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ABSTRACT
We report on a generic uni- and bivariate algebraic kernel
that is publicly available with Cgal 3.7. It comprises com-
plete, correct, though efficient state-of-the-art implemen-
tations on polynomials, roots of polynomial systems, and
the support to analyze algebraic curves defined by bivari-
ate polynomials. The kernel design is generic, that is, vari-
ous number types and substeps can be exchanged. It is ac-
companied with a ready-to-use interface to enable arrange-
ments induced by algebraic curves, that have already been
used as basis for various geometric applications, as arrange-
ments on Dupin cyclides or the triangulation of algebraic
surfaces. We present two novel applications: arrangements
of rotated algebraic curves and Boolean set operations on
polygons bounded by segments of algebraic curves. We also
provide experiments showing that our general implementa-
tion is competitive and even often clearly outperforms exist-
ing implementations that are explicitly tailored for specific
types of non-linear curves that are available in Cgal.

Categories and Subject Descriptors
D.2.13 [Software Engeneering]: Reusable Software—Reusable
libraries; G.4 [Mathematical Software]: Reliability and
Robustness; I.1.2 [Symbolic and Algebraic Manipula-
tion]: Algorithms—Algebraic algorithms

General Terms
Design, Performance, Algorithms

1. INTRODUCTION
A considerable amount of work in Computational Geome-

try is motivated by the fact that many geometric algorithms,
for instance, used in Computer Aided Design systems, are
actually not robust. Often, this is caused by the use of
fast but inexact floating point arithmetic, which can lead
to wrong (and inconsistent) decisions within algorithms [1].
On the other hand, Computer Algebra has developed very
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general and exact tools that could solve such problems in
principle, but a naive application of these tools is by far too
slow, especially when applied in geometric settings. Thus,
our cardinal research interest is to incorporate methods from
all these areas in order to design and implement geometric
algorithms that are exact, complete, and efficient [2].

In this context Cgal [3], the Computational Geometry
Algorithms Library, was started in 1996 with its first beta
release in June 1997. Since that time, Cgal can be con-
sidered as the state-of-the-art in implementing geometric al-
gorithms. While the major focus of the library has been
on linear geometry, the project also raised its attention to-
wards non-linear geometry, see, for instance, [4, 5, 6, 7].
Evidently, all these examples tackle problems whose solu-
tion require solving polynomial systems, efficient compari-
son and approximation of algebraic numbers, etc. This led
to the demand [8],[9, §13] for an Algebraic Kernel provid-
ing an interchangeable black-box implementation of state-
of-the-art algorithms for the above mentioned functionali-
ties [9, §8],[10].

We contribute the first open-source implementation of an
algebraic kernel for polynomials in one and two variables; see
Section 2. It is publicly available with Cgal 3.7. Our ker-
nel is parameterized in the coefficient type of the algebraic
curves, and thus generically supports various number types,
even beyond integers and rationals. It correctly computes
and handles solutions of univariate and bivariate polynomial
systems of any degree including all sorts of degenerate cases.
Internally, it comprises several recent algorithmic results in
real root isolation and topology computations of algebraic
curves1 [11] and pairs of such [12] to achieve efficiency. Its
prototypical version has already been an essential building
block for numerous geometric applications. While its uni-
variate part was used to exactly handle parameterized curves
defined over extension fields of degree 2 [13], the bivariate
part enabled computing arrangements of algebraic curves
in the plane (see next paragraph), computing arrangements
on quadrics [14] and on ring Dupin cyclides [15], triangu-
lating algebraic surfaces of arbitrary degree [16], and, most
recently, computing Voronoi diagrams for lines in space [17].

Our second main contribution is a mature and ready-to-
use support for arbitrary algebraic curves, or segments of
such, in the arrangement2 package of Cgal 3.7; see Sec-
tion 3. This is the most general class of objects for which

1An algebraic curve is defined by C := {(x, y) ∈ R2 |
f(x, y) = 0} for a polynomial f in two variables, called the
defining polynomial of C.
2The arrangement A(C) is the subdivision of the plane



arrangement computation is currently available. The under-
lying algorithm has been exposed in [12], and a preliminary
implementation has been described therein. Since then, the
software has undergone a continuous maturation process:
the implementation properly distinguishes between an al-
gebraic layer (provided by the algebraic kernel) and a ge-
ometric layer that provides the geometric primitives. Fur-
thermore, it is now possible to define curves over algebraic
extension fields; we demonstrate how this allows to compute
arrangements of rotated algebraic curves with our software.
In this way, we generalize the approach for conics [18] with-
out writing any specialized code for rotated curves. Finally,
we newly enabled Boolean set operations for shapes bounded
by segments of arbitrary algebraic curves. Although this
follows rather immediately from being able to compute and
overlay arrangements of this type [19, 20], we demonstrate
how the integration into Cgal simplifies the realization of
this application.

Our new software subsumes all previously available Cgal
implementations on curved objects, which are arrangements
of circles, conics, rational functions, and Bézier curves [9,
§30], [4]. As a final contribution, we experimentally com-
pare our general implementation to all these dedicated so-
lutions; see Section 4: Our software generally outperforms
implementations for conics and rational functions, is only a
constant factor worse than the dedicated classes for circles
and is comparably fast for the case of cubic Bézier curves.
We take these results as a proof for the maturation of our
traits class as well as of the underlying algebraic kernel, and
for the general usefulness of the provided software.

The presented work is the result of several years of soft-
ware development; a first version of it has been developped
within the Exacus library [21]. A separate layer (NumeriX )
existed in this library to encapsulate numeric (algebraic)
computations. The AlciX layer computed arrangements of
algebraic curves by analyzing curves and curve pairs, as re-
ported in [12]. However, both layers lacked a public and
well-designed interface for a general and simple usage. Also,
due to some limitations in the numerical layer, the curve
analyses were restricted to integer coefficients. Both draw-
backs have been removed by our new algebraic kernel; it
conveyes the contents of the Exacus library in a more trans-
parent way and simplifies its usage by its integration into the
well-maintained Cgal.

2. THE ALGEBRAIC KERNEL PACKAGE
Cgal follows the generic programming paradigm, that is,

algorithms are formulated and implemented such that they
abstract from the actual types, constructions, and predi-
cates. Using the C++ programming language this is real-
ized by means of class and function templates, respectively.
The paradigm is applied to all layers: Lower layers allow
to employ different number types; one example is the alge-
braic kernel that we present in this section. Higher levels
are written such that every algorithm and data structure
is parameterized by a so-called traits class, which provides
the bundle of types, constructions and predicates that is re-
quired by a particular algorithm or data structure. Section 3
discusses the arrangement package of Cgal, which supports

into 0-, 1-, and 2-dimensional cells induced by a set of
curves C.

many types of planar curves using this technique – the user
just needs to provide an appropriate traits class.

The interface of the algebraic kernel [9, §8] is subdivided
into two parts that are concerned with univariate polynomi-
als and bivariate polynomial systems, respectively. Accord-
ing to this structure, we provide two classes, a univariate3

and a bivariate4 kernel. Following the generic programming
paradigm, both kernels are class templates that allow the
user to select his preferred coefficient type. We consider it
as a major achievement of our generic design that a con-
siderable collection of number types is supported, namely
several exact types for integers or rationals as they are pro-
vided by the libraries Gmp, Core, or Leda, and also types
that represent algebraic extensions fields (as demonstrated
in Section 3.2).

Both kernels basically consist of three major blocks: (a) a
support for polynomials covering fundamental methods such
as gcd computation or square free factorization; (b) a solver
for real solutions of polynomial systems; (c) a proper han-
dling of these solutions such as their certified approxima-
tion, exact comparison, and sign evaluation of polynomials
at these solutions.

Polynomial support is available as a separate pack-
age [9, §7]. The computation of the gcd and the square free
factorization heavily utilize modular arithmetic. Though
generic in the actual coefficient type, we achieve compet-
itive running times to other implementations in dedicated
libraries such as the NTL [22]. The computation of subre-
sultants and Sturm-Habicht sequences [23] is also provided;
these operations constitute a major ingredient in our bivari-
ate kernel. We implemented the algorithm by Ducos [24] for
computing subresultants.

We next describe the other two building blocks separately
for the uni- and bivariate kernel:

Our univariate kernel is flexible in its choice of the em-
ployed root solver. Currently, there are two available solvers
which are both based on Descartes’ rule of signs. The first
is a generic implementation of the algorithm by Collins and
Akritas [25], the second is a variant that considers each co-
efficient as a bitstream [26]. The later, which is the default,
is particularly useful in case of algebraic coefficients but has
also proven to be competitive [27] to other state-of-the-art
solvers that are dedicated to integral polynomials.

A solution, a real algebraic number, is represented as real
root of a square free polynomial where an isolating interval
uniquely defines the root. An approximation of a solution,
with respect to any requested absolute or relative error, is
provided by refining the interval. The implemented refine-
ment method is a slight modification of the one presented
in [28], which has quadratic convergence.

The bivariate kernel is based on an algorithm com-
puting a geometry-enhanced topological analysis of a sin-
gle curve [11] and of a pair of curves [12] (both analyses
essentially are special cases of a cylindrical algebraic decom-
position [29]). The main idea behind both analyses is to
compute the critical x-coordinates of curves and curve pairs
by projection (resultants). The intersection of a vertical line
at a critical x-coordinate with the curve (or curve pair) is
named a critical fiber. Such a fiber is computed by a vari-
ant of the bitstream Descartes method that uses additional

3CGAL::Algebraic_kernel_d_1< Coeff >
4CGAL::Algebraic_kernel_d_2< Coeff >



information which is obtained via subresultants and Sturm-
Habicht sequences; see [30] for a comprehensive description
of these techniques.

The two described analysis methods are the underpinnings
of most of the kernel methods: For instance, to find the so-
lutions of a system of two bivariate equations, a curve pair
analysis is triggered, and the critical fibers are traversed sub-
sequently, collecting all intersection points on the way. Such
a solution point is stored to be the i-th fiber point of one of
the two curves at the corresponding x-coordinate (for some
i). This representation allows to approximate the coordi-
nates of solutions efficiently (by increasing the precision to
the corresponding fiber in the curve analysis), but it also
permits exact operations.

As an example, we discuss the computation of the sign of
a bivariate polynomial f at an algebraic point p, where p
is represented as the fiber point of some other curve with
defining equation g. We first check whether f(p) = 0. For
that, we consider the curve pair analysis of the curves de-
fined by f and g and check whether p is an intersection.
If not, we can simply evaluate f at more and more precise
approximations of p using interval arithmetic, until we can
certify the (non-zero) sign of f(p). We remark that a lot of
special cases are left out in this discussion for brevity (e.g.,
overlapping curves, curves with vertical components), but
they are completely handled in our software.

The implementation of our bivariate kernel was guided
by the idea of implementing geometric applications, as we
present in Section 3. In particular, we assume that several
function calls arise for a certain curve or curve pairs. Be-
cause of that, our bivariate kernel stores all computed anal-
yses in a cache to avoid costly recomputations. Indeed, for
such an analysis, a worst-case complexity of O(n10(n+ τ)2)
has been shown, where n is the degree of the curve, and τ
is the maximal bitsize of its coefficients [30].

Previously, Cgal only supported a kernel for univariate
polynomials by Lazard et al. [31]. It is based on efficient
real root isolation provided by Rs [32].

3. GEOMETRIC APPLICATIONS
In this section we consider the geometric possibilities that

become possible with our new algebraic kernel. The main
application are arrangements of algebraic curves of arbitrary
degree – we have embedded the algorithm from [12] into a
user-friendly interface that is contained in Cgal’s Arrange-
ment package (Section 3.1). Previous experimental versions
of this arrangement algorithm have led to numerous sophis-
ticated geometric applications in two and three dimensions
[13, 14, 15, 16, 17]; we introduce two further applications in
this section: arrangements of rotated algebraic curves and
Boolean set operations for polygons bounded by algebraic
segments. Although these applications are straight-forward
from an algorithmical point of view, their realization proves
both that the flexibility of the kernel and the simple inter-
play of the kernel with other Cgal packages.

3.1 Arrangements of Algebraic Curves
Arrangements are fundamental structures ubiquitous in

computational geometry. A modular and efficient realization
of two-dimensional arrangements is available in Cgal [9,
§30]. Arrangements with arbitrary degeneracies can be con-
structed with the help of a sweep-line algorithm or via in-

cremental insertion. The main class is parameterized by a
geometric-traits class5 that provides the low-level support
for the intended family of curves. This includes definitions
of suitable data types for points and (possibly curved) seg-
ments, as well as geometric primitives to manipulate and
query them, for instance, comparing two points lexicograph-
ically, or aligning two segments on the right of a common
intersection point; see [9, §30] for a complete list of require-
ments.

Through our implementation of this machinery, Cgal 3.7
contains an algebraic traits6 that serves the needs for com-
puting arrangements of algebraic curves of arbitrary degree,
and segments7 of it. All required geometric types, pred-
icates, and constructions are established with the help of
a mediating layer [33] that translates the geometric primi-
tives into the language of the algebraic kernel, as previously
exposed in [4, 12]. Algebraic curves must be specified in
implicit form, that is, by their defining polynomial. The
coefficient type of the polynomial is given as a template ar-
gument to our new traits class. Profiting from the generic
design, we are able to support the same collection of num-
ber types as for the algebraic kernel (see Section 2); a result
of this capability is exemplified in Section 3.2. Moreover,
our new traits defines a user-friendly interface to construct
points and segments. We refer to the manual [9] for details.

3.2 Rotations of Algebraic Curves
For a curve C with defining polynomial f ∈ Z[x, y] and

some angle α, let C′ be the curve arising from rotating C by
α counterclockwise around the origin. The defining polyno-
mial of C′ is given by

f ′(x, y) = f(cos(α)x+ sin(α)y,− sin(α)x+ cos(α)y).

For certain choices of α, sin(α) and cos(α) can be repre-
sented by square root expressions. This is possible if and
only if the angle is constructible with compass and straight-
edge. The following well-known result characterizes all pos-
sibilities.

Theorem 1 (Gauss). An angle α is constructible with
compass and straightedge if and only if α = c· 360

2kp1···ps
where

c, k, s ∈ N and p1, . . . , ps are distinct Fermat primes, that is,
primes of the form 22m

+ 1,m ≥ 0.

Figure 1: An arrangement of a degree 8 curve ro-
tated by multiples of 30◦.

5CGAL::Arrangement_2< GeoTraits, ... >
6CGAL::Arr_algebraic_segment_traits_2< Coeff >
7a segment of an algebraic curves C is an x-monotone path
on C not passing a singular point of C



In the following, we discuss the example of α = 30◦. In

this case, sin(α) = 1
2

and cos(α) =
√

3
2

. That means, when
rotating a curve with integer coefficients by α, the rotated
curve has coefficients from the domain Z√3 := {a + b

√
3 |

a, b ∈ Z} (after clearing denominators); the same holds for
every integral multiple of α. The Cgal number type for
square-root extensions8 is used to model Z√3. Our algebraic
traits can be instantiated using this type. This enables the
computation of arrangements of algebraic curves that are
rotated by multiples of α, as shown on the right.

We have also considered all other integer angles which
are constructible with compass and straightedge, namely
45◦, 18◦, 15◦, 9◦, 6◦, and 3◦, and multiples of those. Choos-
ing α to be a small angle allows finer rotations of the curve,
but leads to a performance penalty due to the more com-
plicated coefficient domain one has to deal with. We refer
to [30, §5.2] for a more extensive treatment, that also com-
pares the approach to an alternative that rotates by approx-
imate angles.

3.3 Boolean Set Operations
We present a straight-forward implementation of Boolean

set operations on shapes bounded by algebraic segments,
which can be used to represent semi-algebraic sets. Such a
set is defined by a finite number of algebraic inequalities.
For example, a convex polygon with k edges is given by the
point set that satisfies aix + bix + ci ≥ 0, for 1 ≤ i ≤ k,
ai, bi, ci ∈ R, ¬(ai = 0 ∧ bi = 0).

The implementation is immediate using the possibility to
extend the cells of an arrangement with data and to over-
lay two such arrangements in Cgal [9, §30]: Each vertex,
each edge, and each face of an arrangement is enhanced by
a Boolean flag that indicates whether that cell should be
contained in a set. The complement of a set is simply com-
puted by inverting all flags, while a binary operation – as
union, intersection, or (symmetric) difference – is obtained
by overlaying two such enhanced arrangements and updat-
ing the resulting flag according to the operation. A final re-
moval of redundant vertices and edges simplifies the overall
structure; see [20, §2] for details. Thus, we achieve arbitrary
semi-algebraic sets, for instance, sets with (partially) open
boundaries or with low-dimensional features as antennas and
isolated vertices.

However, practical settings often desire shapes to be closed
and free of low-dimensional features. A regularized Boolean
set operation, given by P op? Q = closure(interior(P op Q)),
ensures this property. Cgal’s corresponding package [9,
§19] expects as input general polygons with holes,9 which
are finite shapes (not necessarily contractible), bounded by
finitely many x-monotone segments which do not intersect
each other in their interior. All internal representations and
computations are based on planar arrangements. Thus, to
enable algebraic polygons we use the algebraic traits pre-
sented in Section 3.1. To illustrate Boolean set operations
on such polygons we extended Cgal’s corresponding demo
(that previously only supported polygons bounded by line
segments, circular arcs, and Bézier curves); see Figure 2. Vi-
sualization is established by a certified renderer for algebraic
segments [34].

8CGAL::Sqrt_extension< Integer, Integer >, where In-
teger must model Z
9CGAL::General_polygon_with_holes_2

4. EXPERIMENTAL COMPARISONS
Among the traits classes that are currently existing for

Cgal’s arrangement package, our algebraic traits is clearly
the most general one. In fact, all previously available im-
plementations constitute special cases and can be handled
by our traits, too. This section concentrates on the perfor-
mance of the specialized and dedicated traits classes to our
general version; we refer to [30] for further comparisons with
alternative (non-Cgal) approaches.

All experiments have been executed on a 2.40GHz 32-bit
Intel(R) Core(TM)2 Duo CPU P9400 with 6144 KB cache
and 4GB RAM memory, running Fedora 10 (Cambridge).
All programs where compiled using g++ version 4.3.2 opti-
mized with -O3 and -DNDEBUG.

Circles. The simplest class of curved objects are circles
and circular arcs. The circle with center (a, b) and radius
r is given as the vanishing set of (x − a)2 + (y − b)2 − r2.
For rational a, b, and r, Cgal’s circular traits10 enables
arrangement computation of circular arcs; it only needs to
handle algebraic numbers of degree up to 2 (i.e., square-root
expressions) because the coordinates of an intersection point
of two circles can not be of higher algebraic degree.

To compare with our approach, we created instances by
choosing, for fixedm, point triples (a1, b1, r1), . . . , (am, bm, rm) ∈
{1, . . . ,m}3 uniformly at random. Each triple represents a
circle with center (ai, bi) and radius ri. We observe from Ta-
ble 1 that our implementation is roughly a factor of 4 slower
than the specialized Cgal class, and the factor decreases for
increasing m. We emphasize that our traits class is free of
any special treatment for circles (and the same is true for
any other special case tested in this section) and handles all
input with the same full “algebraic machinery” as for curves
of higher degree. Regarding this, we consider a factor of 4
to be an appreciably small overhead. Also, we observe that
the running time is roughly linear in the complexity of the
returned arrangement.

Conics. A conic is an algebraic curve of degree 2. Their
general equation is ax2 + by2 + cxy + dx + ey + f = 0,
thus a conic can be presented by a six-tuple (a, . . . , f) ∈
Z6. Although the class of conics contains several non-trivial
curves like ellipses, parabolas and hyperbolas, one can still
exploit many simplifying properties compared to curves of
arbitrary degree. For instance, no conic has a singular point,
except for the special case of two intersecting lines. Cgal’s
conic traits11 supports bounded segments on conic curves;
for all internal algebraic computations, it relies on an exact
type for real algebraic numbers. As recommended, we have
tested the traits class instantiated with the types provided
by Core 1.7 [35].

We compared both implementations for the case of el-
lipses. For that, we generated random ellipses with 30-bit
coefficients.12 The results presented in Table 2 show that our
implementation is faster by a magnitude, and the ratio even
increases when computing with more ellipses (although the
ratio seems to stabilize at a factor of about 24). We conclude
that our implementation gives faster results for all realistic

10We used CGAL::Arr_circle_segments_traits_2, as it
appeared to be faster than the feature-identical class
CGAL::Arr_circular_arc_traits_2 on the tested instances

11CGAL::Arr_conic_traits_2
12More precisely, we generated random conics with 30-bit
coefficients and repeated the construction if the result was
not an ellipse



(a) Difference (b) Sym. Difference (c) Intersection (d) Sym. Difference

Figure 2: Boolean set operations on algebraic polygons (red and blue) each defined by a bounded face of a
curve’s arrangement. Degree of curves: (a) blue: 10, red: 7 (b) blue: 16, red: 14, (c+d) blue: 16, red: union
of two degree 4 curves

#Circles #(V,E,F) circular algebraic speedup µs per vertex
200 (24268, 48142, 23877) 4.14 20.89 0.19 861
400 (85081, 169374, 84295) 15.69 71.96 0.21 845
600 (192640, 384084, 191447) 36.86 162.00 0.22 840
800 (338786, 675986, 337202) 67.45 284.72 0.23 840
1000 (548041, 1094088, 546050) 110.64 460.84 0.24 840

Table 1: Results for m circles with center on an m×m grid and integer radius up to m.

inputs. This shows that our algebraic kernel handles the
involved operations with algebraic numbers more efficiently
than Core.

Rational Functions. There is also specialized traits for
rational functions.13 For univariate polynomials P and Q,
a rational function is defined by y = P (x)/Q(x), or equiva-
lently Q(x)y = P (x). The degrees of P and Q can be chosen
arbitrary large; however, the restriction of the y-degree of
the defining equation to 1 of course drastically simplifies the
realization of the involved primitives. Similar to the conic
case, the specialized traits class uses an external number
type for algebraic computations (taken from Core by de-
fault).

For comparison, we generatedm pairs of polynomials (P,Q),
each representing a rational function. The degree of both P
and Q was chosen as n, and each coefficient was chosen ran-
domly with 16 bits. We observe in the first part of Table 3
that for fixed n our approach is faster by a roughly constant
factor for increasing m. As the second part shows, the gap
becomes more significant if we increase n. Again, the rea-
son for this behavior lies in the more efficient handling of the
underlying algebraic computations by our algebraic kernel.

Bézier Curves. Cgal provides support for arrange-
ments of Bézier curves via a Bézier traits.14 A Bézier curve
is defined by a sequence of control points p0, . . . , pn as the
image of the function

B : [0, 1] 7→ R2, t→
nX

k=0

pk

 
n

k

!
tk(1− t)n−k.

Bézier curves are a widely used class of parameterized curves,
with applications in graphics and computer-aided design. As
for conics and rational functions, Cgal’s traits class relies
on an external algebraic number type; however, several filter

13CGAL::Arr_rational_arc_traits_2
14CGAL::Arr_Bezier_curve_traits_2

techniques are implemented in order to avoid such compu-
tations as much as possible [5].

We compared this Bézier traits class with our class on the
most important case of Bézier curves, namely cubic ones
with 4 control points. We tested both implementations on
instances with random control points, and on degenerate
instances where we forced all Bézier curves to pass certain
points. The results were roughly similar for both cases and
so, Table 4 only lists the random case. In general, both
traits classes behave equally efficiently in practice, with min-
imal advantages for our software for an increasing number
of curves. We remark that we observed several robustness
issues concerning Cgal’s Bézier traits class: It is not able to
handle overlapping curves and crashes frequently for Bézier
curves with self-intersections.15 Also, we observed signifi-
cant slow-downs for some instances (possibly due to filter
failures), and even a crash on one tested example. On the
other hand, the Bézier traits shows its strength for higher
degree curves, where it outperforms our approach in many
examples thanks to its filter techniques.

Beyond special cases. We conclude the experimental
section with some examples of algebraic curves which shows
the robustness of our implementation also in the presence of
degenerate features (Figures 3, 4 and 5). We remark that a
systematic comparison with other approaches is difficult be-
cause related approaches either do not deliver a certified an-
swer, restrict to the special case of a single curve, or compute
a more expensive structure like a full cylindrical algebraic
decomposition. We refer to [30, Sec. 4.3] for detailed results
and a more extensice discussion on related approaches.

5. CONCLUSIONS
Our new software introduces full support for algebraic

curves in Cgal, achieving the goals of robustness, usabil-

15All of out tested instances were free of self-intersections.



#Ellipses #(V,E,F) conic algebraic speedup µs per vertex
30 (538, 1016, 480) 13.37 0.72 18.52 1341
60 (2200, 4280, 2082) 58.13 2.71 21.43 1232
90 (4656, 9132, 4478) 124.64 5.52 22.57 1186
200 (23744, 47088, 23346) 648.71 27.01 24.01 1137
400 (96502, 192204, 95704) 2660.99 108.94 24.42 1128
600 (214358, 427516, 213160) 5899.76 244.41 24.13 1140

Table 2: Results for m random ellipses.

n,m #(V,E,F) rational algebraic speedup µs per vertex
6,10 (114, 254, 141) 2.05 0.25 8.15 2210
6,40 (2074, 4266, 2193) 35.86 3.64 9.85 1755
6,70 (7020, 14238, 7219) 124.78 11.71 10.65 1668
6,100 (13124, 26534, 13411) 223.14 22.82 9.77 1739
3,20 (422, 890, 469) 1.67 0.46 3.61 1096
7,20 (594, 1242, 649) 16.93 1.13 14.90 1912
11,20 (616, 1292, 677) 47.23 1.95 24.16 3173
15,20 (676, 1418, 743) 131.54 3.09 42.45 4583

Table 3: Results for m random rational functions generated by degree n polynomials with 16 bit coefficients.

Figure 3: The curve with equation y10 − 2(x4y − 1)2.
Note that for any x > 1, the fiber consists of the roots
of a Mignotte polynomial of type xn−2(ax−1)2 which
is known to have a bad root separation [36]. Conse-
quently, two arcs of the curve have extremly small
distance from each other. Our software computes
the arrangement induced by this curve almost in-
stantly (about 1 second), correctly separating these
arcs.

ity, and efficiency at the same time. Our algebraic ker-
nel provides a fundamental layer for certified computation
with curved objects. The design also shows flexibility in
order to ease the integration of improved solutions for sub-
algorithms. A particularly important subalgorithm is the
computation of roots of univariate polynomials (the root
solver of the univariate kernel). Considering the active cur-
rent research in this area [37, 38], which has lead to both
theoretical and practical improvements, we invite developers
to integrate their root solvers into our kernel.

On top of our kernel, various geometric applications in
2D and 3D have been developed – this work has added
two smaller extensions to the list. We take the consider-

Figure 4: A curve of degree 16 with a highly degener-
ate singularity. Our software computes the arrange-
ment induced by the curve correctly, i.e., returns
an arrangement with 9 faces and a vertex with 16
incident edges.

able amount of derived applications as a proof of concept of
our software, and as a sufficient argument for its publication
via Cgal.

Finally, our experiments clearly show the maturation of
our implementation regarding performance. Some existing
applications in Cgal can directly profit from using our new
algebraic traits class; as an example, we mention the com-
putation of exact offset of polygons [9, §24], which currently
uses the conic traits class to represent the offset’s bound-
ary. In the long term, our contribution might also lead to a
re-design of the specialized traits classes, so that they make
use of the algebraic kernel.



m #(V,E,F) Bézier algebraic speedup µs per vertex
20 (259, 417, 160) 0.99 1.38 0.71 5346
40 (732, 1269, 539) 3.84 4.14 0.92 5661
60 (1863, 3439, 1578) 10.10 10.38 0.97 5571
80 (2849, 5293, 2446) 19.00 16.23 1.17 5697
100 (4513, 8581, 4070) 29.02 26.87 1.07 5955

Table 4: Results for m Bézier curves. with 4 randomly chosen control points.

Figure 5: Arrangement of curves needed to anal-
yse and decompose two random surfaces of degree 3
and 4 following the approach in [16] (cutout). Sin-
gular points and tangential intersections naturally
appear in this task. The full arrangement consists
of 111 vertices (3 of which are isolated), 164 edges
and 61 faces.
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