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Abstract

An algorithm is presented to compute the exact ar-
rangement induced by arbitrary algebraic surfaces on
a parametrized ring Dupin cyclide, including the spe-
cial case of the torus. The intersection of an algebraic
surface of degree n with a reference cyclide is repre-
sented as a real algebraic curve of bi-degree (2n, 2n)
in the cyclide’s two-dimensional parameter space. We
use Eigenwillig and Kerber [11] to compute a planar
arrangement of such curves and extend their approach
to obtain more asymptotic information about curves
approaching the boundary of the cyclide’s parameter
space. With that, we can base our implementation on
a general software framework by Berberich et. al. [3]
to construct the arrangement on the cyclide. Our con-
tribution provides the demanded techniques to model
the special topology of the reference surface of genus
one. Our experiments show no combinatorial over-
head of the framework, i.e., the overall performance
is strongly coupled to the efficiency of the implemen-
tation for arrangements of algebraic plane curves.

1 Introduction

Consider a surface S in R3 and a set C of curves on
S. The arrangement A(C) is the subdivision of S into
cells of dimensions zero, one, and two with respect
to C. The cells are called vertices, edges, and faces,
respectively.

Berberich et al. [3] introduced a general software
framework for sweeping a set of curves on a para-
metric surface S. We present an implementation for
the case that S is a ring Dupin cyclide and the ar-
rangement on it is induced by intersections of S with
algebraic surfaces of arbitrary degree. Our approach
always computes the exact arrangement, undistorted
by rounding errors, of the given input. It also handles
all degeneracies like singular points or intersections
with high multiplicity.

Dupin Cyclides have been introduced by Dupin [9]
as surfaces whose lines of curvature are all circular.
One can think of a (ring) Dupin cyclide as a torus
with variable tube radius. Dupin cyclides are the
generalization of the “natural” geometric surfaces like
planes, cylinders, cones, spheres and tori, what makes
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them useful for applications in solid modeling; com-
pare, e.g., [6], [15], [16], [8].

Our algorithm is this: we follow the framework
of [3], and perform a sweep-line algorithm [2] on the
intersection curves of the Dupin cyclide with the sur-
faces in the parameter space. The primitives of the
sweep are specified by a model of the GeometryTraits
concept which is given by the recent work of Eigen-
willig and Kerber [11]. With that model, one can
sweep over algebraic plane curves of arbitrary degree.
The applied sweep line algorithm interacts with a
model of the TopologyTraits concept; this model con-
trols the creation and manipulation of arrangement
features at the boundary of the parameter space, i.e.,
identifications in our case. We implemented such a
model for the case of a Dupin cyclide. The arrange-
ment on the Dupin cyclide is represented by a doubly-
connected edge-list (Dcel), where points are attached
to vertices and curves are stored with edges. Our
implementation in C++ deeply benefits from generic
programming capabilities, i.e., we are using Cgal’s1

class template Arrangement on surface 2 that ex-
pects proper models of the GeometryTraits and the
TopologyTraits concept.

Related work: Arrangements in the plane have been
well studied during the past decades, and also quite
a number of exact and efficient implementations ap-
peared [13]. Two-dimensional arrangements on sur-
faces, especially with exact implementation, became
more popular recently, e.g., arrangements of great
arcs on a sphere [3], arrangements of small arcs on
a sphere by Cazals and Loriot [7]. The most com-
plicated surfaces considered so far are arrangements
induced by quadrics intersecting a reference quadric.
Three approaches exist. The first actually computes
more, namely the adjacency relationship between in-
tersection of a set of quadrics [10]. The other two
project the intersection curves onto the xy-plane. The
original work [4] maintains two arrangements, one for
the lower part of the reference quadric and one for
its upper part; a connection between them is missing.
Instead, [3] introduces a small extension of the projec-
tion to simulate the parameter space of the reference
quadric. This way, it benefits from the framework
that we also apply for ring cyclides. Instead of such
a simulation, the sweep on a cyclide is explicitly per-
formed in parameter space.

A more detailed version of this paper appears in [5].

1See the project homepage: http://www.cgal.org
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2 Dupin cyclides

The maybe most intuitive way of constructing a
Dupin cyclide (called cyclide for brevity) goes back
to Maxwell, we cite it from Boehm [6]:

Let a sufficiently long string be fastened
at one end to one focus f of an ellipse, let
the string be kept always tight while sliding
smoothly over the ellipse, then the other end
z sweeps out the whole surface of a cyclide Z.

Note that choosing a circle in this construction yields
a torus. We assume that the cyclide is in standard
position and orientation, i.e., the chosen base ellipse
is given by (x/a)2 + (y/b)2 = 1, a ≥ b > 0.

We define c :=
√
a2 − b2, and µ as the length of the

string minus a. We assume that c < µ ≤ a which
means that the cyclide has no self-intersections (it is
a ring cyclide).

Figure 2.1: (Left) Cyclide with a = 1, b = 0.99, µ =
0.5, (Right) Cyclide with a=13, b = 12, µ = 9

The parameterization of the cyclide [14] is given by

(
φ
ψ

)
7→




µ(c−a cosφ cosψ)+b2 cosφ
a−c cosφ cosψ
b(a−µ cosψ) sinφ
a−c cosφ cosψ
b(c cosφ−µ) sinψ
a−c cosφ cosψ




with φ, ψ ∈ [−π, π]. For φ = π and φ = −π, this
yields the tube circle (x + a)2 + z2 = (µ + c)2 in the
plane y = 0, for ψ = π and ψ = −π, it yields the
outer circle (x + c)2 + y2 = (a + µ)2 in the plane
z = 0. The tube circle and the outer circle meet in
the pole p := (−µ− c− a, 0, 0).

To get a rational parameterization of the cyclide
without trigonometric functions, we use the identities

cos θ =
1− tan2 θ

2

1 + tan2 θ
2

sin θ =
2 tan θ

2

1 + tan2 θ
2

,

and set u := tan φ
2 , v := tan ψ

2 . We write the obtained
parametrization in homogeneous coordinates, i.e., the
common denominator is written as a separate vari-
able: Define u+ := 1 + u2, u− := 1− u2, v+ := 1 + v2

and v− := 1− v2 then P̂ : R2 → R4 is given by

(
u
v

)
7→




µ(cu+v+ − au−v−) + b2u−v+
2u(av+ − µv−)b
2v(cu− − µu+)b
au+v+ − cu−v−




The image of P̂ is the cyclide without the tube cir-
cle and the outer circle. Intuitively, the cyclide is cut
along the outer circle and the tube circle, and “rolled
out” to the plane. Therefore, we call the outer circle
and the tube circle the cut circles. Paths on the cy-
clide crossing the cut circles correspond to paths in the
parameter space crossing the infinite boundary. More
precisely, an intersection with the tube (outer) circle
causes a horizontally (vertically) asymptotic path in
the parameter space. Paths passing through the cy-
clide’s pole correspond to paths converging to one of
the “corners” (±∞,±∞) in parameter space.

3 Our implementation

We use the software framework implemented in
Cgal’s new Arrangement on surface 2 package [3].
It provides an arrangement class that can be used
to construct, maintain, overlay, and query two-
dimensional arrangements on a parametric surface.
It conceptually performs a sweep in the parameter
space, i.e., a line u = u0 is swept to the right through
the parameter space.

Special diligence is needed for such curves at bound-
aries of the parameter space. The parameter space of
the cyclide contains so called identifications of both
pairs of opposite boundaries, i.e., for its parameteri-
zation PS , it holds ∀v ∈ V, PS(umin, v) = PS(umax, v)
and ∀u ∈ U,PS(u, vmin) = PS(u, vmax), so for each
point on the outer- and the tube-circle there exist
two pre-images (four for the pole) in parameter space.
This leads to problems for the sweep, since the event
queue of the sweep line algorithms needs a unique
order, and since only one Dcel-vertex should be con-
structed for each multiple pre-image. The modularity
of Cgal’s new Arrangement on surface 2 package
tackles these problems. To instantiate the package’s
main class, models of two concepts must be provided
as template parameter.

First, the GeometryTraits fullfills the Cgal’s Ar-
rangementTraits 2 concept. It defines the types
Curve 2, X monotone curve 2, and Point 2, and pro-
vides predicates and constructions on points and sub-
curves, e.g., lexicographic comparison of two points,
or the construction of all intersection of two x-
monotone curves.

Second, the TopologyTraits is responsible to deter-
mine the underlying Dcel-representation, to create
the empty representation and to construct and main-
tain Dcel-features related to the boundary of the pa-
rameter space.

We describe next our models for both concepts:
GeometryTraits: We aim to represent the curves

on the cyclide as algebraic curves in parameter space,
and to realize the geometric predicates by computa-
tions in the parameter space.

For a cyclide with homogeneous parametrization
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P̂ and a surface F with homogeneous equation F̂ ∈
Z[x, y, z, w], the cut curve in the parameter space is
implicitly defined by f := F̂ (P̂ (u, v)) ∈ Z[u, v]. The
resulting curve f has bidegree up to (2 · degF, 2 ·
degF ), hence we need a model of Cgal’s Arrange-
mentTraits 2 concept for algebraic curves in R2,
regardless of their degree.

Such a model has recently been provided by Eigen-
willig and Kerber [11] based on the observation that
all required operations emerge from the topological
and geometric analyses of single curves [12] and pairs
of them. No condition is imposed on the input, i.e.,
curves can have arbitrary degree, and contain degen-
eracies, like covertical intersections, vertical asymp-
totes and isolated points.

Figure 3.1: Cut-out of an arrangement in the param-
eter space of a cyclide, induced by 5 cubic surfaces

TopologyTraits: We provide a new Topology-
Traits class for the cyclide. To handle the identifica-
tions at boundaries, it maintains two sorted sequences
of Dcel-vertices to store the intersection of intersec-
tion curves with the cut circles. The position of such
intersections is determined by horizontal and verti-
cal asymptotes of curve-ends approaching infinity, the
boundary of the parameter space.

Whenever the arrangement detects a curve-end ap-
proaching a cut circle, it asks the topology traits
whether a Dcel-vertex is already stored for this po-
sition. If not, a new one is created and stored in the
proper sequence; if yes, that one is used and the iden-
tification interactively takes place.

The analysis of curves contains the information
about vertical asymptotes of curves (compare [12]),
but not about horizontal asymptotes. We also imple-
mented this step, with the following idea: there can be
only finitely many positions where horizontal asymp-
totes might appear, since they are roots of a leading
coefficient with respect to u. The curve-ends of arcs
towards u = ±∞ can be assigned to such asymptotes
by analysing the curve at some value u0 “far” on the
left or on the right.

Instance #S #V,#E,#F t t (2D)

ipl-1 10 119,190,71 0.14 0.14
ipl-1 20 384,682, 298 0.58 0.58
ipl-1 50 1837,3363,1526 2.14 2.00
ipl-2 10 358,575,217 1.07 1.25
ipl-2 20 1211,2147,937 3.14 3.04
ipl-3 10 542,847,305 4.84 4.62
ipl-3-6points 10 680,1092,412 32.43 31.17
ipl-3-2sing 10 694,1062,368 5.82 5.57
ipl-4 10 785,1204,419 50.42 49.97
ipl-4-6points 10 989,1529,540 461.74 450.54
ipl-4-2sing 10 933,1471,538 53.01 52.78

Table 1: Running times (in seconds) to construct ar-
rangements on S1 induced by algebraic surfaces

4 Results

We performed tests of our C++ implementation, ex-
ecuted on an AMD Dual-Core Opteron(tm) 8218
multi-processor Debian Etch platform, each core
equipped with 1 MB internal cache and clocked at
1 GHz. The total memory consists of 32 GB. As
compiler we used g++ in version 4.1.2 with flags -O2
-DNDEBUG. Two results were computed for each in-
stance, one that computes the arrangement using the
cyclidean topology (onSurface), the other is comput-
ing the two-dimensional arrangement of the induced
intersection curves in parameter space, i.e., with the
topology of an unbounded plane (Arrangements).
Our implementation allows to translate and rotate the
reference cyclide in space. For the experiments pre-
sented in this work, we use the torus S1 with a = 2,
b = 2, µ = 1, centered at the origin and the cyclide S2

with a = 13, b = 12, µ = 11, translated by a rational
vector and rotated by a rational matrix.

We interpolated surfaces of fixed degree by ran-
domly chosing points on a three-dimensional grid,
having no or some degeneracies wrt S1: the surfaces in
“6points” instances share at least 6 common points,
one of them is the pole of S1. The surfaces in the
“2sing” instances induce (at least) two singular inter-
sections. The running times are listed in Table 1 that
show good behavior of the implementation, even for
higher degree surfaces. Degeneracies with respect to
the reference surface result in higher running times
as the instance “6points” shows. But this effect al-
ready appears in parameter space, as the last col-
umn indicates. In general, it is remarkable that in
all tested instances, the spent time on the cyclides is
(almost) identical to the computation of the curves
in their parameter space. This let us conclude that
the cyclidean topology is as efficient as the one for
the unbounded plane and that the extra computation
of horizontal asymptotes seems to be a cheap task.
Most time is spent for geometric operations on alge-
braic curves. Thus, we infer that the chosen approach
strongly hinges on the efficiency of the underlying 2D-
implementation for arrangements of algebraic curves.
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Instances #S #V,#E,#F t

quadrics 10 428,646,219 1.59
degree-3 5 240,314,74 1.56
Overlay - 942,1508,566 1.91

degree-3 10 794,1218,424 6.25
degree-4 10 325,418,93 13.36
Overlay - 1623,2644,1021 13.83

degree-4 10 816,1188,372 50.86
degree-4 5 325,418,93 13.52
Overlay - 1581,2488,907 47.30

Table 2: Running times (in seconds) to construct ar-
rangements induced by algebraic surfaces of different
degree on S2, and to overlay them afterwards.

We also generated instances of random surfaces
with degree up to 4 intersecting S2, picked two of
them, computed their arrangement and also the over-
lay of these arrangements. Reading Table 2, one sees
that the overlay step is usually faster than the two ini-
tial constructions, as only a few new pairs of algebraic
curves have to be analyzed newly.

Finally, we remark, that we also can immedi-
ately use other techniques implemented for Cgal’s
Arrangement on surface 2, such as point location,
extending the Dcel by user data, and notifications.

5 Conclusion

Our work demonstrates the usefulness of generic pro-
gramming: the combination of the planar arrange-
ment algorithm for arbitrary curves with the software
framework for arrangement on surfaces yields an ar-
rangement algorithm for tori and Dupin cyclides al-
most immediately. New code was only written for the
computation of the parameterized intersection curves,
for the asymptotic behavior of infinite curve arcs, and
for the topology traits of the cyclide. Relying on al-
ready tested and optimized code reduces the imple-
mentation effort, and makes the algorithm more ro-
bust and more efficient. We are already working on
the adaptation of our traits classes with respect to
the next version of the framework that will support
geometric objects on identifications.

We also believe that the performance could be fur-
ther improved: the computed arrangements often
contain numerous vertically asymptotic arcs (com-
pare Figure 3.1). The strategy proposed in [12] to
shear non-regular curves and shearing back afterwards
therefore results in a change of coordinates for many
curves. A comparably efficient alternative approach
that avoids to shear might be more suitable for this
special subclass of curves.
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