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Abstract9

A planar monohedral tiling is a decomposition of R2 into congruent tiles. We say that such a10

tiling has the flag property if for each triple of tiles that intersect pairwise, the three tiles intersect11

in a common point. We show that for convex tiles, there exist only three types of tilings that are12

not flag, and they all consist of triangular tiles; in particular, each convex tiling using polygons13

with n ≥ 4 vertices is flag. We also show that an analogous statement for the case of non-convex14

tiles is not true by presenting a family of counterexamples.15

1 Introduction16

Problem statement and results. A plane tiling in the plane is a countable family of planar17

sets {T1, T2, . . .}, called tiles, such that each Ti is compact and connected, the union of all Ti18

is the entire plane and the Ti are pairwise interior-disjoint. We call such a tiling monohedral19

if each Ti is congruent to T1. In other words, a monohedral tiling can be obtained from the20

shape T1 by repeatedly placing (translated, rotated, or reflected) copies of T1. Two of the21

simplest examples for such monohedral tilings are shown in Figure 1. These are also instances22

of convex tilings, where we require that each tile is convex. A comprehensive study of tilings23

with numerous examples can be found in the textbook by Grünbaum and Shephard [3].24

Figure 1 Monohedral tiling with squares (left) and equilateral triangles (right). On the right, an
obstructing triple for the flag property is shaded.

We are interested in a special property of (monohedral) tilings: We say that a tiling is25

flag if whenever three tiles intersect pairwise, they also intersect in a point common for all26

three tiles. It can easily be verified that the left tiling in Figure 1 is flag, whereas the right27
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2 A Note on Planar Monohedral Tilings

tiling is not: the three edge neighbors of any triangle intersect pairwise (in single points), but28

have no common intersection. We call such a triple an obstructing triple. We are interested29

in the following question: which monohedral tilings have the flag property?30

Our main result is that “most” convex monohedral tilings in the plane are flag. There31

are only three types of counterexamples, namely the ones depicted in Figure 1 (right) and32

in Figure 2. In particular, all counterexamples require triangles as tiles. As a consequence,33

every convex monohedral tiling with convex polygons having 4 or more vertices is flag.34

To explain the three types of non-flag tilings, we observe that the union of the three tiles35

of an obstructing triple divides the complement into a bounded and an unbounded connected36

component. We call the closure of the bounded component the cage of the triple. Of course,37

the cage has to be filled out by copies of the same tile. We define the cage number of a cage38

as the number of tiles inside the cage, and the cage number of a tiling as the maximal cage39

number of all cages in the tiling. The three counterexamples correspond to tilings with cage40

number 1, 2, and 3. We show that no convex tiling with cage number 4 or higher exists.41

The situation changes significantly for non-convex monohedral tilings. In that case,42

non-flag tilings exist for polygons with an arbitrary number of vertices and the cage number43

can go well beyond 3. As a further contribution, we present a general construction that, for44

an arbitrary fixed integer c, generates a tiling with cage number c.45

Figure 2 Non-flag Monohedral tilings with cage number 2 (left) and 3 (right). These tilings are
obtained from the equilateral tiling from Figure 1 (right) by splitting each triangle in two congruent
copies using an altitude, or by splitting each triangle in three congruent copies using the barycenter,
respectively. An obstructing triple with the maximal cage number is shaded.

Motivation. The term “flag” originates from the following concepts: A simplicial complex46

C is called a flag complex (also clique complex) if it has the following property: if for vertices47

{v0, . . . , vk}, all edges (vi, vj) are in C, then the k-simplex spanned by {v0, . . . , vk} is also in48

C. Equivalently, C is a flag complex if it is the inclusion-maximal simplicial complex that49

can be constructed out of the edges of C.50

In our setup, a tiling gives rise to a dual simplicial complex, called the nerve of the51

tiling, obtained by defining one vertex per tile, and adding a k-simplex if the corresponding52

(k + 1) tiles have a non-empty common intersection. Note that this complex might be high-53

dimensional – for instance, the nerve of the triangular tiling in Figure 1 contains 5-simplices.54

The tiling being flag is a necessary condition for the nerve of the tiling being a flag complex.55

Indeed, if a triple of tiles violates the flag property, the dual complex consists of three edges56

forming the boundary of a 2-simplex, but the 2-simplex is missing as the three tiles do not57

commonly intersect. For convex tilings, the tiling is flag if and only if its nerve is a flag58

complex, which is a simple consequence of Helly’s Theorem.59



O.Aichholzer, M.Kerber, I.Talata, and B.Vogtenhuber 3

Our question is motivated from an application in computational topology. In [2], the60

d-dimensional Euclidean space is tiled with permutahedra, and the nerve of a subset of them61

is the major object of study. In that paper, it is proven (Lemma 10 of [2]) that this nerve is62

a flag complex (for all d), which simplifies the computation of the complex. The first part of63

the proof is to show that the tiling has the flag property; for that, two disjoint facets of a64

permutahedron are considered and it is proven that the neighboring permutahedra along65

these two facets do not intersect, which implies the flag property. This proof makes use66

of the special structure of permutahedra and explicitly defines a separating hyperplane for67

the two neighboring permutahedra, involving lengthy calculations. This note is a first step68

towards generalizing this useful property of permutahedra to a larger class of tilings, starting69

with a complete analysis of the planar case.70

2 Convex non-flag tilings71

We fix a convex monohedral non-flag tiling with an obstructing triple (T1, T2, T3) throughout.72

Clearly, T1 (and so, T2 and T3) must be a polygon, since any convex non-linear boundary73

component would require a neighboring tile with a concave boundary component. Since the74

triple (T1, T2, T3) intersects pairwise, but not commonly, the union T1∪T2∪T3 is a connected75

set with a hole. While this can also be shown with elementary geometric considerations, a76

short proof uses the Nerve theorem [1] [4, Ch 4.G], stating that the union of convex shapes is77

homotopically equivalent to their nerve, which in our case is a cycle with three edges. Hence,78

the union of the three tiles is homotopically equivalent to S1, a circle.79

We call the closure of the (unique) bounded connected component of the complement80

the cage X of the triple. We start with studying the structure of X, relating it with a81

structure from computational geometry: a (polygonal) pseudotriangle is a simple polygon in82

the plane that is bounded by three concave chains [5]. The degenerate case in which one or83

several concave chains are just line segments is allowed; hence triangles are a special case of84

pseudotriangles.85

I Lemma 2.1. The cage X is a pseudotriangle.86

Proof. The boundary of X consists of boundary curves of the three convex polygons T1, T2,87

and T3. By convexity, these curves are convex with respect to Ti, and hence concave with88

respect to the complement. J89

A pseudotriangle has three corners where two concave chains meet. In our case, these90

corners correspond to intersections of two tiles among {T1, T2, T3}. The diameter of a91

compact point set is the maximal distance between any pair of points in the set. Two points92

realizing this distance are called a diametral pair. For pseudotriangles, it is easy to see that93

only corners can form diametral pairs.94

I Lemma 2.2. Let X be a cage, and let TX be a tile in the cage. Then, TX contains95

two corners of X that form a diametral pair. In particular, the corresponding concave arc96

connecting these corners along the boundary of X is a line segment.97

Proof. We define the width of a compact set S in the plane as the length of the longest line98

segment that is contained in S. Clearly, congruent sets have the same width, and S′ ⊆ S99

implies that the width of S′ is at most the width of S. Let w = w(T1) be the width of T1.100

Then, X must have width at least w because it contains at least one congruent copy of T1.101

On the other hand, the width of a set is upper bounded by the diameter and for convex102

sets, both values coincide. Note that for any pair of corners of X, the line segment connecting103
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4 A Note on Planar Monohedral Tilings

them is completely contained in some Ti, because the corners are intersection points of tiles.104

Because all Ti are congruent, the diameter of T1 is at least the distance of any pair of corners.105

It follows that the diameter of T1 is at least the diameter of X. Putting all together, we have106

diam(X) ≥ w(X) ≥ w(T1) = diam(T1) ≥ diam(X)107

which implies that all quantities coincide. Since TX has the same width as T1, it must108

contain a diametral pair of X, which consists of two corners. Moreover, since TX is convex,109

it contains also the line segment between these two corners, implying that X is bounded by110

this line segment. J111

Since each tile in a cage has to cover a line segment between two corners, it follows that:112

I Corollary 2.3. A cage contains at most 3 tiles.113

Finally, we can analyze the three possible numbers of tiles inside a cage to show that all114

of them can only appear for triangular tiles.115

I Theorem 2.4. If a convex monohedral tiling is not flag, then the tiles are triangles.116

Proof. Assume that tiles (T1, T2, T3) exist that form a cage X. Let c be the number of tiles117

inside the cage. We know that c ∈ {1, 2, 3} from Corollary 2.3.118

If c = 1, then X is a tile itself, and hence convex. Because the cage is a pseudotriangle, it119

is convex if and only if it is a triangle.120

If c = 2, Lemma 2.2 implies that X has two line segments as sides, and a third concave arc121

which might be a line segment or a polyline with two segments; a polyline with more vertices122

is impossible because X is the union of two convex sets. Let v be the corner of X opposite123

to that third concave arc. Since the two tiles inside the cage intersect in a line segment from124

v to a point on the opposite arc, the only possibility is that the tiles are triangles.125

If c = 3, the three tiles inside the cage have to intersect in a common point x as otherwise,126

they would form a cage again, and X would contain at least 4 tiles. Moreover, by Lemma 2.2,127

X is a triangle, and each corner is an intersection point of two tiles inside the cage. It follows128

that the three line segments joining v with the corners of X are the boundaries of the three129

tiles. However, these line segments split X into three triangles. J130

We remark that the converse of Theorem 2.4 is not true: there are triangular tilings131

which are flag (an example can be obtained from the square tiling in Figure 1 (left) by132

subdividing each square into two triangles arbitrarily). However, the converse becomes true133

with a further restriction: we call a tiling face-to-face if the intersection of two tiles is a facet134

of both tiles (that is, the tiling carries the structure of a cell complex). For a face-to-face135

tiling with triangles, it is easy to see that for any triangle T , the three neighboring tiles136

sharing an edge with T form a cage that contains exactly T . Hence, a planar monohedral137

face-to-face tiling is flag if and only if the tiles are not triangles.138

3 Non-convex tilings139

Non-convex monohedral tilings have a long history of research. A remarkable case of instances140

are spiral tilings, for instance the Voderberg tiling1 or the spiral version of the “Bent Wedge141

1 See https://en.wikipedia.org/wiki/Voderberg_tiling

https://en.wikipedia.org/wiki/Voderberg_tiling
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tiling”2. By inspecting these tilings, it is not difficult to detect obstructing triples, refuting142

the possibility that Theorem 2.4 remains true without the convexity assumption.143

For an arbitrary integer n ≥ 3, we describe a construction of a non-convex monohedral144

tiling with tiles having 2n + 1 vertices such that an obstructing triple with cage number n− 1145

exists. This shows that also Corollary 2.3 is a property that crucially relies on the convexity146

of the tiles. Our construction is a variant of so-called radial tilings3. Consider the regular147

6n-gon P inscribed in the unit circle and fix an arbitrary vertex B on that polygon (Figure 3148

(left)). Let D be a point on the unit circle such that the triangle OBD is equilateral. In fact,149

D is a vertex of P . Let c be the circular arc between O and B of the (unit) circle centered150

at D. Divide c in n sub-arcs of identical length, using n− 1 additional subdivision points.151

Let p1 denote the polyline from O to B defined by these subdivision points.152

p2

p1

C

B

O

D

Figure 3 Left: Illustration of the construction of T for n = 5. Right: Radial tiling using T .

Next, apply a rotation around the origin (in either direction) by 2π
6n , so that B is mapped153

to a neighboring vertex C of P . This rotation maps p1 into a polyline p2 from O to C. The154

polygon T bounded by p1, p2, and the line segment BC is a polygon with 2n + 1 vertices.155

We argue that T indeed admits a monohedral tiling. First of all, by rotating T around the156

origin by multiples of 2π
6n , 6n copies of T cover P . To cover the polygonal annulus between157

P and 2P , we observe that the 6n reflections of the inner tiles can be completed with 12n158

congruent tiles to fill out the annulus. Extending this idea for the annulus between iP and159

(i + 1)P , we can cover the entire plane with copies of T (see Figure 3 (right)).160

Finally, to construct a large cage, we modify the tiling inside P : we split the 6n tiles161

into 6 pairwise disjoint groups, each consisting of n consecutive copies of T . Consider such a162

group G and denote with B and D its two extreme vertices on P . Note that the triangle163

OBD is equilateral and that the boundary of G consists of three identical polygonal chains164

(two of them convex and one reflex). It is therefore possible to rotate the whole group G, such165

that it again covers the same space, and that all tiles in the group intersect at D instead of166

O. We rotate 3 of the 6 groups inside P , alternating between rotated and unrotated groups.167

The tiles outside of P are left unchanged. See Figure 4 for two examples. We observe that168

the cage number of these tilings is n− 1.169

2 See Steve Dutch’s webpage https://www.uwgb.edu/dutchs/symmetry/radspir1.htm
3 See also https://www.uwgb.edu/dutchs/symmetry/rad-spir.htm
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Figure 4 The final outcome of our construction after rearranging the innermost tiles for n = 4
(left) and n = 8 (right). In both cases, there are 6 groups of tiles around the origin, and three of
them are rotated. The tile of a rotated group at the boundary of the 6n-gon together with the
extremal tiles of the neighboring (unrotated) groups form an obstructing triple with cage number 3
on the left, and 7 on the right.

4 Conclusion170

Various questions remain open for the non-convex case. For instance: is there a monohedral171

tiling that is flag such that its nerve is not a flag complex? While it is rather simple to give172

an example of four non-convex shapes whose nerve is the boundary of a tetrahedron, it is not173

so simple to provide such an example with congruent shapes, and even less so to construct174

such a scenario in a monohedral tiling. Another question is what would be the maximal cage175

number possible for a monohedral tiling with a k-vertex polygon. Our paper establishes the176

lower bound of k−3
2 . We are currently not able to provide any upper bound.177

More in line with our original motivation, we plan to investigate convex monohedral178

tilings in higher dimension next. In detail, we want to characterize large classes of such tilings179

for which the nerve is a flag complex. Already in three dimensions, the natural generalization180

of Theorem 2.4 that all non-tetrahedral tilings have this property fails because we can simply181

extend Figure 1 (right) to the third dimension using triangular prisms. A statement in reach182

seems to be the following: restricting to face-to-face tilings, we call a tiling in Rd generic if183

at most d + 1 tiles meet in a common point. We claim that the nerve of a generic tiling is a184

flag complex. This would include the permutahedral scenario considered in [2].185
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