intervals, for appropriate s1 ≤ s2 ≤ . . .,

f−1[si−1, si]···oo � � // f−1[si−1, si+1] oo ? _ f−1[si, si+1] ··· // . (3.2)

From the levelset persistence, one can recover the sublevel set persistence [10],
while maintaining again much smaller structures. This application is of partic-
ular importance for medical imaging and material science [26, 27, 38].

Streaming model and memory efficiency. A main advantage of zigzag
persistence is to consequently maintain much smaller complexes over the com-
putation. To formalize this notion, we adopt a streaming model for the compu-
tation of zigzag persistence. The input is given by a stream of insertions and
deletions of faces, with no knowledge of the entire zigzag filtration, and zigzag
persistence is computed “on the fly”. In particular, the memory complexity of
our algorithms depends solely on the maximal size of any complex in the filtra-
tion as opposed to the entire number of insertions and deletions of faces, which
is generally much larger.

Contributions and existing results. In the spirit of [49], we introduce a
preprocessing reduction of a zigzag filtration based on discrete Morse theory [37].
After introducing some background in Section 3.2, we introduce in Section 3.3 a
zigzag Morse filtration that generalizes the filtered Morse complex [49] of stan-
dard persistence, and we prove that it has same persistent homology as the
input zigzag filtration. Because of removal of cells not agreeing with the Morse
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decomposition, the zigzag Morse filtration contains chain maps that are not in-
clusions. We study the effect of those maps on the boundary operator of the
Morse complex in Section 3.4, and design a persistence algorithm for zigzag
Morse complexes in Section 3.5. Finally, we report on the experimental perfor-
mance of the zigzag persistence algorithm for Morse complexes in Section 3.6.

Note that a similar approach to adapt discrete Morse theory to zigzag per-
sistence was followed by Escolar and Hiraoka [36]. Adapting [49], they define
a global zigzag filtered Morse complex for a zigzag filtration, and study its in-
terval decomposition. The main limitation of their approach is that the user
must know the entirety of the input zigzag filtration to compute the Morse pair-
ing, canceling the benefit of using “small complexes” in zigzag persistence. On
the contrary, our approach requires no other than local knowledge of the input
zigzag filtration, and all computation are done “on the fly” in the streaming
model.

3.2 Background

Complexes and chain maps. In practice, it is common to work with specific
complexes, such as simplicial or cubical complexes. However, Morse reductions
(introduced below) produce general complexes, which forces us to work in the
general setting as we defined in Section 1.3, Paragraph “Cell Complexes”.

For a (general) complex X, we denote by 〈·, ·〉 : C(X)×C(X)→ Z the inner
product on C(X) making the canonical basis of cells {σ}σ∈X orthonormal. In

particular, if τ is in the boundary of σ, 〈∂σ, τ〉 = [σ : τ ]
X

in (X, ∂). For a chain
c ∈ C(X), we say that c contains a cell σ, and write σ ∈ c, if the coefficient of
σ is non-zero in c.

Definition 3.1. Let X and X ′ be two complexes; X is included in X ′ if X ⊆
X ′ as sets of cells, and [· : ·]X

′
∣∣∣
X

= [· : ·]X . We also denote the inclusion of

complexes by X ⊆ X ′.

Finally, a chain map φ : C(X) → C(X ′) is a map that commutes with the
boundary operators of X and X ′. It induces a morphism φ∗ : H(X) → H(X ′)
of homology groups.

Notations 3.1. Let X,X ′, Y, Y ′ be complexes, such that X ⊆ X ′ and Y ⊆
Y ′, and let φ : C(X) → C(Y ) and φ′ : C(X ′) → C(Y ′) be chain maps. If the
following diagram commutes, we allow ourselves to use the same notation φ for
both φ and φ′, when there is no ambiguity on their domain and codomain:

C(X) �
�
//

φ
��

C(X ′)

φ′
��

C(Y )
� � // C(Y ′) .

Notations 3.2. By a small abuse of notations, when two complexes X and

X ∪ {σ} differ by a single cell σ, we use the notation X �
� σ // X ∪ {σ} to

name the chain map induced by the inclusion. When they differ by a set of cells

Σ, we use the notation X
� � Σ // X ∪ Σ .
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Discrete Morse theory. We refer the reader to [37] for an extended intro-
duction to discrete Morse theory, and to [49] for its application in persistent
homology. We follow the general presentation of [49].

The incidence function of a complex induces a face partial ordering < on X
by taking the transitive closure of the relation ≺ defined by

τ ≺ σ iff [σ : τ ]
X 6= 0.

A partial matching of X is a partition X = AtQtK of the cells of the complex,
together with a bijective pairing Q ↔ K, such that if (τ, σ) ∈ Q×K are paired,

then dimσ = dim τ + 1, and [σ : τ ]
X 6= 0 is a unit in the PID D (e.g., 1 or −1

if D = Z). We call such pair of cells a Morse pair. We denote the bijection
ω : Q → K, such that Morse pairs are of the form (τ, ω(τ)).

Call H the oriented Hasse diagram of (X,<): each vertex represents a cell of
X and there is an edge between two vertices representing respectively the cells σ
and τ if and only if τ ≺ σ. The edges are oriented from the higher dimensional
cell to the lower dimensional cell, i.e., if τ ≺ σ, then the arrow goes from σ to
τ , except for the arrows between cells of Morse pairs (τ, σ) ∈ Q × K, oriented
in the other direction.

A Morse matching of a complex X is a partial matching that induces an
acyclic oriented Hasse diagram H for X. We denote a Morse matching with
a partition A t Q t K and pairing ω : Q → K by (A,Q,K, ω). Note that a
Morse matching can also be defined on a subset Σ of cells of a complex X. By
convention, we denote (A,Q,K, ω) Morse matchings for a complex, and (Â, Q̂,
K̂, ω̂) Morse matchings for a set of faces not forming a complex.

In a complex with a Morse matching, a gradient path between a (d + 1)-
dimensional cell ν and a d-dimensional cell µ is a simple directed path in H
from ν to µ alternating between d and (d+1)-dimensional cells2. Every gradient
path γ is consequently simple and of the form:

γ = ν ω(τ1) ω(τ2) . . . ω(τr) dim d+ 1

τ1
&&

66

τ2
(( 44

τr
**

66

µ
((

dim d.
(3.3)

We denote by Γ(ν, µ) the set of all distinct gradient paths from ν to µ, and
we define for every path γ (with the notations of Diagram (3.3)) its multiplicity
m(γ):

m(γ) := [ν : τ1]
X ·(−1)r ·

r∏
i=1

(
[ω(τi) : τi]

X
)−1

·
r−1∏
i=1

[ω(τi) : τi+1]
X · [ω(τr) : µ]

X

and m(γ) = [ν : µ]
X

for the one-edge path γ = (ν, µ), if it exists. In other
words, the multiplicity is the product of incidences for downward arrows, times
the product of minus the inverse of incidences for upward arrows in the path.

Given a complex X and a Morse matching (A,Q,K, ω), the Morse complex
(A, ∂A) associated to the matching is the complex based on the cells of A, called

the critical cells, with incidence function [· : ·]A : A × A → D defined, for two

2Note that our definition differs from the original reference [37], where gradient paths
connect cells of same dimension.



Chapter 3. Zigzag Morse Filtrations 49

critical cells ν, µ ∈ A, by

[ν : µ]
A

:=
∑

γ∈Γ(ν,µ)

m(γ).

The dimension of a critical cell σ in A is the same as the dimension of σ in the
original complex X. We denote the set of d-dimensional cells of A by Ad. As
a complex, the boundary operator of A is defined, for σ ∈ Ad a critical cell of
dimension d, by

∂Ad : Ad → Ad−1, such that ∂Ad σ =
∑

µ∈Ad−1

[σ : µ]
A · µ.

We finally have the fundamental theorem of discrete Morse theory:

Theorem 3.1 (Forman [37]). A complex (X, ∂X) and a Morse complex (A, ∂A),
for a Morse matching (A,Q,K, ω) of X, have isomorphic homology groups3.

Persistent homology and discrete Morse theory. Let X1 ⊆ . . . ⊆ Xm be
a standard filtration of complexes. A standard Morse filtration (called filtered
Morse complex in [49]) for this filtration is a collection of Morse matchings (Ai,
Qi,Ki, ωi)i=1...m for each Xi, with Morse complex (Ai, ∂Ai) on the critical cells,

and Morse pairs ωi : Ki bij. // Qi , satisfying:

Ai ⊆ Ai+1, Qi ⊆ Qi+1, Ki ⊆ Ki+1,

ωi+1

∣∣
Qi = ωi, ∂Ai+1

∣∣
Ai = ∂Ai .

(3.4)

A filtered Morse complex consequently forms a filtration A1 ⊆ . . . ⊆ Am of
Morse complexes connected by inclusions. It induces naturally a persistence
module:

H(A1) // H(A2) // · · · // H(An−1) // H(Am) .

Forman’s isomorphism between homology groups of complexes and Morse
complexes extends to persistent homology groups within this framework:

Theorem 3.2 (Forman [37], Mischaikow and Nanda [49]). For a standard fil-
tration X1 ⊆ . . . ⊆ Xm, let (Ai,Qi,Ki, ωi)i=1...m be a standard Morse filtra-
tion. There exist collections of chain maps (ψi : C(Xi) → C(Ai))i=1...m and
(ϕi : C(Ai) → C(Xi))i=1...m for which the following diagrams commute for
every i:

C(Xi)
� � //

ψi
��

C(Xi+1)

ψi+1
��

C(Ai) �
�

// C(Ai+1)

C(Xi)
� � //

OO
ϕi

C(Xi+1)
OO
ϕi+1

C(Ai) �
�

// C(Ai+1)

and ϕi and ψi induce isomorphisms at the homology level, that are inverses of
each other. Consequently, these maps induce isomorphisms between the persis-
tent modules of the filtration and the Morse filtration.

3In fact, the complexes are homotopy equivalent.
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Without expressing them explicitly, we use the following properties of the
map ψ (see [49] for explicit formulations):

Properties 3.1. Let X be a complex with a Morse matching (A,Q,K, ω). The
chain map ψ : C(X)→ C(A) can be expressed as the composition of elementary
chain maps over all Morse pairs (τ, σ), taken in an arbitrary order,

ψ =
∏

(τ,σ), s.t. σ=ω(τ)

ψτ,σ ,

where ψτ,σ : C(X ′)→ C(X ′ \{τ, σ}) is defined on a “partially reduced” complex
X ′ to X ′\{τ, σ}, with incidence functions induced by the partial matching. More
specifically, X ′ is a Morse complex of X for a matching (A′,Q′,K′, ω′), such
that Q′ ⊆ Q, K′ ⊆ K, and the restriction of ω to Q′ is equal to ω′. The complex
X ′ \{τ, σ} is the Morse complex of X with one more Morse pair (τ, σ). The set
of Morse pairs already considered in Q′ ×K′ is dependent of the order in which
the maps are composed.

The map ψτ,σ satisfies:

1. ψτ,σ(σ) = 0,

2. ψτ,σ(τ) is a linear combination of facets of σ in X ′, and

3. ψτ,σ(µ) = µ for all µ 6= σ, τ .

Similarly, the map ϕ : C(A)→ C(X) can be decomposed into

ϕ =
∏

(τ,σ), s.t. σ=ω(τ)

ϕτ,σ ,

such that ϕτ,σ : C(X ′ \ {τ, σ})→ C(X ′) and ψτ,σ : C(X ′)→ C(X ′ \ {τ, σ}) in-
duce isomorphisms at the homology level, that are inverse of each other (defined
on the appropriate domain and codomain).

3.3 Zigzag Morse filtration and persistence

For a zigzag filtration of complexes Z, we introduce in this article a canonical
zigzag Morse filtration M of Morse complexes admitting the same persistent
homology.

3.3.1 Zigzag Morse filtration

Without loss of generality, consider the zigzag filtration

Z : X1
� � Σ1 // X2

oo
Σ2 ? _ · · · � � Σ2k−1

// X2k−1
oo

Σ2k ? _X2k , (3.5)

where the Xi are complexes, X1 = X2k = ∅, and the ith arrow is an inclusion,
either forward (i odd) or backward (i even), where complexes Xi and Xi+1

differ by a set of cells Σi (possibly empty). We now further decompose Z.
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Atomic operations. For each forward arrow •i → •i+1, i odd, let (Âi, Q̂i,
K̂i, ω̂i) be a Morse matching of the set of cells Σi.

Because Morse matchings are acyclic, there exists a total ordering of the cells
of Σi, compatible with the face partial ordering of Σi, such that paired cells in
(Âi, Q̂i, K̂i, ω̂i) are consecutive with regard to that order. We can consequently
decompose a forward inclusion Xi ⊆ Xi+1 into a sequence of inclusions of a
single critical cell σ ∈ Âi, and of inclusions of a single Morse pair of cells
(τ, σ) ∈ Q̂i × K̂i, with σ = ω̂i(τ).

For every backward arrow •i ← •i+1, i even, the Morse matchings (Âj , Q̂j ,
K̂j , ω̂j), for smaller odd indices j < i, induce a Morse matching on the cells ofXi.
To avoid ambiguity, if a cell is reinserted in the filtration after being removed it
is considered as a different element. By restriction, they consequently induce a
valid Morse matching on all cells of Σi, except on those cells σ ∈ Σi that form a
Morse pair (τ, σ), with τ /∈ Σi. We decompose backward arrows into a sequence
of removals of a single critical cell, of removals of a single Morse pair of cells,
and of removals of a non-critical cell σ, without its paired cell τ /∈ Σi.

In summary, given an input filtration Z as above, and the Morse matchings
(Âi, Q̂i, K̂i, ω̂i), we defined an atomic zigzag filtration

Z : (∅ =)X1
oo // X2

oo // · · · oo // Xm−1
oo // Xm (= ∅) ,

where all arrows are of the following three types:

X oo
σ // X ′ (3.6)

X oo
{τ,σ}

// X ′ (3.7)

X
1 // X oo

σ ? _X \ {σ} (3.8)

where σ is in each case a maximal cell in X, Diagrams (3.6) and (3.7) are
forward or backward insertions of a critical cell or a Morse pair (τ, σ) of cells,
respectively, and Diagram (3.8) is the removal of the cell σ from a Morse pair
(τ, σ), where the cell τ is not removed. The identity arrow in this last diagram
is a technicality that is clarified later. Naturally, one can recover the persistent
homology of the zigzag filtration Z from the one of Z. We work with Z for the
rest of the chapter.

Morse filtration. Given a zigzag filtration Z, Morse matchings (Ai,Qi,Ki,
ωi), and an associated atomic filtration Z as above, we define a zigzag Morse
filtration

M : (∅ =)A1
oo // A2

oo // · · · oo // Am−1
oo // Am (= ∅) ,

of Morse complexes (Ai, ∂Ai) of the complexes (Xi, ∂
Xi) of Z inductively. Note

that the maps of the zigzag Morse filtration are not all inclusions. Specifically,
for a critical cell σ in both Xi and Xi+1, in general ∂Ai(σ) 6= ∂Ai+1(σ).

All X1, Xm,A1 and Am are empty complexes. The zigzag Morse filtration is
constructed inductively for the insertion of a critical cell (Diagram (3.6)) and the
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Figure 3.1: Zigzag filtration (top) and its Morse filtration (bot-
tom), given by Hasse diagrams and (Morse) boundary maps. Up-
ward arrows in Hasse diagrams represent Morse matchings, critical
faces are circled. Note that the rightmost operation illustrates Dia-
gram (3.10), with a non trivial modification of ∂1({1, 3}).

insertion of a Morse pair (Diagram (3.7)) as for standard Morse filtrations [49]:

C(X)
� � σ′ //

ψ
��

C(X ∪ {σ′})
ψ
��

C(A) �
� σ′ // C(A ∪ {σ′})

C(X)
� �{τ,σ}//

ψ
��

C(X ∪ {τ, σ})
ψτ,σ◦ψ
��

C(A)
1 // C(A) ,

(3.9)

where all horizontal arrows are inclusions of complexes, and in particular the
boundary maps of A and A ∪ {σ′} are equal when restricted to the cells of A.
The removal of critical cells and Morse pairs is symmetrical. The chain maps ψ
and ψτ,σ are the ones of Theorem 3.2 and Properties 3.1, and are used later.

For the removal of a non-critical cell σ without its paired cell τ (Dia-
gram (3.8)), which is specific to zigzag persistence, the Morse filtration is con-
structed with:

C(X)
1 //

ψτ,σ◦ψ
��

C(X) oo
σ ? _

ψ
��

C(X \ {σ})
ψ
��

C(A, ∂)
ϕτ,σ
// C(A ∪ {τ, σ}, ∂′) oo σ ? _ C(A ∪ {τ}, ∂′′) .

(3.10)

The main technicality is that the boundary maps ∂ and ∂′ differ in a non trivial
way, that we study in Section 3.4. The map ∂′′ is equal to the restriction of ∂′ to
the critical cells A∪{τ} (the right arrow is a backward inclusion of complexes).
The chain maps ψτ,σ and ϕτ,σ are the ones from Theorem 3.2 and Properties 3.1,
and ψ is the compositions of all maps ψµ,ω(µ) over the Morse pairs (µ, ω(µ)) of
the Morse matching of X, except the pair (τ, σ). We give an example of zigzag
Morse filtration in Figure 3.1.

Diagrams (3.9) are studied in [49]. We now focus on the study of Dia-
gram (3.10).

Remark 3.1. Note that a key point for the proofs of theorems in [49] is that
filtered Morse complexes in standard persistence satisfy (Ai, ∂) ⊂ (Ai+1, ∂).
This fact also allows the standard persistent homology algorithm [34, 59] to
work directly for filtered Morse complexes. This property is not satisfied by
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zigzag Morse filtrations, which explains why our approach is more atomic than
the one of [49] (see Section 3.3.2), and that we have to design a new homology
matrix algorithm to implement operation (3.10) (see Sections 3.4 and 3.5).

3.3.2 Isomorphism of zigzag modules

Theorem 3.2 implies that the atomic operations of Diagrams (3.9) induce com-
muting diagrams in homology, with vertical maps being isomorphisms as proved
in [49]:

Lemma 3.3. Let X be a complex and (A,Q,K, ω) a Morse complex obtained
from X. Let σ′ be a cell, and (τ, σ) a Morse pair, such that (A ∪ {σ′},Q,K,
ω) and (A,Q ∪ {τ},K ∪ {σ}, ω) are valid Morse complexes. Then there exist
isomorphisms ψ∗ and (ψτ,σ)∗ such that the following diagrams commute:

H(X)
σ′∗ //

ψ∗
��

H(X ∪ {σ′})
ψ∗
��

H(A)
σ′∗ // H(A ∪ {σ′})

H(X)
σ∗ ◦ τ∗//

ψ∗
��

H(X ∪ {τ, σ})
(ψτ,σ)∗◦ψ∗
��

H(A)
1 // H(A)

where σ′∗ and σ∗ ◦ τ∗ are the maps induced at homology level by the insertion
of σ′ and {τ, σ} respectively. The maps ψ∗ and (ψτ,σ)∗ are the isomorphisms
induced by chain maps ψ and ψτ,σ of discrete Morse theory (see Theorem 3.2).

We prove the following lemma, which is specific to our zigzag Morse filtration.

Lemma 3.4. Let X be a complex and (A,Q,K, ω) a Morse complex obtained
from X. Let σ be a maximal cell of X not in A, which therefore forms a Morse
pair with a cell τ , [σ : τ ]

X 6= 0. There exist isomorphisms ψ∗, (ψτ,σ)∗, and
(ϕτ,σ)∗ such that the following diagram commutes:

H(X)
1 //

(ψτ,σ)∗◦ψ∗
��

H(X) oo
σ∗

ψ∗
��

H(X \ {σ})
ψ∗
��

H(A)
(ϕτ,σ)∗

// H(A ∪ {τ, σ}) oo σ
∗
H(A ∪ {τ})

where σ∗ is the map induced at homology level by the removal of σ. The maps
ψ∗, (ψτ,σ)∗, and (ϕτ,σ)∗ are the isomorphisms induced at homology level by,
respectively, the chain maps ψ, ψτ,σ, and ϕτ,σ of discrete Morse theory (see
Theorem 3.2).

Proof. Apply the homology functor to Diagram (3.10). The right square com-
mutes, being induced by horizontal inclusions. Because the maps induced at
homology level by ψτ,σ and ϕτ,σ are isomorphisms, inverse of each other (see
Theorem 3.2), we get (ϕτ,σ)∗ ◦ (ψτ,σ)∗ ◦ ψ∗ = ψ∗ and the left square com-
mutes.

We conclude,

Theorem 3.5. The zigzag filtrations Z and M have same persistent homology.
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Proof. Applying the homology functor to Z andM, we get the zigzag modules

H(Z) : H(X0) oo //

ψ∗0��

H(X1) oo //

ψ∗1��

· · · oo // H(Xm)

ψ∗m��

H(M) : H(A0) oo // H(A1) oo // · · · oo // H(Am)

where, by construction, every Ai is a Morse complex of Xi, and the ψ∗i are
the isomorphisms induced by the chain maps ψi : C(Xi) → C(Ai), connec-
ting a complex and its Morse reduction (Theorem 3.2). By Theorem 3.2 and
Lemma 3.4, all squares commute and are compatible with each other, and the
(ψ∗i )i define an isomorphism of zigzag modules.

3.4 Boundary of the Morse complex

Let X be a complex with incidence function [· : ·]X , together with a Morse
matching (A,Q,K, ω), inducing an orientation of the Hasse diagram H of the
complex, and a Morse complex (A, ∂).

In this section, we track the evolution of the boundary operators in Morse
complexes under the evaluation of the map ϕτ,σ : (A, ∂)→ (A∪{τ, σ}, ∂′) from
Diagram (3.10). Both complexes are Morse complexes of the same X, whose
matchings differ by exactly one pair (τ, σ), i.e., the Morse partition of complex
A ∪ {τ, σ} is (A∪ {τ, σ}) t (Q \ {τ}) t (K \ {σ}). We denote this last complex

by (A′, ∂′), with incidence function [· : ·]A
′

in the following. We prove:

Lemma 3.6. Let ν be a cell of the complex (A, ∂). Then, in the complex
(A′, ∂′),

∂′(ν) = ∂(ν) +
(

[σ : τ ]
X
)−1

[ν : τ ]
A′ · ∂′σ. (3.11)

Proof. First, note that σ is maximal in X, and so it is maximal in A ∪ {τ, σ}.
Let H and H′ be the Hasse diagrams of X induced by the Morse matchings

of A and A′, respectively. Because the matchings differ by a single Morse pair
(τ, σ), H and H′ only differ by the orientation of the edge τ ↔ σ.

For a critical cell ν ∈ A, we have:

∂ν =
∑
µ∈A

γ∈Γ(ν,µ)

m(γ) · µ =
∑
µ∈A,

γ∈Γτ→σ(ν,µ)

m(γ) · µ

︸ ︷︷ ︸
(?)

+
∑
µ∈A,

γ∈Γτ9σ(ν,µ)

m(γ) · µ

︸ ︷︷ ︸
∂′ν−[ν:τ ]A

′ ·τ

,

where Γτ→σ(ν, µ) are the gradient paths from ν to µ in H containing the upward
arrow τ → σ, and Γτ9σ(ν, µ) are the ones not containing it. Assume τ is of
dimension d, and σ of dimension d+ 1.

Because σ is critical in A′, it has no ingoing arrow from cells of dimension d
in H′. Consequently, Γτ9σ(ν, µ) contains exactly all gradient paths from ν to

µ 6= τ in H′. Hence, the sum over Γτ9σ(ν, µ), for µ ∈ A, gives ∂′ν − [ν : τ ]
A′
τ .

Note that σ cannot appear in ∂′ν because σ is maximal by hypothesis.
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Now, studying the left term (?), and splitting gradient paths passing through
edge (τ, σ), then factorizing, we get

(?) =
∑
µ∈A,

γ1∈Γ(ν,τ),
γ2∈Γ(σ,µ)

m(γ1) ·
(
− [σ : τ ]

X
)−1

m(γ2) · µ

= −
(

[σ : τ ]
X
)−1 ∑

µ∈A

 ∑
γ2∈Γ(σ,µ)

m(γ2) · µ


︸ ︷︷ ︸

(?2) = ∂′σ−[σ:τ ]·τ

·

 ∑
γ1∈Γ(ν,τ)

m(γ1)


︸ ︷︷ ︸

(?1)

.

The sum (?1) over Γ(ν, τ) is independent of µ, and equal to [ν : τ ]
A′

by definition.
Because τ is critical inA′, it has no outgoing arrow towards cells of dimension

d+ 1 in H′. Consequently, Γ(σ, µ) contains exactly all gradient paths from σ to

µ in H′, where µ 6= τ . Hence, the sum (?2) over Γ(σ, µ) gives ∂′σ − [σ : τ ]
X · τ .

Finally, putting terms together, the following allows us to conclude:

∂ν =
(
∂′ν − [ν : τ ]

A′ · τ
)
− [ν : τ ]

A′

[σ : τ ]
X

(
∂′σ − [σ : τ ]

X · τ
)

= ∂′ν −
(

[σ : τ ]
X
)−1

[ν : τ ]
A′
∂′σ.

3.5 Persistence algorithm for zigzag Morse com-
plexes

We describe in this section, our implementation of the algorithm to compute
the persistence diagram of a zigzag Morse filtration as defined in Section 3.3.
It consists of adapting the zigzag persistence algorithm [45], used in our experi-
ments, to our Morse framework, relying on the results of Sections 3.3 and 3.4.
Our approach could be adapted for implementing algorithm [9, 10].

3.5.1 Zigzag persistence algorithm

We first explain briefly the algorithms for computing zigzag persistence.

Existing zigzag persistence algorithms. There are currently two practi-
cal4 approaches to compute zigzag persistent homology [9, 10, 45]. They can
both be formulated in a unified framework [46]. Given an input zigzag filtration:

X1
� � // X2

oo ? _ · · · � � // Xn−1
oo ? _Xn , (3.12)

both algorithms are iterative. At step i of the computation, they maintain a
homology basis of H(Xi) that is compatible (defined later) with the interval
decomposition of the zigzag module associated to a zigzag filtration of the form

X1
oo // · · · Xi

//oo X ′i+1
//oo · · ·//oo X ′i+m−1

//oo oo // X ′i+m , (3.13)

4Putting aside [48], which is essentially of theoretical nature.
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The first i complexes and i − 1 maps in (3.12) and (3.13) are identical, and
the remaining complexes and maps of (3.13) are algorithm dependent. Both
algorithms consist of updating a homology basis in order to maintain its com-
patibility when operating (a subset of) the following three local transformations
of the zigzag filtration/module in sequence:

X ∪ {σ}
· · · oo // X

1 **

' �
σ 44

X

1tt

7 W
σjj

· · ·//oo

X

(3.14)

X ∪ {σ}
· · · oo // X jj

1

tt
σ G g

X44

1

**
σ

� w

· · ·//oo

X

(3.15)

X ∪ {τ}
· · · oo // X ∪ {σ, τ}

ss
σ F f

kk

τ 8
X

X
6 V

τii

H h

σuu
· · ·//oo

X ∪ {σ}
(3.16)

where each arrow represents the insertion of a cell. These transformations are
called reflection diamonds for (3.14) and (3.15), and transposition diamonds
for (3.16), and their effect on the interval decomposition of the zigzag module
have been characterized for general zigzag filtrations of complexes in [46, 45].

We now focus on the algorithm introduced in [45] that we use in our experi-
ments.

The zigzag algorithm of [45]. For a zigzag filtration or a zigzag Morse
filtration S of length m, denote by S[p; q], 1 ≤ p ≤ q ≤ m, the restriction of S
to spaces with indices i ∈ [p; q], and the maps between them.

Let Z : X1 ↔ X2 ↔ · · · ↔ Xm be the input zigzag filtration, where all
arrows are forward or backward inclusions of a single cell. The algorithm reads
Z from left to right iteratively, one map after another. At step j, let Zj be:

Zj : X1 X2
//oo oo // · · · Xj

//oo X ′j+1

σ1oo · · ·σ2oo X ′j+m−1

σm−1
oo X ′j+m = ∅.σmoo

where Zj [1; j] = Z[1; j] and Zj [j + 1; j + m] is a “backward” filtration where
every cell σi in Xj is removed in order of insertion. We will now define how to
go to the next step j+1, i.e., how to construct Zj+1 from Zj by using reflection
and transposition diamonds. We have two cases:

• If Xj
σ−→ Xj+1 is forward in Z, consider Zj , that is Zj with two extra identity

arrows:

Zj : X1
oo // · · · Xj

//oo 1 // Xj
oo 1 Xj X ′j

σ1oo · · ·σ2oo X ′j+m = ∅σmoo ,

We can then apply a reflection diamond (3.14) at Xj to obtain Zj+1:

Zj+1 : X1
oo // · · · Xj

//oo σ // Xj+1
oo σ Xj X ′j+1

σ1oo · · ·σ2oo X ′j+m = ∅σmoo .

Studying the effect of a reflection diamond on homology, algorithm [45] updates
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a homology matrix (defined below in this framework) at Xj , compatible with Zj
(and also Zj), into a homology matrix at Xj+1, compatible with Zj+1 defined
above.

• If Xj
σ←− Xj+1 is backward in Z, there exists an index ` such that σ = σ` in

the part Zj [j; j+m] of the filtration Zj . By applying successively transposition
diamonds (3.16) in Zj [j; j+m] to move up the removal arrow of σ` until reaching
Xj , we obtain Zj+1:

· · ·Xj
oo
σ`=σ

Xj+1
oo
σ1

X ′j+1 \ {σ} · · · oo
σ`−2

X ′j+`−2 \ {σ} oo
σ`−1

X ′j+` oo
σ`+1 · · · ,

Studying the effect of transposition diamonds on homology, algorithm [45] up-
dates a homology matrix at Xj , compatible with Zj , into a homology matrix at
Xj+1, compatible with Zj+1 defined above.

3.5.2 Adaptation to zigzag Morse filtrations

Using notations from Section 3.3, let Z be a general zigzag filtration:

Z : (∅ =)X1
� � Σ1 // X2

oo
Σ2 ? _ · · · � � Σ2k−1

// X2k−1
oo

Σ2k ? _X2k (= ∅) ,

together with Morse matchings (Ai,Qi,Ki, ωi) on the set of cells Σi of every

forward inclusion Xi
Σi−→ Xi+1, i odd.

Let Z be the associated atomic zigzag filtration of complexes where all maps
are forward or backward inclusions of a single cell: Z : X1 ↔ · · · ↔ Xm.

Algorithm [45] can update a homology matrix for a general complex using
reflection and transposition diamonds to implement the insertion and deletion
of cells pictured in Diagrams (3.9). We now implement the operation of Dia-
gram (3.10), introducing the chain map ϕτ,σ.

At step j of the algorithm, we maintain a zigzag Morse filtrationMj for the
filtration Zj . At space Xj , the filtration satisfies:

Properties 3.2 (Zigzag Morse filtration Mj).

1. The filtration Mj [1; j] is a general zigzag Morse filtration (defined in Sec-
tion 3.3.1) for Z[1; j] and its Morse matchings {(Ai,Qi,Ki, ωi)}i=1...j,

2. the filtration Mj [j; j+m] is a standard Morse filtration (defined in [49] and
Equation (3.4)) for the standard filtration Zj [j; j +m].

Before exhibiting the filtrations, we prove the following simple property of
the zigzag persistence algorithm,

Lemma 3.7. Let τ, σ be cells of Xj, and let Xp
τ−→ Xp+1 and Xq

σ−→ Xq+1 be
the two maps in Z that have the largest indices 1 ≤ p, q < j for which a forward
inclusion of τ and σ, respectively, happens in Z[1; j].

Let X ′j+r−1
τ←− X ′j+r and X ′j+s−1

σ←− X ′j+s, for indices 1 ≤ r, s ≤ m, be
the backward inclusions of τ and σ in the part Zj [j; j +m] of the filtration Zj.
Then,

p < q iff s < r.

In other words, if τ is inserted before σ, it is removed after σ.
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Proof. The only “new” arrows in the diagram are brought by the reflection
diamonds (3.14) applied at index j of the algorithm, on Zj , which induces the
desired symmetry in forward and backward arrows for the insertion of a given
cell. We refer to [45] for details on the algorithm.

Now, consider the following diagram, where (τ, σ) are cells of Xj which are
paired in the Morse matching of Xj induced by the Morse matchings {(Ai,Qi,
Ki, ωi)}i=1...j of the filtration,

Zj : oo ··· // Xj
1 //

ψτ,σ◦ψ
��

Xj
oo

ψ
��

X ′j+1

yy
oo ···

ψ
��

X ′j+r
oo

ψ
��

X,σ, τ oo
σ

ψ
��

X, τ oo
τ

ψ
��

X oo

{σ,τ}
||

ψ
��

Xj+r−2 oo ···

ψ
��

Mj : oo ··· // Aj ϕτ,σ
//

1
��

Aj , σ, τ oo

ψτ,σ
��

A′j+1, σ, τ
oo ···

ψτ,σ
��

A′j+r, σ, τ oo

ψτ,σ
��

A, σ, τ oo
σ

ψτ,σ
��

A, τ oo
τ

A oo

1
��

A′j+r−2 oo ···

1
��

Mj : oo ··· // Aj
// Aj
oo A′j+1

oo ··· A′j+r oo A oo A oo A′j+r−2 oo ···

(3.17)

where arrows without label are simple inclusions of complexes. Simplifying
notations, we denote by X the complex X ′j+r−1, by A the complex A′j+r−1,
and union of a complex and some cells by X,σ, τ , instead of X ∪ {σ, τ}. We
use this diagram until the end of the section, and define its various components
progressively.

Lemma 3.7 ensures that τ and σ, that are consecutively inserted (Morse
pair, Diagram (3.7)), are consecutively removed in Zj [j; j + m], as pictured
above. The filtration Zj appears on top, where two arrows (curved horizontal)
are further decomposed for convenience.

By induction, let Mj be the zigzag Morse filtration maintained by the al-
gorithm at step j, and satisfying Properties 3.2. Performing reflection dia-
monds (3.14) at index j, and transposition diamonds (3.16) at indices j + r,
r > 0, maintains the Properties 3.2. Consequently, at the level of the zigzag
Morse filtration, the zigzag algorithm [45] can implement insertions and dele-
tions of critical cells (Diagrams (3.9)) with no further modification, while main-
taining a Morse filtration Mj 7→ Mj+1 satisfying the algorithmic invariant
Properties 3.2.

The only obstruction to using the zigzag persistence algorithm is the op-
eration introduced in Diagram (3.10). Consequently, consider the next operation

in Z to be the removal Xj
σ←− Xj+1 of a non-critical cell σ, paired with a cell

τ in the Morse matching of Xj , such that τ is not removed. The cell σ cannot
be “directly removed” as it does not appear in Mj [j; j +m]. We focus the rest
of this section to the definition and study of the zigzag Morse filtration Mj of
Diagram (3.17).

LetMj be as in the diagram above, where the map ϕτ,σ is the map defined
in Diagram (3.10), and the chain maps ψ between Zj and Mj are the ones of
Diagrams (3.9) and (3.10). By Theorem 3.5, these maps induce an isomorphism
of zigzag modules H(Zj) → H(Mj), and the filtrations have same persistent
homology. Additionally, Mj is a zigzag Morse filtration and a standard Morse
filtration from space Aj , σ, τ on to the right, i.e., it satisfies Properties 3.2.
Finally, σ is critical in Aj , σ, τ , and can be removed with the zigzag persistence
algorithm to obtain Mj+1.
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Compatible homology matrix. We design an algorithm to turn a homology
matrix at Aj , compatible with Mj , into a homology matrix at Aj ∪ {τ, σ},
compatible with Mj , in Diagram (3.17).

Consider Xj in Zj containing m cells:

Definition 3.2 ([23]). Let X be a cell complex of size m and B = {c0, . . . , cm−1}
be a collection of m chains of C(X). We say that B is a homology matrix at
X if there exists an ordering σ0, . . . , σm−1 of the m cells of X such that:

0. for all 0 ≤ r < m, the restriction {σ0, . . . , σr} ⊂ X is a subcomplex of X,

1. for all 0 ≤ r < m, the leading term of cr is σr for the chosen ordering, i.e.,
cr = ε0σ0 + . . .+ εr−1σr−1 + σr, for some εi ∈ F,

and there exists a partition {0, . . . ,m− 1} = F tGtH, and a bijective pairing
G↔ H, satisfying:

2. for all indices f ∈ F , ∂Xjcf = 0,

3. for all pairs g ↔ h of G×H, ∂Xjch = cg.

This data encodes [23] the persistent homology of the (standard) filtration
Zj [j; j+m]. In particular, the homology groups of Xj are equal to 〈[cf ] : f ∈ F 〉.
It is convenient to see this data as a matrix MB with cycle ci as ith column,
expressed in the basis {σi}i=1...m for rows. In this case, condition (1) of the
definition is equivalent to the matrix being upper triangular, with no zero entry
in the diagonal.

Additionally,

Definition 3.3 ([45]). We denote by
⊕

` I[b`; d`] the interval decomposition of
H(Zj). A homology matrix B = {c0, . . . , cm−1} at Xj is compatible with the fil-
tration Zj iff there exists a zigzag module isomorphism Φ∗ : H(Z)→⊕

` I[b`; d`]
such that Φ∗j : H(Xj) → F|F | sends {[cf ] : f ∈ F} to the canonical basis of
F× · · · × F.

The Morse theory algorithm for persistent homology of [49] can be applied
to maintain a compatible homology matrix for a Morse filtration under the op-
erations pictured in Diagrams (3.9). We design the update for the new operation
of Diagram (3.10). Consider:

Mj : A1
oo // · · · Aj//oo and

Zj : X1
oo // · · · Xj

//oo ,

such that Mj is a zigzag Morse filtration for Zj . Assume Aj has m cells, and
let B = {c0, . . . , cm−1} be a homology matrix at Aj compatible with H(Mj).
Following Diagram (3.10), consider:

Mj : A1
oo // · · · Aj//oo // Aj ∪ {τ, σ} and

Zj : X1
oo // · · · Xj

//oo 1 // Xj

such thatMj is a zigzag Morse filtration for Zj . From B, we define a homology
matrix B := {c′0, . . . , c′m−1, cτ , cσ} at Aj∪{τ, σ} that is compatible with H(Mj).

Denote the two last complexes and their boundary maps in Mj by (Aj , ∂)
and (A′j , ∂′), with A′j := Aj ∪ {τ, σ}. Then:
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- for all indices i ∈ F tH, define

c′i := ci −
(

[σ : τ ]
Xj
)−1

(∑
ν∈ci

[ν : τ ]
A′
)
· σ,

where the sum is taken over all cells ν in the support of chain ci,

- define cτ := ∂′σ, and cσ := σ, and put the index of cτ in G, the index of cσ
in H, and pair them together,

- the pairing G↔ H inherited from B remains unchanged, and so does F .

Lemma 3.8. The collection B is a homology matrix at Aj ∪ {τ, σ} in Dia-
gram (3.17).

Proof. We prove that B satisfies the conditions of Definition 3.2.

0. Because a Morse matching induces an acyclic Hasse Diagram, there exists r
such that σ0, . . . , σr, τ, σ, σr+1, . . . , σm−1 is an ordering of the cells of Aj∪{τ, σ}
such that the first k cells form a subcomplex, for any k, as in Definition 3.2.

1. Case cτ , cσ. The leading term of cσ is σ. We prove that the leading term of
cτ is τ in the ordering defined above. Let H be the oriented Hasse diagram of
Xj for the Morse matching where (τ, σ) forms a Morse pair (complex Aj), and
H′ for the matching where τ and σ are critical (complex Aj ∪{τ, σ}); they differ
by the orientation of arrow σ ↔ τ . First, 〈∂′σ, τ〉Aj∪{τ,σ} 6= 0 because there
exists a unique gradient path from critical cell σ to critical cell τ in Aj ∪{τ, σ},
which is the one edge path γ = (τ, σ). The path γ exists because τ is a facet
of σ in Xj . If there were another distinct gradient path from σ to τ in H′,
not containing the edge σ → τ , this path would exist in H and form a cycle
with edge τ → σ in H; a contradiction with the definition of Morse matchings.

Second, if µ ∈ Aj ∪ {τ, σ}, is critical such that [σ : µ]
Aj∪{τ,σ} 6= 0, then µ

appears before σ (and τ) in the ordering. Indeed, there exists a gradient path
γ = (σ, µ1, ω(µ1), . . . , ω(µr−1), µr = µ) from σ to µ in H′. The cells (µi, ω(µi))
of a pair are inserted consecutively by construction, and, for all i, µi is inserted
before ω(µi−1) because it is a facet in Xj . By transitivity, µ is inserted before
σ.

Case c′i. The leading term of c′i is σi. If c′i = ci, it is direct. Otherwise,
by construction, c′i = ci + α · σ, α 6= 0, and the chain ci contains cells ν in its

support such that [ν : τ ]
Aj∪{τ,σ} 6= 0, i.e., cofacets of τ in Aj ∪ {τ, σ}. With

a similar transitivity argument as above, τ (and σ) must consequently appear
before such ν in the ordering of cells defined. The leading term of c′i is then
unchanged.

2. Let ci be a chain such that i ∈ F tH. By Lemma 3.6, it is a direct calculation
from the definition of c′i that ∂′c′i = ∂ci. Consequently, Conditions (2) and (3)
of Definition 3.2 are satisfied for those chains. The pairing G ↔ H remains
valid, because ∂′c′h = ∂ch = cg = c′g for g ↔ h, (g, h) ∈ G×H.

3. By definition, ∂′cσ = cτ , their indices are in H ×G and paired together.

We now prove the compatibility condition:



Chapter 3. Zigzag Morse Filtrations 61

Algorithm 2: Zigzag persistence algorithm for Morse filtrations

input : atomic zigzag filtration

Z : (∅ =)X1
oo // X2

oo // · · · oo // Xn−1
oo // Xm (= ∅)

output: persistence diagram of Z
1 set MB ← ∅;
2 for j = 1 . . .m− 1 do

3 if Xj
oo σ // Xj+1 , σ ∈ Xj critical then

4 use zigzag persistence algorithm(MB, Mj, σ) to add or
remove σ;

5 end

6 if Xj
oo
{τ,σ}

// Xj+1 , (τ, σ) Morse pair then

7 do nothing;
8 end

9 if Xj
1 // Xj

oo σ
Xj+1 , σ paired with τ , τ not removed then

10 set MB ←MB as described above;

11 use zigzag persistence algorithm(MB,Mj,σ) to remove σ;

12 end

13 end

Lemma 3.9. The homology matrix B at Aj ∪ {τ, σ} is compatible with Mj in
Diagram (3.17).

Proof. By hypothesis, B = {c0, . . . , cm−1} is a homology matrix at Aj , com-
patible with Mj ; let Ω: H(Mj)→ ⊕`I[b`; d`] be a zigzag module isomorphism
such that Ωj sends {[cf ] : f ∈ F} to the canonical basis of F× . . .× F.

Note that, none of the c′i have an entry τ , except for cτ , whose index is
in G by construction. Consequently, by Properties 3.1, the chain map ψτ,σ :
C(Aj , σ, τ) → C(Aj) simply cancels the entry σ in every c′f , f ∈ F , and

ψτ,σc
′
f = cf . Consequently, consider the chain maps between Mj and Mj

in Diagram (3.17). Each square commutes by virtue of Theorem 3.2 (for inclu-
sions) and Lemma 3.4 (for ϕτ,σ), and they induce an isomorphism Φ∗ : H(M)→
H(M) of zigzag modules. The isomorphism Ω ◦Φ∗ : H(M)→ ⊕`I[b`; d`] sends
{[c′f ] : f ∈ F} to the canonical basis of F × . . . × F, and B is compatible with

M.

In conclusion, for an input atomic zigzag operation Z, with three atomic
maps pictured in Diagrams (3.6), (3.7), and (3.8), the Morse algorithm for com-
puting the zigzag persistence of Z is given in Algorithm 2, where the routine
zigzag persistence algorithm(MB, Mj, σ) is the zigzag persistence algo-
rithm of [45] to handle forward or backward insertions of a single cell in a
homology matrix MB at complex Aj , compatible with the filtration Mj (see
Diagram (3.17)). Each iteration of the for loop turns a homology matrix MB
at complex Aj , compatible with the filtration Mj , into a homology matrix at
complex Aj+1, compatible with the filtration Mj+1, where Mj+1 is a zigzag
Morse filtration for Zj+1, and Aj and Aj+1 are respectively Morse complexes
for Xj and Xj+1.
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Implementation and complexity. We represent B = {c0, . . . , cm−1} by an
(m×m)-sparse matrix data structure MB. Assume computing boundaries and
coboundaries in a Morse complex of size m is given by an oracle of complexity
C(m). We implement the transformation B = {c0, . . . , cm−1} → B = {c′0, . . . ,
c′m−1, cτ , cσ} presented above by:

- computing the boundary ∂′σ of σ in Aj ∪ {τ, σ}, and the coboundary {ν :

[ν : τ ]
Aj∪{τ,σ} 6= 0} of τ , in O(C(m)) operations,

- adding columns cτ and cσ to the matrix in O(m) operations,

- computing c′i for all i, in O(m2). We can restrict the transformation to those
ci containing a cell of the coboundary of τ .

Consequently, we can perform the transformation above in O(m2 + C(m))
operations on a (m ×m)-matrix. The zigzag persistence algorithm of [10, 45]
deals with forward and backward insertions of a single cell in O(m2) operations.

In conclusion, let Z = (Xi
Σi←→ Xi+1)i=1...2k be a general zigzag filtration

(Diagram (3.5)), and letM be a zigzag Morse filtration as defined in Section 3.3,
for a collection of Morse matchings (Ai,Qi,Ki, ωi) on Σi, i odd. And:

- denote by n the total number of insertions and deletions critical cells in M,
and by |Am| the maximal number of critical cells of a complex in M,

- denote by N the total number of insertion and deletion of cells in Z, and by
|Xm| the maximal number of cells of a complex in Z.

Additionally, we compute Morse matchings using the fast coreduction algo-
rithm of Mrozek and Batko [50]. Even if computing optimal Morse matchings is
hard in general [42], this heuristic gives experimentally very small Morse com-
plexes, with constant amortized cost per cell considered. We compute bound-
aries and coboundaries in a Morse complex A of a complex X by a linear traver-
sal of the Hasse diagram of X. We store in memory the homology matrix of
the Morse complex and the complex X. Consequently, the total cost of the
algorithm is:

Theorem 3.10. The persistent homology of Z can be computed in

O(n · |Am|2 + n · |Xm|+N) (time)

O(|Am|2 + |Xm|) (space),

In comparison, running the (practical) zigzag persistence algorithms [9, 10,
45] require O(N · |Xm|2) operation and memory O(|Xm|2).

3.6 Experiments

In this section, we report on the performance of the zigzag persistence algo-
rithm [45] with and without Morse reduction. The corresponding code will be
avaible in a future release of the open source library GUDHI [58].

The following tests are made on a 64-bit Linux (Ubuntu) HP machine with a
3.50 GHz Intel processor and 63 GB RAM. The programs are all implemented in
C++ and compiled with optimization level -O2 and gcc-8. Memory peaks are
obtained via the /usr/bin/time -f Linux command, and timings are measured
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via the C++ std::chrono::system clock::now() method. The timings for
File IO are not included in any process time.

We run two types of experiments: homology inference from point clouds,
using oscillating Rips zigzag filtrations, and levelset persistence of 3D-images.
Both applications are described in the introduction in Section 3.1.

For homology inference, we use both synthetic and real data points. The
point clouds KlBt5, Spi3, Sph3, and To3 are synthetic samples of respectively
the 5-dimensional Klein bottle, a 3-dimensional spiral wrapped around a torus,
the 3-dimensional sphere, and the 3-dimensional torus. The point cloud MoCh

and By are 3-dimensional measured samples of surface models: the MotherChild
model, and the Stanford bunny model from the Stanford Computer Graphics
Laboratory. The results with corresponding parameters are presented in Ta-
ble 3.1.

Without Morse reduction With Morse reduction

N
×106 |Xm|

time (s)
cpx + pers

mem.
peak
(GB)

n
×106 |Am|

time (s)
cpx + pers

mem.
peak
(GB)

KlBt5 63.3 187096 403 + 2912 4.7 4.9 11272 394 + 448 1.1

Spi3 66.1 47296 435 + 4438 5.2 3.8 12810 382 + 343 1.1

MoCh 75.7 37709 460 + 4680 5.8 4.1 11975 450 + 318 1.1

Sph3 99.4 66848 430 + 3498 7.5 4.2 13432 665 + 853 1.3

To3 32.8 32903 117 + 847 2.4 1.6 7570 173 + 79 0.47

By 30.5 18764 153 + 951 2.3 5.2 8677 165 + 287 0.96

Table 3.1: Experimental results for the oscillating Rips zigzag fil-
trations. For each experiment, the maximal dimension is 10, µ = 4,
ν = 6, except for Sph3, where ν = 7. The number of vertices is
2000.

Levelset persistence is computed for a function f : [0; 1]3 → R, were f is
a Fourier sum with random coefficients, as proposed in the DIPHA library5 as
representative of smooth data. The cube [0; 1]3 and function f are discretized
into equal size voxels. For some tests, we also added random noise to the values
of f . The values of s1 ≤ s2 ≤ . . . are spaced out equally such that si+1 − si = ε
for all i.The results with corresponding parameters are presented in Table 3.2.

In all experiments, timings are decomposed into ‘cpx’ for computation de-
dicated to the complex (construction, computation of (co)boundaries and of
Morse matchings) and ‘pers’ for the computation of zigzag persistence.

Analysis of the results. The results show a significant improvement when
using Morse reduction. For homology inference (Table 3.1), the total running
time is between 2.5 and 6.7 times faster when using Morse reduction. Moreover,
most of the computation is transferred onto the computation of the Morse com-
plex, which opens new roads to improvement in future implementation, such
as parallelization of the Morse reduction [39] (note that parallelization of the

5github.com/DIPHA/dipha/blob/master/matlab/create_smooth_image_data.m
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Without Morse reduction With Morse reduction

ε
max.
noise

N
×106 |Xm|

time (s)
cpx + pers

mem.
peak
(GB)

n
×106 |Am|

time (s)
cpx + pers

mem.
peak
(GB)

0.1 0 34 286780 563 + 1725 3.9 6.3 48578 224 + 29 2.7

0.15 0 - - ∞ - 9.3 115558 756 + 44 3.6

0.15 0.5 36.5 315305 417 + 3248 4.2 4.7 36144 221 + 59 2.8

0.2 0 - - ∞ - 15.5 245360 2097 + 68 4.7

0.2 0.5 - - ∞ - 5.6 56500 392 + 47 3.4

Table 3.2: Experimental results for the level set zigzag filtrations.
For each experiment, the function f : [0; 1]3 → [−14, 21] is applied to
1293 = 2 146 689 cells and the persistence is computed for maximal
dimension 3. The interval size is denoted by ε. The infinity symbol
∞ corresponds to more than 12 hours computing time.

computation of zigzag persistence is not possible in the streaming model). In
particular, the computation of zigzag persistence is from 3.3 to 14.7 times faster.
The better performance is due to filtrations being from 5.8 to 23.5 times shorter
than the original ones (quantities n vs N in the complexity analysis) and smaller
complexes, from 2.2 to 16.6 times smaller with the Morse reduction (quantities
|Am| and |Xm| in the complexity analysis). Note that the memory consumption
with Morse reduction is from 2.4 and up to 5.6 times smaller, which is critical
on complex examples in practice.

For levelset persistence (Table 3.2), the total running time is at least 9 times
faster, and the computation of zigzag persistence alone is itself approximatively
55 times faster, when the computation without Morse reduction finished. On
those cases that finish, the filtration size is from 5.5 to 7.7 times shorter with
Morse reduction, the maximal size of the complexes between 5.9 and 8.7 times
smaller, and the memory consumption around 50% more efficient.

Additionally, using Morse reduction allows to handle cases where the stan-
dard zigzag algorithm never finishes (more than 12 hrs). On these examples, the
Morse algorithm does not take more than 36 min. for the entire computation.

These results agree with the complexity analysis (Section 3.5) where terms
O(|Am|2) and O(|Xm|2) dominate both time and memory complexities.

3.7 Conclusion

We adapted the use of discrete Morse theory to the algorithms for zigzag filtra-
tions. The difficulty was to handle the possibility of separation of a Morse pair
to maintain a streaming like algorithm. We implemented our solution for a par-
ticular zigzag persistence algorithm [45] and had satisfying results for interesting
applications.

But the limitations of the strategy is obvious: the size reduction does only
improve the algorithm when a lot of cells are included simultaneously in the
filtration. Otherwise enough pairs cannot be formed. Therefore we still need
strategies for less particular zigzag filtrations.
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Another interesting remaining question is if we could obtain better results
by using another pairing method than discrete Morse theory. Finding a perfect
Morse matching is NP-hard and so we have to rely on heuristics and an incom-
plete matching to fasten the pairings. But Morse matchings have to take account
of adjacency, which is perhaps not a property we need when we know that we
are removing a whole set of pairs. We could pair non-adjacent cells together
under the condition that all cells “in between” will also be paired and removed.
A first idea in this direction could be to look at the standard persistence pairs
of the “sub-filtration” formed by the simultaneously included cells.





Chapter 4

Reduction and Average
Complexity

This chapter is based on joint work with Michael Kerber1.

4.1 Introduction

Motivation and problem statement. As stated in the introductory chap-
ter, one reason of the success of (standard) persistent homology is its good
practical performances: despite all efficient algorithms used in practice having
a cubic worst case complexity, practical experiments are surprisingly fast and
seem to tend to a more linear behavior. Even though the question of why is
quite natural, the answer is not trivial to find and little to no work was done
on the subject in this context.

The aim of this chapter will be to make a first step to study the average
complexity of the persistence algorithm, or more precisely of the matrix reduc-
tion algorithm defined at the end of Section 1.3. For simplicity, we work only
with Z2-coefficients.

First results. We restrict the study to four particular but common random-
ized filtration types over random point sets in low dimension. We made a series
of experiments to measure several parameters such as the addition cost, num-
ber of addition or maximal column size. This gives us a good intuition of the
process. Among others, good performances seems to be related to relative small
reduced columns (columns with few non-zero elements). We show then two
theoretical results corresponding to two of the filtration types. First, we show
that the sum of the addition costs for persistence homology in dimension d for
a lower star filtration is in the order of O(d2n), if n is the number of simplices
involved. Secondly, we show that the expected complexity of a modified version
of the shuffled filtration is at least an order of magnitude lower than its worst
case complexity.

1Graz University of Technology, Austria – kerber@tugraz.at
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(Quasi-)Related work. As mentioned, as to our knowledge, there is no work
which was already done on this topic or even for the Gaussian elimination al-
gorithm in general, on which the reduction algorithm is based on. But we can
mention alternative algorithms which were designed for particular filtrations
and which have a good worse complexity, as for example for height persistence
in R3 which can be computed in O(n log n) time, where n is the number of
simplices [28].

A similar algorithm to the reduction algorithm is the diagonalization algo-
rithm, that is bringing a matrix in its Smith normal form, which can be used
to compute the homology of a complex. If n is again the number of simplices of
the complex and ∆ its dimension, for “spare enough” matrices, it can be shown
that the expected running time is in O(∆n2) [32]. The subtle but crucial differ-
ence from the persistence reduction algorithm is that the column order does not
matter and the algorithm does not have to restrict it-self to left-to-right column
additions.

We can also detour to probabilistic graph theory and the study of phase tran-
sitions with respect to the largest connected component in a random graph of n0

vertices. A simple non-oriented graph can be seen as a 1-dimensional simplicial
complex or as the 1-skeleton of a higher dimensional simplicial complex. Adding
randomly edges over a set of vertices can therefore define a random filtrations.
P. Erdős and A. Rényi [35] showed that the size of the largest connected com-
ponent changes from O(log n0) to O(n0) when the expected degree of the graph
passes through 1. This phenomenon is referred to as the “emergence of the giant
component”, because we transition from a graph which is mainly acyclic (i.e.,
with high probability practically a forest) to a giant connected component with
only few leftover trees. If this does not directly help to resolve our problem, it
gives us a nice explanation for the aspect of the boundary matrix after reduction
for such random filtrations: the first phase corresponds to a phase where adding
an edges manly kills 0-homology, whereas the second phase mainly gives birth
to new 1-dimensional cycle classes. This reflects on the reduced matrix, where
all the non-trivial columns concentrate on the left of the matrix — and that in
any dimension.

Outline. In Section 4.2, we define the different filtrations we will be working
on. Then in Section 4.3, we present our experimental results. In Section 4.4.1,
we show our result for lower star filtrations and in Section 4.4.2 the result for
shuffled filtrations. Finally, in Section 4.5, we will discuss our results and future
work.

4.2 Common randomized filtrations models.

Filtrations defined in practice are following particular construction processes
because of useful properties or for technical reasons. This can influence on the
expected running time of the persistence algorithm. Therefore, it makes sense
to analyze the algorithm for particular types of filtrations instead as for all
filtrations in general. In this section we will define several models of filtrations
we want to study. We will restrict them to simplicial complexes of maximal
dimension 2, i.e., the complexes will contain vertices, edges and triangles. All
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filtrations are defined on a fixed vertex set of size n0 and each possible simplex
is included (i.e. a total of

(
n0

2

)
edges and

(
n0

3

)
triangles), one by one.

Lower Star filtrations. For this type of filtration, the vertices are added in
random order and a simplex is added as soon as all its facets are included with
priority to higher dimensional simplices (e.g. if both an edge and a triangle
can be included, the triangle is included first). Moreover, when more than one
same dimensional simplex can be included, they are included in lexicographical
order defined on the vertices of the simplices in the order of appearance. The
filtration is therefore determined by the number of vertices up to relabeling.
The beginning of a lower Star filtration is shown in Figure 4.1.

This type of filtration is very specific, but it is easy to analyze and the number
of bit operations can be expressed by a deterministic formula (see Section 4.4.1).
It is probably the model which produces the lowest complexity and is thus
interesting to use when one is free to choose the order of a subset of simplices.
It is therefore also a good “control sample” to compare the other filtrations to.

Figure 4.1: Example of the beginning of a lower star filtration.

Shuffled filtrations. We first include randomly all vertices, then randomly
all edges and finally randomly all triangles. With “randomly” we mean that
each simplex can be included with same probability. The simplices are included
by dimension to ensure that we have a valid simplicial complex at each step of
the filtration. By construction of the boundary matrix in a particular dimension,
only the order of the simplices within same dimensional simplices matters for the
running time complexity and therefore such filtrations are good representatives
for all uniformly randomly picked filtrations.

Erdős-Rényi filtrations. This model is based on the model of Erdős-Rényi
graphs. The Erdős-Rényi model defines the construction of a random graph
with two fixed parameters: the number of vertices and a probability p. It starts
with all vertices and then each edge is included with probability p independent
of the other edges. In our case, we want to include every possible edge, therefore
it is equivalent to choose with equiprobability a random order on the edges. We
also want to include triangles: one is inserted in between the edges as soon as
their boundary edges are inserted.

Rips filtrations. For n0 random points in the unit square in R2, the edges
are inserted in the order of their length. The triangles are inserted as soon as
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their respective boundaries are inserted. Rips filtrations are the most commonly
used filtration types among the four presented here. An example is shown in
Figure 4.2.

Figure 4.2: Example of the beginning of a Rips filtration.

4.3 Experimental results.

To have a first intuition, we experimentally measured different parameters for
the four filtrations types defined previously. We only looked at the boundary
matrix in dimension 1, which means the rows only represents the edges and
the columns only the triangles. Therefore, we define the input size to be n =(
n0

2

)
+
(
n0

3

)
, if n0 is the number of vertices. Let m =

(
n0

2

)
be the number of

edges and thus the height of the matrix. The width of the matrix is then in the
order of O(m

3
2 ). The experiments were repeated for an increasing n0, and for

a particular n0, the result is the average over 50 to 100 different runs — except
for the lower star filtration which does not contain any real probabilistic aspect:
one run is sufficient. We recall that we work only with coefficients in Z2 and
therefore the matrix contains only 0’s and 1’s.

Bit addition operations. We define as a bit addition operation the switch
of a matrix cell from 0 to 1 or vice versa when adding a column c′ on another
column c during the reduction process. In our experiments, the number of bit
addition operations which results from one column addition is then the number
of 1’s in c′.

The first parameter we measured was the total number A of bit addition
operations during the reduction process. The running time complexity of the
reduction algorithm is mainly defined by the number and the cost of a column
addition and thus, A is a good indicator. The solid lines in Figure 4.3 shows
the evolution of A with respect to n with a logarithmic scale for the y-axis.
We distinguish for all four filtration types a distinct polynomial growth. So, we
used linear regression to infer the empirical asymptotic behavior of A, which is
represented by the dotted lines in Figure 4.3:

- Lower star filtrations: O(n1.10),

- Rips filtrations: O(n1.31),
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Figure 4.3: Diagram representing the accumulated number of bit
addition operations (y-axis, logarithmic scale) with respect to the
number of simplices (x-axis). From top to bottom: shuffled filtra-
tion, Erdős-Rényi filtration, Rips filtration, lower star filtration.

- Erdős-Rényi filtrations: O(n1.56),

- Shuffled filtrations: O(n2.15).

Those results are rather positive: a common filtration type as the Rips
filtration seems to tend more to a linear than a quadratic behavior and even if
one picks randomly a filtration, we can expect it to be better than the worst
case (even though the dispersion is not clear).

To better understand the evolution of A, we then looked at the number of
column additions made and at the maximal number of bit addition operations
for a single column addition. We define the size of a column to be the number
of 1’s in this column.
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Figure 4.4: Diagram representing the number of column additions
(y-axis, logarithmic scale) with respect to the number of simplices
(x-axis). From top to bottom: shuffled filtration, Erdős-Rényi fil-
tration, Rips filtration, lower star filtration.
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Number of column additions. The solid lines in Figure 4.4 shows the evo-
lution of the number of column additions with respect to n with a logarithmic
scale for the y-axis. Again, we used linear regression to infer the empirical
asymptotic behavior, which is represented by the dotted lines in Figure 4.4:

- Lower star filtrations: O(n1.10),

- Rips filtrations: O(n1.30),

- Erdős-Rényi filtrations: O(n1.41),

- Shuffled filtrations: O(n1.67).

For the lower star and Rips filtration, the result is almost the same than for
A. The reason is obvious for the lower star filtration, but for the Rips filtration,
this could indicate that the general size of the columns is small enough to not
weight to much in the complexity.
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Figure 4.5: Diagram representing the maximal size of a reduced
column (y-axis) with respect to the number of simplices (x-axis).
From top to bottom: shuffled filtration, Erdős-Rényi filtration, Rips
filtration, lower star filtration.

Maximal size of a column. We measured the maximum size among all
columns in the completely reduced matrix. Its evolution with respect to n is
shown by the solid lines in Figure 4.5. The dotted lines represent the empirical
asymptotic behavior of the maximal size:

- Lower star filtrations: 3 (constant).

- Rips filtrations: O(n0.22),

- Erdős-Rényi filtrations: O(n0.32),

- Shuffled filtrations: O(n0.53).

There is a clear difference between the Erdős-Rényi filtration and the Shuffled
filtration, even though the edges were randomly ordered in both cases. That
the triangles kill as soon as possible the 1-dimensional cycles in the Erdős-Rényi
filtration (similarly as in the lower star filtration) seems to keep the column
rather small. This could also be one of the reasons for the tendencies of the
maximal size in the Rips filtration.
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Figure 4.6: Diagram representing the total number of 1’s in the fi-
nal reduced matrix (y-axis) with respect to the number of simplices
(x-axis). From top to bottom: shuffled filtration, Erdős-Rényi fil-
tration, Rips filtration, lower star filtration.

Number of 1’s in the reduced matrix. Finally, we counted the number of
1’s in the final reduced matrix, which value has, as for the precedent parameters,
a very low coefficient of variation over the different runs. This gives us a global
idea of how big a column is expected to become, or how likely it is that its size
is close to the maximal size measured before. Again, the evolution with respect
to n is shown by the solid lines in Figure 4.6 and the dotted lines represent the
empirical asymptotic behavior:

- Lower star filtrations: O(n0.71),

- Rips filtrations: O(n0.71),

- Erdős-Rényi filtrations: O(n0.72),

- Shuffled filtrations: O(n1.02).

The results are linear, if not sublinear, with respect to n. But more inter-
esting is that the average amount of 1’s in the Rips and Erdős-Rényi filtration
are very close to the amount of 1’s in the lower star filtration, which has the
minimal amount of 1’s: all the non-trivial column have exactly size 3 and the
amount of non- trivial columns is the same than for all other three filtration
types. This seems to indicate, that, despite a few bigger columns, most columns
should have a size O(1) with respect to n or at least with a power near 0.

Sum of squared bar lengths. Another interesting parameter is the sum Σ
of the square of the length of each bar in the final barcode, because it is well-
known that the time complexity of the reduction algorithm is at most in the
order of Σ. If the sum in the experiments is close to the total number of bit
addition operations, then searching for the expected value of Σ gives another
interesting approaches to the question. Again, the experimental results are
shown in Figure 4.7. The evolution with respect to n is shown by the solid lines
and the dotted lines represent the empirical asymptotic behavior:
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Figure 4.7: Diagram representing the sum of squared bar lengths
(y-axis) with respect to the number of simplices (x-axis). From top
to bottom: shuffled filtration, Erdős-Rényi filtration, Rips filtration,
lower star filtration.

- Lower star filtrations: O(n0.72),

- Rips filtrations: O(n1.69),

- Erdős-Rényi filtrations: O(n1.79),

- Shuffled filtrations: O(n2.16).

4.4 Theoretical results.

We focused on the lower star filtrations and the shuffled filtrations and on per-
sistence in a fixed dimension for our theoretical analysis. Therefore we restrict
the boundary matrix to the necessary simplices: a boundary matrix for dimen-
sion d only records (d+ 1)-simplicies as its column and d-simplicies as its rows.
We recall that a column which is non-trivial after reduction is called a negative
column and positive otherwise.

4.4.1 Lower star filtrations

Even if the construction of a lower star filtration was described for maximal
dimension 2, the way to extent it to higher dimension is obvious. So, we look at
a boundary matrix M for dimension d > 0 of a lower star filtration of maximal
dimension ∆ ≥ d. Let R be M after reduction. We can prove the following
lemmas:

Lemma 4.1. A positive d-simplex τ , d > 0, in a lower star filtration always
creates at least one d-cycle which is the boundary of a (d + 1)-simplex. More-
over the dth-homology group of the current complex was trivial just before the
insertion of τ .

Proof. We prove the statement by induction on the dimension d > 0.
Base case: d = 1. Let e be a positive edge inserted at step i. Let v be

the last vertex included before step i. By construction, v is in the boundary
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of e and just before the inclusion of v, every possible edge and triangle for the
current set of vertices is already included. Let C0 be a cycle created by the
insertion of e. Note that v has to be in C0. If C0 has length 3, then it is the
boundary of a triangle t and t will be inserted before the next edge after step i.
So the statement holds. Assume C0 has length greater than 3. Then it contains
a vertex w 6= v with two neighbors u1 and u2 in C0 different from v. All three
vertices were included before v, so the triangle {u1, w, u2} and its boundary are
already included. So e also creates the cycle C1 homological to C1, such that
C1 is identical to C0 except that the edges u1w and wu2 are replaced by the
edge u1u2. The length of C1 is strictly shorter than the length of C0 and if it
still greater than 3, we can repeat the same argument to construct a shorter
homological cycle C2. So, we can easily show with induction that e is contained
in the boundary of a triangle, which is not included yet. A similar argument can
be applied to show that every non-trivial 1-cycle created between the insertion
of v and e has to be killed before the insertion of e.

Induction: assume that, for a d > 0, the statement is true for every d-
simplex. We show that is it also true for every (d+ 1)-simplex.

Let σ be a (d+ 1)-simplex and τ the last d-complex inserted before σ. Say
that τ is inserted at step i. By construction, τ is a positive simplex which
created the boundary of σ, otherwise σ would not have been included at this
point. We will show that if σ is positive, then it also creates the boundary
of a (d + 2)-simplex. The insertion of τ could have created boundaries for
other (d + 1)-simplices than σ. So, let Σ be the set of (d + 1)-simplices whose
boundaries appear with the inclusion of τ . All those boundaries are in the same
cycle class created by τ , because it is the only non-trivial class by induction
hypothesis. Again by construction, at step i + 1 one of the simplices, say σ0,
in Σ has to be inserted and this first simplex will kill the cycle class created
by τ . So, if σ is positive, σ ∈ Σ \ σ0. Before including any other d-simplex in
the filtration, every remaining simplex in Σ has to be included first and no new
non-trivial 1-cycle can be created. So, every simplex in Σ\{σ0} will be positive.
Therefore, assume without loss of generality that σ is the jth simplex in Σ\{σ0}
to be included. Then σ0 and σ have exactly d + 1 vertices in common, to be
exact, the d + 1 vertices of τ . Let u0 = σ0 \ σj and uj = σj \ σ0. Both u0

and uj were inserted before v by assumption, so any remaining (d+ 1)-simplex
formed by d+ 2 vertices in τ ∪ {u0, uj} is also already included. Thus, with σ0

and σ we have all the facets of the (d+ 2)-simplex µ formed by all the vertices
of τ ∪ {u0, uj}. Moreover this means that µ will be included by construction
before the next (d+ 1)-simplex is inserted. This being true for every j, we can
guarantees that the (d+1)th-homology group will be trivial before the insertion
of any (d+ 1)-simplex in Σ.

Lemma 4.2. Every negative column in R did not undergo any column addition.

Proof. By Lemma 4.1, a positive d-simplex produces a new d-cycle which is the
boundary of at least one (d+1)-simplex. This immediately leads by construction
to the inclusion of one of the corresponding (d + 1)-simplices. Therefore every
new cycle class will always be killed at time “birth+1”. If a positive d-simplex
τ leads to the inclusion of the negative (d+ 1)-simplex σ in the next step, then
τ will the youngest simplex in the boundary of σ and thus will correspond to
its pivot. Because τ appears then for the first time in a boundary, the column
corresponding to σ will not be modified by any column addition.
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Remark 4.1. The lexicographical order does not intervene in the proofs of
Lemma 4.2 and 4.1. Both lemmas are still true, if the simplices of same di-
mension which can be included simultaneously are included randomly.

This is not true for the next Lemma. If the d-simplices are included ran-
domly, then a column can have up to m column additions, if m is the number
of (d− 1)-simplices included until the position of the column.

Lemma 4.3. Every positive column in R was obtain from exactly d+ 2 column
additions.

Proof. By Lemma 4.2, every negative column was not modified by any column
addition and therefore a negative column still represents exactly the boundary
of the corresponding (d+1)-simplex. By Lemma 4.1, a positive (d+1)-simplex τ
gives birth to a (d+ 1)-cycle which is exactly the boundary of a (d+ 2)-simplex.
Let v0 be the first vertex included in the filtration. Because of the lexicographical
order, every negative simplex will contain v0, whereas the positive simplices are
exactly those not containing v0. So, the boundary created by τ is either formed
of only positive simplices or of exactly τ and d + 2 negative simplices. In the
latter case, because the negative column are in their initial state, we will need
exactly d + 2 column addition from the corresponding d + 2 negative columns
to reduce the column of τ . If all simplices in the boundary are positive, let
τ = τ0, τ1, ..., τd+2 be those simplices and σ the (d + 2)-simplex with the
positive boundary. Each τi, 0 ≥ i ≥ d + 2, is also included in a boundary of
a (d+ 2)-simplex σi composed of only negative simplices except of τi. Then τi
will correspond to the pivot of σi. Because our coefficients are in Z2, the sum
of every σi is equal to σ. So, again, when reducing the column corresponding
to τ , we will have to add all d + 2 different negative columns appearing in the
boundaries of the σi’s.

Therefore, the next theorem follows:

Theorem 4.4. Let M be the boundary matrix for dimension d of a lower star
filtration with n0 vertices and maximal dimension ∆ ≥ d. Let d∗ = d+ 2. The
number of bit addition operations of the reduction algorithm M is exactly:

d2
∗ ·

d∗∑
k=0

(−1)d∗−k
(
n0

k

)
.

Proof. By Lemma 4.2, every negative column in the reduced matrix was ob-
tained from zero bit addition operations and therefore their size is exactly
d + 2 = d∗. Thus, by Lemma 4.3, the sum of the bit addition operations
for a single positive column is d2

∗. By a simple recursive argument, we can show

that the number of positive columns is
∑d∗
k=0(−1)d∗−k

(
n0

k

)
. Thus the result

follows.

Let n =
(
n0

d+2

)
+
(
n0

d+1

)
= O(nd+2

0 ) be the total number of simplices involved

in Theorem 4.4. Then the complexity is in the order of Θ(d2 · n).

4.4.2 Shuffled filtrations

For shuffled filtrations, we focus on persistence in dimension 1. Let M be the
boundary matrix for dimension 1 of some shuffled filtrations with n0 vertices and
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m =
(
n0

2

)
edges. Keeping track of the evolution of the columns through additions

in M is way more difficult than for the lower star filtration. Therefore we will
first look at some simplified model for a boundary matrix and the reduction
algorithm.

Expended matrix. Define a 3-column in a matrix as a column with exactly
three non-zero entries. For instance, every column in M is a 3-column. We
define M̃ as a m×

(
m
3

)
-matrix over Z2 with m rows and all possible 3-columns

arranged in a random order (every column order is equiprobable). M̃ can be
interpreted as the boundary matrix of a cell complex consisting of one vertex
v, m distinct self-loops attached to v, and

(
m
3

)
2-cells bounded by three of the

self-loops. Note that M̃ contains significantly more columns than M with the
same number of edges.

If we apply the reduction algorithm 1 to M̃ , the worst case complexity is in
the order of O(m3) ·O(m) ·O(m) = O(m5).

But to analyze M̃ , we also define a variation of the reduction algorithm:
If during the reduction, we encounter an input column c with the same pivot
as a previously reduced column c′, we first reduce c and then replace c′ with
the unreduced version of c. The idea is that c has initially only 3 non-zero
entries, so subsequent reduction steps are less expensive. When enough reduced
columns have been replaced, the reduction of the remaining columns becomes
considerably cheaper than in the naive version. We call this new algorithm the
expended reduction algorithm.

Lemma 4.5. The expended reduction algorithm results in the same persistence
pairs than the standard reduction algorithm.

Proof. Let M̃k be the matrix M̃ restricted to the k first columns. Reducing
the (k + 1)th boundary ∂σ with columns from left-to-right has the purpose to
express the new boundary with a linear combination of columns to the left, i.e.
basis cycles which already exists in the “prefix” complex represented by M̃k. If
∂σ can be completely expressed by the basis in M̃k, than a higher dimensional
cycle is born. Otherwise, the remaining is a cycle which is killed and becomes
a basis element in M̃k+1. But which base of M̃k is used does not matter, the
persistence pairs are known to be always the same. Let c be the column which
has the same pivot than ∂σ in M̃k. Switching c with ∂σ after reducing ∂σ is
simply a base change in M̃k+1 by replacing an element with an existing element
which is clearly linear independent of the other base elements without c.

Contrary toM , M̃ has enough columns for the expended reduction algorithm
to make a difference in the average, as we will see in the next lemma. For this
purpose, we have to note that in the reduced version of M̃ , we will have exactly
m different pivots, one for each row. We say that a pivot p is contained in a
column c when the pivot of c is p.

Lemma 4.6. Let t > 2 be a row index and X the random variable representing
the smallest c, such that all pivots from t to m are contained in the columns 1
to c in M̃ . Then the expected value of X:

E[X] ≤ 5 ·
(
m
3

)
t
.
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Proof. Let Aij be the event corresponding to the existence of a pivot in row i

between columns 1 and j and N =
(
m
3

)
be the number of columns. Then:

E[X] =

N−1∑
j=0

P (X ≥ j + 1) =

N−1∑
j=0

P (

m⋃
i=t

¬Aij) ≤
N−1∑
j=0

m∑
i=t

P (¬Aij).

Let Ki =
(
i−1

2

)
be the number of columns with pivot i. Then:

P (¬Aij) =

(
N−Ki
j

)(
N
j

) =

j−1∏
`=0

1− Ki

N − ` .

Therefore:

E[X] ≤
N−1∑
j=0

m∑
i=t

j−1∏
`=0

1− Ki

N − `

≤
N−1∑
j=0

m∑
i=t

(1− Ki

N
)j =

m∑
i=t

N−1∑
j=0

(1− Ki

N
)j

≤
m∑
i=t

∞∑
j=0

(1− Ki

N
)j =

m∑
i=t

1

1− (1− Ki
N )

=

m∑
i=t

N

Ki

We have:
m∑
i=t

1

Ki
=

m∑
i=t

1(
i−1

2

) =

m∑
i=t

1

(i− 1)(i− 2)
.

For t > 3, 1
(i−1)(i−2) is strictly decreasing for each i. So, we can upper bound

the sum with the corresponding integral:

m∑
i=t

1

(i− 1)(i− 2)
≤
∫ m

t−1

1

(i− 1)(i− 2)
di = log

(
m− 2

m− 1

)
− log

(
t− 3

t− 2

)
.

Because m−2
m−1 and t−3

t−2 are both smaller than 1:

log

(
m− 2

m− 1

)
− log

(
t− 3

t− 2

)
≤ − log

(
t− 3

t− 2

)
= log

(
t− 2

t− 3

)
.

Using the property that log x ≤ x− 1 for x > 0:

log

(
t− 2

t− 3

)
≤ t− 2

t− 3
− 1 =

1

t− 3
≤ 4

t
.

When t = 3:

m∑
i=3

1

(i− 1)(i− 2)
=

1

2
+

m∑
i=4

1

(i− 1)(i− 2)
≤ 1

2
+

4

4
=

3

2
≤ 5

3
=

5

t
.

So, E[X] ≤ 5 · Nt .

From this lemma we can deduce a first upper-bound:
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Lemma 4.7. Let t be a fixed row index in M . The time complexity of the

expended reduction algorithm has as upper-bound O(m
5

t + t2m3) in expectation.

Proof. Let X be the random variable representing the smallest c, such that all
pivots from t to m are contained in the columns 1 to c in M̃ . In Figure 4.8,
M̃ is represented after reduction: we can distinguish two types of columns for
a fixed row index t. The bigger columns in the figure are the reduced columns
which pivot is larger or equal to t. We know that they appear before column
X and that they all have size 3 when we reduce columns after index X. The
smaller columns represented in the figure have pivots smaller than t.

t

X

m

N =
(
m
3

)

Figure 4.8: Visualization of M̃ after reduction.

While reducing columns placed before column X, we do not have any guar-
antee on the already reduced columns, so we have to assume the worst case: for
X columns we have to make a maximum of m additions of columns of maximal
size m. While reducing columns placed after column X, we add the two differ-
ent kind of columns: for N −X columns we have to make maximal t additions
of maximal size t and m− t additions of size exactly 3.

This gives us a maximal cost of:

C = Xm2 + (N −X)(t2 + 3(m− t)).

By Lemma 4.6, E[X] = O(m
3

t ), so the expected value of C is:

E[C] = E[X]m2 + (N − E[X])(t2 + 3(m− t))

= O(
m3

t
)m2 +O(m3 − m3

t
)(t2 +O(m− t))

= O(
m5

t
) +O(

m3t3 +m4t

t
)

= O(
m5

t
+m3t2 +m4)

It is not difficult to verify that m5

t +m3t2 reaches its minimum for t = O(m
2
3 )

with a value of O(m
13
3 ) which is higher than m4. So, C = O(m

5

t + m3t2) in
expectation.
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As seen in the proof this upper-bound gives us at best O(m
13
3 ) for t =

O(m
2
3 ). But instead of using just one threshold t, we could refine the analysis

done in the proof by using a sequence of thresholds: E[X] will become smaller
when t increases in value, such that we can improve the analyses for columns
placed before X as we can see in Figure 4.9. This way we can show the next
theorem.

t2

Xt2

m

N =
(
m
3

)

t1

t3

t4

t5

Xt1Xt3Xt4Xt5

Figure 4.9: Visualization of M̃ with a sequence of thresholds t1.

Theorem 4.8. Let ε > 0 be a constant. The time complexity of the expended
reduction algorithm is O(m4+ε) in expectation.

Proof. Let ε > 0 and k = dlog2( 1
2ε + 1

2 )e. For large enough m >> k, define the

row index tk−s = m1−(2s+1−1)ε and its corresponding random variable Xk−s as
defined in Lemma 4.6, for s ∈ {0, ..., k−1}. Let es = E[Xs] for each s ∈ {1, ..., k},
then t1 < t2 < ... < tk and e1 > e2 > ... > ek, by Lemma 4.6. Then, during the
expended reduction algorithm, we have for the columns:

– from 1 to Xk: m column additions of maximal size m,

– from Xs + 1 to Xs−1, for s ∈ {1, ..., k}: ts additions of maximal size ts and
(m− ts) of size 3,

– from X1 + 1 to N : t1 additions of maximal size t1 and (m− t1) of size 3.

Therefore, the complexity is:

C = O(Xkm
2 +

k−1∑
`=1

X`t
2
`+1 +m

k−1∑
`=1

X` +m3t21 +m4).

By Lemma 4.6, es = O(m
3

ts
) for s ∈ {1, ..., k} and by replacing each ts by its
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value, we have:

E[C] = O(ekm
2 +

k−1∑
`=1

e`t
2
`+1 +m

k−1∑
`=1

e` +m3t21 +m4)

= O(m4+ε +

k−1∑
`=1

m4+ε +m

k−1∑
`=1

m2+(2`+1−1)ε +m4+ε +m4)

= O((k + 1)m4+ε +m3
k−1∑
`=1

m(2`+1−1)ε +m4).

It is easy to verify that
∑k−1
`=1 m

(2`+1−1)ε = O((k−1)m1+ε). Moreover, k << m.
Thus, C = O(m4+ε) in expectation.

4.5 Discussion.

The experimental results are pointing to nice distinct polynomial behaviors for
each of the filtration types, way lower than cubic and therefore support the
existence of a sub-cubical average complexity. But on the theoretical side, some
work has still to be done.

Lower star filtration. The time complexity for lower star filtrations shows us
that a nearly linear behavior is possible, but it is obviously quite restrictive. On
the other hand, it is easy to construct, and even within a particular framework
with a need of more sophisticated or generalized filtration types, it is not unusual
that we are free to choose the order of some subset of simplices. For example,
when a bunch of simplices are added simultaneously. Even if working on a
subset is not the same than working on a complex — because it does not have
to be a complex — it supports the effectiveness of the lexicographical order,
which is often used heuristically.

Shuffled filtration. A shuffled filtration is a good representative for a ran-
domly picked filtration and therefore particularly interesting to analyze. The
expended version seems to be a first step in this direction, even if it (seemingly)
cannot be directly linked to the time complexity of a real shuffled filtration.
Another approach we will be looking at is to upper-bound the expected value
of the sum of squared bar length in the barcode, even though it is yet uncertain
if this approach is really easier. To simplify the problem, we could also look at
a matrix which columns where randomly produced with a certain distribution:
we would toss a coin for each cell of a column to decide if we put a 1 or a 0
inside. Those column won’t represent any triangles anymore, but choosing a
probability p = 3

m , with m the number of rows, yields 3 as the expected number
of 1’s. The problem becomes even more simpler, if we concentrate on the second
half of the matrix: we observed that all negative columns appear quite soon in
the process, therefore we can assume that every pivot is already present. Using
the observation that the number of 1’s in the total of negative columns is linear
to the number of simplices, we can use a new q-distribution to simulate those
negative columns, with q = 1√

m
. But even then, the resulting expectations are
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quite tedious to approximate into a readable nice result as for the expended
shuffled filtration.

Rips filtration. We do not have any result for the Rips filtration yet, but
it is particular interesting for its geometrical aspect. How much does the use
of the underlying metric influence the expected running time of the reduction
algorithm and on which aspects does it operate?
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