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Polygonal Reconstruction from Approximate Offsets∗
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Abstract

Given a polygonal shapeQ with n vertices, can it be
expressed, up to a toleranceε in Hausdorff distance,
as the Minkowski sum of another polygonal shape
with a disk of fixed radius? If it does, we also seek
a preferably simple solution shapeP; P’s offset con-
stitutes an accurate, vertex-reduced, and smoothened
approximation ofQ. We give a decision algorithm for
fixed radius inO(n logn) time that handles any polyg-
onal shape. For convex shapes, the complexity drops
to O(n), which is also the time required to compute a
solution shapeP with at most one more vertex than a
vertex-minimal one.

1 Introduction

Computing theoffset of a polygon, namely points at
most some fixed distancer away from the polygon,
is a fundamental geometric operation recurring in a
variety of applications. A standard way to obtain it is
via theMinkowski sum of the polygon and a disk of
radiusr, which results in a shape bounded by straight-
line segments and circular arcs. Modeling the disk in
the Minkowski sum with a (tight) polygon yields an
approximate piecewise-linear offset. Often, such an
approximation is the legacy data which a program has
to deal with – the original shape before offsetting is
unknown.

While offset computation and smoothening of
shapes have been extensively studied, we address
the(offset-)reconstruction problem, that seems not to
have been addressed in the literature: Given a polyg-
onal shapeQ, is it the approximate offset of another
polygonal shape? And if so, is there a good suchP
(say, one with a small number of vertices)? As offset-
ting blurs small features, a definite reconstruction of
the original shape fromQ (or even of its topology) is
impossible in general. However, a good choice ofP
could lead to a more compact and smooth representa-
tion of the shape given byQ.
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In Section 2, we present an algorithm that de-
cides for any given polygonal shapeQ with n ver-
tices (possibly unbounded), and two real parameters
r,ε > 0, whetherQ is within Hausdorff-distanceε
to the r-offset of some other (yet unknown) polyg-
onal shapeP; if the answer is yes, we also return one
suchP. It gives the exact answer afterO(n logn) op-
erations in the real-RAM model by constructing off-
sets with increasing radii three times, exploiting this
increase in a particular fashion. For convexQ we re-
duce the running time to optimalO(n) in Section 3
and also compute aP as above which even minimizes
(up to one extra vertex) the number of vertices among
all valid choices. Furthermore,P’s r-offset consti-
tutes a tangent-continuous arc spline approximation
of Q where all circular arcs have the same radius. This
work summarizes [2] in which we give more details
and full proofs.
Related work LEDA and CGAL contain code to
compute Minkowski sums of polygons. The latter im-
plementation also computes the exact or approximate
offset of a polygon [5].

Smoothening polygonal shapes is desirable for
NC machining. Such aims at tangent-continuousarc-
splines consisting of segments and circular arcs which
enable a uniform and fast processing and often allevi-
ate the problem of overheating of the machine or the
material. For purely polygonal input one can distin-
guish results using single arcs or biarcs (besides seg-
ments). Drysdale et al. [3] compute a vertex-minimal
solution not adding new vertices, while Held et al. [4]
compute approximations with arbitrary vertex place-
ments and their tolerance band might even be asym-
metric. Our reconstruction approach constrains the
solution by allowing a single radius only. It disables
tangent-continuity in general. But this can also be
seen as a relaxation: We consider our reconstruction
approach as an interesting alternative to existing ap-
proaches because on success, it yields an approxima-
tion that reflects the construction history ofQ.

We also seek a vertex-minimalP whose offset is
close toQ. P is actually constrained by a set of
shapes. A related problem is to find aminimal-link
polygon that is nested between two others [1] from
which our approach adapts some ideas.

2 The Decision for Polygonally Bounded Sets

For a setX ⊂ R
2 we denote its boundary by∂X and

its complement byXC := R
2 \X . For a pointp and
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a closedX , letting d(·, ·) be the Euclidean distance
function, we writed(p,X) := min{d(p,x) | x ∈ X}.
A polygonal region X ⊂ R

2 has a piecewise-linear
(finite number of lines) boundary. The points where
these straight-line segments intersect are thevertices
of the polygonal region. IfX is bounded,∂X is a
set of (weakly) simple polygons. For two setsX
andY , we denote their Minkowski sum byX ⊕Y :=
{x+y | x ∈ X ,y∈Y}. For anyc∈R

2,v∈R, we write
Dv(c) := {p ∈ R

2 | d(c, p) ≤ v} for the (closed)v-
disk aroundc, andDv := Dv(O) for the disk centered
at the origin. Ther-offset of a setX , offset(X ,r), is
the Minkowski sumX⊕Dr.

The (symmetric) Hausdorff distance of two closed
point setsX andY is H(X ,Y ) := max{max{d(x,Y ) |
x ∈ X},max{d(y,X) | y ∈ Y}}. We say that X is ε-
close to Y (and Y to X) if H(X ,Y ) ≤ ε, which can
also be expressed alternatively:

Proposition 1 For X ,Y closed,X is ε-close toY if
and only ifY ⊆ offset(X ,ε) andX ⊆ offset(Y,ε).

Decision algorithm From now, we fixr > 0, ε >

0, and a polygonal regionQ, and consider the follow-
ing question: Can we find a polygonal regionP such
that Q and ther-offset of P have Hausdorff-distance
at mostε? First of all, we can assume thatr > ε; oth-
erwise, we can chooseP := Q, because offset(Q,r)
andQ have Hausdorff-distance at mostε.

Definition 1 For r > 0, and X ⊂ R
2, the r-inset

of X is the set inset(X ,r) := offset(XC,r)C =
{

x ∈ R
2 | Dr(x)⊆ X

}

.

Algorithm 1 Is there any closed polygonal regionP
such that a givenQ is ε-close to offset(P,r)?

(1) Qε ← offset(Q,ε)
(2) Π← inset(Qε ,r)
(3) Q̃← offset(Π,r + ε)
(4) returnQ⊆ Q̃

We next prove that Algorithm 1 correctly decides
whetherQ is ε-close to somer-offset of a polygo-
nal region. A first observation is that for any polyg-
onal regionP, offset(P,r)⊆ Qε if and only if P⊆ Π.
This is an immediate consequence of the definition
of insets. This shows that for any offset(P,r) that
is ε-close toQ, P must be insideΠ. Moreover, it
shows that any choice ofP ⊆ Π already satisfies one
of Propositions 1’s inclusions. It is only left to check
whetherQ⊆ offset(offset(P,r),ε) = offset(P,r + ε).

Lemma 2 Q is ε-close tooffset(P,r) if and only if
P⊆Π andQ⊆ offset(P,r + ε).

To prove correctness of the algorithm, we have to
show thatQ ⊆ offset(Π,r + ε) already implies that
there also exists a polygonal regionP ⊆ Π with Q ⊆

offset(P,r+ε). Indeed,Π is not polygonal in general;
we have to study its shape closer to prove that we can
approximate it by a polygonal region, maintaining the
property that the offset remainsε-close toQ.

The shape of offsets and insets For a polyg-
onal regionQ, it is not hard to figure out the shape
of Qε = offset(Q,ε): It is a 2-manifold with bound-
ary that is bounded by straight-line segments and by
circular arcs, belonging to a circle of radiusε. It is
important to remark that all circular arcs areconvex:

Definition 2 Let X ⊂ R
2 be a 2-manifold with

boundary with some circular arcγ bounding it. Then,
γ is calledconcavewith respect toX , if any segment
connecting two distinct points onγ is not fully con-
tained inX . Otherwise, the arc is calledconvex.

We call X a convexly (resp.concavely) bounded
region with radiusr, if ∂X consists of finitely many
straight-line segments and convex (resp. concave) cir-
cular arcs that are all of radiusr, interlinked at the
verticesof the region.

Note that a convexly
bounded region (left) is
not necessarily convex.
The r-offset of a polygo-
nal regionP is a convexly bounded region with ra-
dius r. The heart of this section is a proof that the
same also holds ifP is concavely bounded (right) with
radius smaller thanr:

Theorem 3 Let P be a concavely bounded region
with radius r1, and let r2 > r1. Then, there is a
polygonal regionPL ⊆ P such thatoffset(P,r2) =
offset(PL,r2). In particular,offset(P,r2) is a convexly
bounded region with radiusr2.

Note that the correctness of Algorithm 1 already
follows by noticing thatQε is a convexly bounded re-
gion with radiusε, and we can apply Theorem 3 to all
constructed offsets, sinceε < r < r + ε:

Corollary 4 Algorithm 1 returns true if and only if
there exists a polygonal regionP such thatoffset(P,r)
is ε-close toQ.
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We now give a sketch
of the proof of Theo-
rem 3. W.l.o.g., we as-
sume that each concave
circular arc γ spans less
than half a circle. The
arc’s linear cap is the re-
gion enclosed byγ and
the two lines tangent to
the circle through the endpoints ofγ. The extended
linear cap is the region spanned by the two tangents
just mentioned and the two normals at the endpoints.
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We iteratively replace an arcγ of a concavely
bounded regionP′ (starting withP) by a polyline end-
ing in the endpoints ofγ, such that the polyline does
neither leaveP′ norγ ’s linear cap, and such that other
boundary parts ofP′ are not intersected. This yields a
concavely bounded regionP′′ with one arc less.

We show that in each iteration, ther2-offsets ofP′

andP′′ are the same. For that we consider any point
x′ ∈ P′ \P′′, in the region that is cut off byP′′, and
considery = x′+v′ for an arbitraryv′ ∈Dr2. We show
that in each case,y can also be written byy = x′′+v′′,
with x′′ ∈ P′′, andv′′ ∈ Dr2.

The proof then proceeds by studying several cases
based on the location of the pointy with respect to the
extended linear cap ofγ; seey1,y2,y3 in the previous
figure and [2] for full details of the proof.

Theorem 5 Let P be concavely bounded with ra-
dius r1 havingn vertices, and assumer2 > r1. Then,
offset(P,r2) hasO(n) vertices and it can be computed
in O(n logn) time.

Proof. By Theorem 3, it suffices to consider a polyg-
onally boundedPL instead ofP; a trapezoidal decom-
position leads to aPL with O(n) vertices. The Voronoi
diagram ofPL’s vertices and (open) edges can be com-
puted inO(n logn) and has sizeO(n) [6]. The r2-
offset boundary inside a Voronoi cell is formed by the
intersection of the cell with a parallel line (for the cell
of an edge ofPL) or a circle (for the cell of a vertex).
Because the offset boundary intersects any Voronoi
edge only a constant number of times, the number of
vertices (and edges) of the offset is proportional to the
number of Voronoi edges. The offset is constructed
by sweeping the collection of all the boundary curves
from all Voronoi cells, which runs inO(n logn) be-
cause of the absence of interior intersections. �

The running time of Algorithm 1 follows by apply-
ing Theorem 5 for the first three steps. The fourth
step is easily seen to run inO(n logn) time as well.

3 Convex Polygons

Lemma 6 If Q is a convex polygonal region, thenΠ,
as computed by Algorithm 1, is also a convex polyg-
onal region, and it can be computed inO(n) time.

Proof. Q is the intersection of the halfplanes
bounded by lines that support the polygon edges. Ob-
serve thatΠ can be constructed by shifting each such
line by r− ε inside the polygon, which shows thatΠ
is convex. For the time complexity, we compute the
lower (upper) envelope for the lines supporting upper
(lower) edges ofQ by dualizing the lines supporting
the edges to points and computing their upper (lower)
hull by Graham’s scan. We exploit the fact that we
already know thex-order of these points. �

The next step of Algorithm 1 would be to check
Q ⊆ offset(Π,r + ε). Let q1, . . . ,qn be the ver-
tices of Q (in counterclockwise order) and define
Ki = Dr+ε(qi). The following lemma together with
Lemma 6 implies that Algorithm 2 runs in linear time.

Lemma 7 Q is ε-close tooffset(Π,r) if and only if Π
intersects each of theKi.

Algorithm 2 Is there any closed polygonal regionP
such that a givenconvex Q is ε-close to offset(P,r)?

(1) Qε ← offset(Q,ε)
(2) Π← inset(Qε ,r)
(3) return

∧n
i=1 (Ki∩Π 6= /0)

Reducing the number of vertices We assume
in the remainder of this section that offset(Π,r) is ε-
close toQ. Since our goal is to find a possibly simple
approximation ofQ, we look for aP ⊆ Π whose off-
set isε-close toQ, but with fewer vertices thanΠ.
Any suchP intersects each of the convex (convexly
bounded) regionsκi := Ki ∩Π, i = 1, . . . ,n, of radius
r + ε, which we calleyelets from now on. The con-
verse is also true: Anyconvex polygonal manifold
P ⊆ Π that intersects all eyeletsκ1, . . . ,κn has anr-
offset that isε-close toQ.

Proposition 8 If offset(P,r) is ε-close toQ, andP⊆
P′ ⊆Π, thenoffset(P′,r) is ε-close toQ.

We call a polygonal regionP (vertex-)minimal, if
its r-offset isε-close toQ, and there exists no other
such region with fewer vertices. Necessarily, a min-
imal P must be convex – otherwise, its convex hull
CH(P) has fewer vertices and it can be seen by Propo-
sition 8 that offset(CH(P),r) is alsoε-close toQ.

Lemma 9 There exists a minimal polygonal region
P⊆Π whose vertices are all on∂Π.

pi+1

pi
p′i

Proof. We pull each ver-
tex pi 6∈ ∂Π in direction of
the ray emanating frompi−1

towards pi until it intersects
∂Π in the point p′i (drag-
ging pi’s incident edges along
with it); see the enclosed illustration. For
P′ = (p1, . . . , pi−1, p′i, pi+1, . . . , pm): P ⊆ P′ ⊆ Π,
offset(P′,r) is ε-close toQ by Proposition 8. �

Thus, we can restrict our search to polygons with
vertices on∂Π. We call a polygonal regionP good,
if P⊆Π, all vertices ofP lie on ∂Π, andP intersects
each eyeletκ1, . . . ,κn.

Definition 3 For two pointsp1, p2 ∈ ∂Π, we denote
by [p1, p2] ⊂ ∂Π all points that are met when travel-
ling along∂Π from p1 to p2 in counterclockwise or-
der. Likewise, we define half-open and open intervals
[p1, p2), (p1, p2], (p1, p2).



26th European Workshop on Computational Geometry, 2010

q3

q1

q2

v1

κ2

κ1

κ3

w3

w2

p

hp

w1

v2

p′

p′′

v3

Let κi = Ki ∩Π be qi’s eye-
let as before. We consider
κi ∩ ∂Π. The portion of that
intersection set that is visi-
ble from qi (consideringΠ as
an obstacle) defines an inter-
val [vi,wi] ⊂ ∂Π. We call
vi the spot of the eyeletκi.
Finally, for p1, p2 ∈ ∂Π, we
say that the segmentp1p2 is
good, if for all spots vi ∈
(p1, p2), p1p2 intersects the
corresponding eyeletκi. The
figure on the right illustrates these definitions: The
segmentpp′ is good, whereaspp′′ is not good, be-
causev2 ∈ (p, p′′), but it does not intersectκ2.

Theorem 10 Let P be a convex polygonal region
with all its vertices on∂Π. Then,P is good if and
only if all its bounding edges are good.

Proof. Any spotvi of an eyeletκi either corresponds
to some vertexpℓ of P, or lies inside some interval
(pℓ, pℓ+1). Sincepℓ pℓ+1 is good, it intersectsκi. For
the converse, assume thatpℓ pℓ+1 is not good, which
encloses with the interval(pℓ, pℓ+1) a polygonal re-
gion R ⊆ Π \P. Hence, there is a spotvi ∈ R such
that pℓ pℓ+1 does not intersect the eyeletκi. It follows
that the entireκi is insideR (see the above illustration,
consideringpp′′ andκ2). Thus,P∩κi = /0, and soP
cannot be good. �

For p ∈ ∂Π, we define itshorizon hp ∈ ∂Π as the
maximal point (when travelling fromp in counter-
clockwise order on∂Π) such that the segmentphp

is good. An example is depicted in the previous fig-
ure: The segmentphp is tangential toκ2, so if going
any further thanhp from p, the segment would miss
κ2 and thus become non-good.

Lemma 11 Let P be a good polygonal region, and
u ∈ ∂Π. Then,P has a vertexp ∈ (u,hu].

Proof. Assume thatP has no such vertex, and let
p1, . . . , pℓ be its vertices on∂Π. Let p j be the ver-
tex of P such thatu ∈ (p j, p j+1). Then, alsohu ∈
(p j, p j+1), because otherwise,p j+1 ∈ (u,hu]. Since
P is good, the segmentp j p j+1 is good, too. It is not
hard to see that, consequently, bothp ju andup j+1 are
good. However, the latter contradicts the maximality
of the horizonhu. �

For an arbitrary initial vertexs ∈ ∂Π, we finally
specify a polygonal regionPs by iteratively defining
its vertices. Setp1 := s. For anyj≥ 1, if the segment
p js, which would closePs, is good, stop. Otherwise,
set p j+1 := hp j . Informally, we always jump to the
next horizon until we can reachs again without miss-
ing any of the eyelets. By construction, all segments
of Ps are good, soPs itself is good.

Theorem 12 Let P be a minimal polygonal region
for Q, havingOPT vertices. Then, for anys ∈ ∂Π,
Ps has at mostOPT+1 vertices

Proof. We first prove thatPs has the minimal num-
ber of vertices among all good polygonal regions that
haves as a vertex. Lets := p1, . . . , pm be the vertices
of Ps. There arem−1 segments of the formpℓhpℓ

. By
Lemma 11, any good polygonal region has a vertex
inside each of the intervals(pℓ,hpℓ

]. Together with
the vertex ats, this yields at leastm vertices, thusPs

is indeed minimal among these polygonal regions.
Next, consider any minimal polygonal regionP⋆.

We can assume that all its vertices are on∂Π by
Lemma 9. If s is not a vertex ofP⋆, we add it to
the vertex set and obtain a polygonal regionP′ with
at most OPT+1 vertices that hass as a vertex.Ps has
at most as many vertices asP′, som≤OPT+1. �

As each visit of an eyelet requires constant time,
the construction of a horizon is proportional to the
number of visited eyelets, and there are only linearly
many eyelets, we can state:

Theorem 13 For an arbitrary initial vertexs, Ps can
be computed inO(n) time.

Additional Material In the extended version of
this paper [2] we also present a new approximation of
a polygonal shape’sr-offset by line segments and cir-
cular arcs aiming at an accurate and compact descrip-
tion. Its vertices are rational and the Hausdorff dis-
tance to the exact offset is at most some prescribedε.
In addition we discuss there some immediate exten-
sions of the algorithms presented here.
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