
Exact Arrangements on Tori and Dupin Cyclides

Eric Berberich∗

Max-Planck-Institut für Informatik

Michael Kerber†

Max-Planck-Institut für Informatik

Abstract

An algorithm and implementation is presented to compute the
exact arrangement induced by arbitrary algebraic surfaces on a
parametrized ring Dupin cyclide. The family of Dupin cyclides
contains as a special case the torus. The intersection of an algebraic
surface of degree n with a reference cyclide is represented as a real
algebraic curve of bi-degree (2n, 2n) in the two-dimensional pa-
rameter space of the cyclide. We use Eigenwillig and Kerber: “Ex-
act and Efficient 2D-Arrangements of Arbitrary Algebraic Curves”,
SODA 2008, to compute a planar arrangement of such curves and
extend their approach to obtain more asymptotic information about
curves approaching the boundary of the cyclide’s parameter space.
With that, we can base our implementation on the general soft-
ware framework by Berberich et. al.: “Sweeping and Maintain-
ing Two-Dimensional Arrangements on Surfaces: A First Step”,
ESA 2007. Our contribution provides the demanded techniques to
model the special geometry of surfaces intersecting a cyclide and
the special topology of the reference surface of genus one. The
contained implementation is complete and does not assume generic
position. Our experiments show that the combinatorial overhead of
the framework does not harm the efficiency of the method. Our ex-
periments show that the overall performance is strongly coupled to
the efficiency of the implementation for arrangements of algebraic
plane curves.

CR Categories: F.2.2 [Theory of Computation]: Nonnu-
merical Algorithms and Problems—Geometrical problems and
computations; J.6 [Computer Applications]: Computer-aided
Engineering—Computer-aided design

Keywords: Dupin ring cyclide, torus, arrangements, surfaces,
generic programming, CGAL, exact geometric computation, ro-
bustness

1 Introduction

Consider a surface S in R3 and a set C of curves on S. The ar-
rangement A(C) is the subdivision of S into cells of dimensions
zero, one, and two with respect to C. The cells are called vertices,
edges, and faces, respectively.

Berberich et al. [2007b] introduced a general software frame-
work for sweeping a set of curves on a parametric surface S. We
present an implementation for the case that S is a ring Dupin cy-
clide and the arrangement on it is induced by intersections of S
with algebraic surfaces of arbitrary degree. Our approach follows
the exact geometric computation paradigm [Yap 2004]: it always
computes the exact arrangement, undistorted by rounding errors,
of the given input, and also handles all degeneracies like singular
points or intersections with high multiplicity.
Dupin Cyclides have been introduced by Dupin [1822] as sur-

∗e-mail: eric@mpi-inf.mpg.de
†e-mail: mkerber@mpi-inf.mpg.de

c©ACM, 2008. This is the authors’ version of the work. It is posted
here by permission of ACM for your personal use. Not for redistri-
bution. The definitive version was published in the Proceedings of
the ACM Solid and Physical Modelling Symposium (SPM 2008)
http://doi.acm.org/10.1145/1364901.1364912

faces whose lines of curvature are all circular. One can think of a
(ring) Dupin cyclide as a torus with variable tube radius. Dupin cy-
clides are the generalization of the “natural” geometric surfaces like
planes, cylinders, cones, spheres and tori, what makes them useful
for applications in solid modeling; compare [Chandru et al. 1989;
Pratt 1990; Boehm 1990; Johnstone 1993; Pratt 1995].
Our algorithm is this: we follow the framework of [Berberich

et al. 2007b], and perform a sweep-line algorithm [Bentley and
Ottmann 1979] on the intersection curves of the Dupin cyclide with
the surfaces in the parameter space of the cyclide. The primitives of
the sweep are specified by an instance of the GEOMETRYTRAITS
template parameter which is given by the recent work of Eigen-
willig and Kerber and Wolpert [Eigenwillig et al. 2007; Eigenwillig
and Kerber 2008]. With that model, one can sweep over algebraic
plane curves of arbitrary degree. During the sweep constructs the
arrangement, it interacts with a model of the TOPOLOGYTRAITS
concept; this model controls the creation and manipulation of ar-
rangement features at the boundary of the parameter space, i.e.,
identifications in our case. We implemented such a model for the
case of a Dupin cyclide. The arrangement on the Dupin cyclide is
represented by a doubly-connected edge-list (DCEL), where points
are attached to vertices and curves are stored with edges.
Our approach is, in principle, not restricted to Dupin cyclides.

It is applicable to any surface that provides a rational parameter-
ization, as long as a suitable type for the TOPOLOGYTRAITS pa-
rameter can be provided. However, in practice, the degrees of the
algebraic curves in the parameter space constitute a limit of practi-
cal usability of the approach.
Our implementation in C++ deeply benefits from generic pro-

gramming capabilities, i.e., the actual behavior of a class is deter-
mined at compile-time by properly instantiating it with a model
fulfilling a certain concept. In our case, we are using CGAL’s1

class template Arrangement on surface 2 that expects in-
stantiations for its template parameters GEOMETRYTRAITS and the
TOPOLOGYTRAITS. For both we provide proper types.
Related work: Arrangements in the plane have been well stud-

ied during the past decades [Halperin 2004], and also quite a num-
ber of exact and efficient implementations appeared [Fogel et al.
2006]. Two-dimensional arrangements on surfaces, especially with
exact implementation, became more popular recently. They form
a fundamental substructure of three-dimensional arrangements and
thus can also serve as a basis to construct them. Simpler exam-
ples are arrangements of geodesic arcs on a sphere [Berberich et al.
2007b], and arrangements of circular arcs on a sphere by [Cazals
and Loriot 2007]. More complicated surfaces considered so far
are arrangements induced by quadrics intersecting a reference
quadric. Three approaches exist. The first actually computes more,
namely the adjacency relationship between intersection of a set of
quadrics [Dupont et al. 2007]. The other two project the intersec-
tion curves onto the xy-plane. The original work [Berberich et al.
2005a] maintains two arrangements, one for the lower part of the
reference quadrics and one for its upper part; a connection between
these two is missing. Instead, [Berberich et al. 2007b] introduces
a small extension of the projection to simulate the parameter space
of the reference quadric. This way, it benefits from the same frame-
work that we are also applying for ring cyclides. In contrast to that

1
See the project homepage: http://www.cgal.org

work, our contribution does not simulate the parameter space. The
sweep is explicitly performed in parameter space. They have in
common to add knowledge about what happens on the boundary.
But they differ in how to do it.
Outline: We start by introducing main properties of Dupin cy-

clides in Section 2, in particular how they are parameterized by ra-
tional functions. Then, we show details of our implementation: in
Section 3, we present the high-level structure, and refine the treat-
ment of the GEOMETRYTRAITS in Section 4. Section 5 deals with
the details of the TOPOLOGYTRAITS parameter, and shows how
cases not yet covered by the software framework could also be han-
dled. Finally, we report on our experiments in Section 6.

2 Dupin cyclides

Dupin introduced cyclides as surfaces whose lines of curvature are
all circles [Dupin 1822]. Later, the term “cyclide” has been used for
quartic surfaces with the circle at infinity as double curve [Forsyth
1912]; Dupin’s cyclides have been calledDupin cyclides instead. In
this work, we only consider Dupin cyclides and use the term cyclide
according to Dupin’s definition for shorter notation. Most of the
material in this section appears more detailed in [Bühler 1995, § 1].
The maybe most intuitive way of constructing a (Dupin) cyclide

goes back to Maxwell, we cite it from Boehm [1990]:

Let a sufficiently long string be fastened at one end
to one focus f of an ellipse, let the string be kept always
tight while sliding smoothly over the ellipse, then the
other end z sweeps out the whole surface of a cyclide Z.

Note that choosing a circle in this construction yields a torus. We
will assume that Dupin cyclide is in standard position and orienta-
tion, i.e., the chosen base ellipse is defined by

(x/a)2 + (y/b)2 = 1, a ≥ b > 0.

The cyclide is defined uniquely by a, b, and a parameter µ that is
the length of the string minus a. However, the cyclide can have
self-intersections. We define c =

√
a2 − b2, which is the distance

between the focus and the center of the ellipse. If c < µ ≤ a, we
get a ring cyclide which is a surface without self-intersections. In
other cases we either get a so-called horned cyclide (for 0 < µ ≤
c), or a spindle cyclide (for µ > a), compare [Bez 2007]. We can
only handle ring cyclides in our algorithm, so we always assume
that c < µ ≤ a is satisfied. Figure 2.1 shows two examples.

Figure 2.1: (Left) Cyclide with a = 1, b = 0.99, µ = 0.5, (Right)
Cyclide with a=13, b = 12, µ = 9

A parameterization of the cyclide goes back to Forsyth [1912].
He also gave the following two alternatives for an implicit equation
of the cyclide:

(x2 + y2 + z2 − µ2 + b2)2 = 4(ax− cµ)2 + 4b2y2

(x2 + y2 + z2 − µ2 − b2)2 = 4(cx− aµ)2 − 4b2z2

With these equations, it is easy to prove [Johnstone 1993] that the
intersection of the cyclide with the plane y = 0 consists of the two
circles:

(x+ a)2 + z2 = (µ+ c)2 (2.1)

(x− a)2 + z2 = (µ− c)2, (2.2)

and the intersection with z = 0 are the two circles

(x+ c)2 + y2 = (a+ µ)2 (2.3)

(x− c)2 + y2 = (a− µ)2. (2.4)

In our case of a ring cyclide, we always have that the interiors
of (2.1) and (2.2) are disjoint, and that the circle (2.4) is contained
in the interior of (2.3).
The parameterization of the cyclide is given by

„

φ
ψ

«

7→

0

B

@

µ(c−a cosφ cosψ)+b2 cos φ
a−c cos φ cosψ
b(a−µ cosψ) sinφ
a−c cos φ cosψ
b(c cosφ−µ) sinψ
a−c cos φ cosψ

1

C

A

with φ, ψ ∈ [−π, π]. We investigate which portion of the cyclide
is parameterized at the boundaries of the parameter space:

Lemma 2.1. If φ = π or (φ = −π) is fixed, the parameterization
above yields the circle (x + a)2 + z2 = (µ + c)2. If ψ = π (or
ψ = −π) is fixed, it yields the circle (x+ c)2 + y2 = (a+µ)2. We
call these circles tube circle and outer circle, respectively.

Proof. Fix φ = π. This yields the parameterization

ψ 7→

0

B

@

µ(c+a cosψ)−b2

a+c cosψ

0
−b(c+µ) sinψ
a+ccosψ

1

C

A

Since the denominator does not vanish, this parameterizes a closed
path in the plane y = 0, so it must be one of the circles (2.1) or (2.2)
By setting ψ = π, we get the point (−µ − c − a, 0, 0), so it must
be circle (2.1). The same argument can be used for ψ = π.

The tube circle and the outer circle meet in the point p :=
(−µ− c − a, 0, 0). We call this point the pole of the cyclide. Our
application needs a rational parameterization of the cyclide with-
out trigonometric functions. We use the standard trick to get rid of
these functions (compare [Gallier 2001]): Using the identities

cos θ =
1 − tan2 θ

2

1 + tan2 θ
2

sin θ =
2 tan θ

2

1 + tan2 θ
2

,

we set u := tan φ

2
, v := tan ψ

2
. This yields

P : R2 → R3,

„

u
v

«

7→
0

B

B

@

µ(c(1+u2)(1+v2)−a(1−v2)(1−u2))+b2(1−u2)(1+v2)

a(1+u2)(1+v2)−c(1−u2)(1−v2)
2u(a(1+v2)−µ(1−v2))b

a(1+u2)(1+v2)−c(1−u2)(1−v2)
2v(c(1−u2)−µ(1+u2))b

a(1+u2)(1+v2)−c(1−u2)(1−v2)

1

C

C

A

The image of P is the cyclide without the tube circle and the
outer circle. By setting φ = π (or ψ = π) and applying the same
trick, we also obtain rational parameterizations of the tube circle (of
the outer circle). Of course, we also get them by taking the limit of
P when u→ ∞ (v → ∞).
Intuitively, this parameterization cuts the cyclide along the outer

circle and the tube circle, and “rolls out” the cyclide to the plane.

Therefore, we call the outer circle and the tube circle the cut circles
of the cyclide.
We also use the homogeneous parameterization of the cyclide,

where the denominator is written as a separate variable. Define
u+ := 1 + u2, u− := 1 − u2, v+ := 1 + v2 and v− := 1 − v2:

P̂ : R2 → R4,

„

u
v

«

7→

0

B

@

µ(cu+v+ − au−v−) + b2u−v+
2u(av+ − µv−)b
2v(cu− − µu+)b
au+v+ − cu−v−

1

C

A

Here are the homogeneous parameterization for the tube circle

P̂ T : R → R4, v 7→

0

B

@

µ(cv+ + av−) − b2v+
0

−2v(c+ µ)b
av+ + cv−

1

C

A

and the outer circle

P̂O : R→ R4, u 7→

0

B

@

µ(cu+ + au−) + b2u−

2u(a+ µ)b
0

au+ + cu−

1

C

A
.

We will also use the following homogeneous representation of the
pole. Note that p̂ indeed represents p, since b2 = a2 − c2:

p̂ :=

0

B

@

−µ(a− c) − b2

0
0

a− c

1

C

A

3 Our implementation

We use the software framework presented by
Berberich et. al. [2007b] as part of CGAL’s new
Arrangement on surface 2 package. It provides an
arrangement class that can be used to construct, maintain, overlay,
and query two-dimensional arrangements on a parametric surface.
It conceptually performs a sweep in the parameter space, i.e., a
line u = u0 is swept to the right through the parameter space. The
actual sweep-“line” is the image of u = u0 on the surface S under
some parametrization PS(u, v) = (x(u, v), y(u, v), z(u, v)). The
correct intuition for a cyclide is to sweep with a circle of variable
radius along the tube of the cyclide. Observe that curves in our
chosen parameter space can also approach infinity, i.e., the ones
that intersect cut circles of the cyclide.
Special diligence is needed for such curves at boundaries of

the parameter space. The parameter space of the cyclide con-
tains so called identifications of both pairs of opposite bound-
aries. More precisely, ∀v ∈ V, PS(umin, v) = PS(umax, v) and
∀u ∈ U,PS(u, vmin) = PS(u, vmax), so for each point on the
outer- and the tube-circle there exist two pre-images (four for the
pole) in parameter space, which leads to two problems for the
sweep.

(1) The event queue of the sweep line algorithms needs a unique
order.

(2) For the multiple pre-images of a point only one DCEL-vertex
should be constructed.

CGAL’s new Arrangement on surface 2 package tackles
these problems by modularity. To instantiate the package’s main
class, models of two concepts must be provided as template param-
eter.

GEOMETRYTRAITS: A proper instantiation for this param-
eter fulfills CGAL’s ARRANGEMENTTRAITS 2 concept [Wein
et al. 2007]. The concept defines the types Curve 2,
X monotone curve 2, and Point 2 to model has to provide,
and also some operations on them: Curves are split into x-
monotone subcurves, points can be compared lexicographically,
and the intersections of x-monotone curves are computed. The
collection is operations enables a generic sweep line algorithm to
compute the arrangement induced by a given set of curves. The
open question is: which kind of curves do we have to handle on the
cyclide, i.e., which model must be used?
We aim to represent the curves on the cyclide as algebraic curves

in the two-dimensional parameter space, and compute the arrange-
ment of these plane curves. Section 4 introduces our type for the
GEOMETRYTRAITS parameter and focusses on pecularities when
using it “on” the cyclide.
TOPOLOGYTRAITS: Originally, the arrangement package itself

was responsible to construct and maintain all DCEL-features. This
has changed with its new version, but only for features belonging
to the boundary of a parameter space. For such objects, the new ar-
rangement class interacts with the given model of the TOPOLOGY-
TRAITS concept. This instance is responsible to determine the un-
derlying DCEL-representation, to create the empty representation (a
bounded face for the cyclide) and to implement identifications and
contractions (another kind of a special boundary). It is also the re-
sponsibility of the TOPOLOGYTRAITS instantiation to support the
decisions whether to construct new faces or to create holes. We dis-
cover these and more details of our TOPOLOGYTRAITS model in
Section 5.

4 Arrangements of Algebraic Plane Curves

We aim to represent the curves on the cyclide as algebraic curves
in parameter space, and compute the arrangement of these plane
curves. Let P denote the parameterization of the cyclide. Consider
a surface of degree n, implicitly defined by F ∈ Z[x, y, z], and let

F̂ denote its homogenization.

Lemma 4.1. The vanishing set of f := F̂ (P̂ (u, v)) ∈ Z[u, v]
parameterizes the intersection points of F with the cyclide away
from the cut circles.

Proof. By definition, the vanishing set of F (P (u, v)) in R2 defines
the intersection curve of F and P away from the cut circles. On the

other hand, F (P (u, v)) = 0 if and only if f = F̂ (P̂ (u, v)) =
0.

In this way, we obtain intersection curves f1, . . . , fn in the pa-
rameter space for the intersections of the cyclide with the surfaces
F1, . . . , Fn. Our approach is to work directly in parameter space
with the curves fi, although they are of quite high degree (bide-
gree up to (2 · degFi, 2 · degFi)).

2 Therefore, we need a model of
CGAL’s ARRANGEMENTTRAITS 2 concept for algebraic curves inR2, regardless of their degree.
Such a model has recently been provided by Eigenwillig

and Kerber [Eigenwillig and Kerber 2008] based on the ob-
servation [Berberich et al. 2005b] that all required operations
emerge from the topological and geometric analyses of single
curves [Eigenwillig et al. 2007] and pairs of them. Combined
with CGAL’s Arrangement 2 class, an implementation of the
the sweep-line paradigm [Bentley and Ottmann 1979], it consti-
tutes a robust implementation to compute arrangements of algebraic

2A different parameterization of the cyclide might lead to curves fi of
smaller (bi)-degree, We are neither aware of such a better parameterization,

nor of a result that proves optimality of the chosen P̂ . We remark that our

implementation of the traits classes is based on P̂ and probably would not

work with other parameterizations without modifications.

Figure 4.1: Cut-out of an arrangement in the parameter space of a
cyclide, induced by 5 intersecting surfaces of degree 3

curves. No condition is imposed on the input, i.e., curves can have
arbitrary degree, and contain degeneracies, like covertical intersec-
tions, vertical asymptotes and isolated points.
The main source of efficiency of that model consists in avoiding

expensive symbolic computations as much as possible. Instead, it
applies approximate methods for the analysis, without sacrificing
the exactness of the overall result. Its main tool for this approxi-
mate computations is the Bitstream Descartes method [Eigenwillig
2008; Eigenwillig et al. 2005], an adaptive-precision root solver
for univariate polynomials, and an extension for the case of non-
square-free polynomials (m-k-Bitstream-Descartes method [Eigen-
willig et al. 2007]). For symbolic computations in the algorithm,
the (signed) subresultant sequence [Basu et al. 2006, §4] is used; it
is the computation of this sequence which mainly limits the usage
of the arrangement algorithm for higher degrees.
We point out that the algorithm presents the arrangement with

respect to the original coordinate system, without imposing any
generic condition on the input curves. For the analysis of curve
and curve pairs, a linear change of coordinates might be applied
if curves have vertical asymptotes or covertical critical points, but
a subsequent backshear step translates the geometric information
back to the original coordinate system.
Both the curve analysis and the curve pair analysis have

been implemented in the ALCIX library which is part of EX-
ACUS.3 We also provide a model for CGAL’s upcoming AL-
GEBRAICKERNELWITHANALYSIS 2 concept that can be used
to instantiate CGAL’s Curved kernel via analysis 2, that
will also be part in a future release. Given the analy-
sis of curves and pairs of them, this generic implementa-
tion provides the geometric primitives required for CGAL’s
Arrangement on surface 2 package, e.g., to run the sweep-
line algorithm. The Curved kernel via analysis 2 imple-
ments the ideas shortly presented in [Berberich et al. 2005b] in
CGAL.
To solve problem (1) of Section 3, the framework of [Berberich

et al. 2007b] relies on a clever combination of simple comparison
functors demanded from the proper model of CGAL’s ARRANGE-
MENTTRAITS 2 concept. The main functor implements the lexi-
cographic comparison of points that are not lying on the boundary
of two-dimensional parameter space. In addition, we must provide
functors to compare curve-ends approaching boundaries of the pa-
rameter space, i.e., we are asked for the horizontal or vertical align-
ment of two curve-ends infinitesimally away from the boundary.
Their combination defines the lexicographic order of sweep-line

3
See the project homepage: http://www.mpi-inf.mpg.de/EXACUS

events (i.e., “curve-ends approaching a cut circle” and “points not
lying on a cut circle”) on the cyclide. As we symbolically removed
the cut circles from the sweep, the order of curve-ends approaching
a cut circle is encoded by the order of the corresponding curve-ends
in parameter space approaching infinity. Thus, we only re-interpret
(and redirect) functors comparing curve-ends approaching infinity
in parameter space as (to) comparison functors for curve-ends ap-
proaching a cut circle.

5 Handling the identifications of the cyclide

Remember that the parameter space of the cyclide contains two
identifications, one for each cut circle of the cyclide. Our solution
to problem (2) of Section 3 consists of a model of the TOPOLOGY-
TRAITS concepts that maintains two sorted sequences of DCEL-
vertices to implement these identifications. The sequences are
sorted using u- and v-coordinates, and thus we call them u- and v-
sequence, respectively. The coordinates are given by the horizontal
and vertical asymptotes of the introduced intersection curves in pa-
rameter space. Section 5.1 focuses on how to obtain these values,
especially for horizontal asymptotes. Whenever the arrangement
detects a curve-end approaching a cut circle, it asks the topology
traits whether a DCEL-vertex is already stored. If not, a new one is
created and stored in the proper sequence; if yes, that one is used
and the identification interactively takes place. A deletion is han-
dled similarly.

The topology traits also monitors whether the insertion or dele-
tion of a curve implies a face split or a hole creation. First, recall
the planar case and consider a face in a (bounded) planar arrange-
ment that contains a one-dimensional hole. Such a hole consists of
an open sequence of curves. The surrounding face is split into two
when adding a new curve closes the sequence to form a loop. The
new face will be inside the originating face. Similarly, two faces
are merged and a one-dimensional hole is created when a curve is
removed from such a loop.

In contrast, on a cyclide, closing a loop might have different im-
plications. We can distinguish three cases:

1. A new face is created as a hole inside the originating one (as
described for the plane).

2. No new face is created, but the hole cycle is now turned to
describe two outer boundary cycles of the face.

3. A face is split into two, but each cannot be understood, up to
definition, as a hole inside the other.

To identify the different cases, we need the term of a perimetric
path. A path of curves is perimetric if it crosses the identifications
an odd number of times. While non-polar crossings are easy to de-
tect, polar crossings require some special attention. Then, (1) hap-
pens if the closed path is non-perimetric, while (2) and (3) require
the loop to be perimetric. (2) only occurs in a special situation,
namely if the face in focus is bounded and does not have an outer
boundary so far. In all other cases, closing a perimetric loop results
in (3), i.e, a face bordered by two outer boundary cycles is split into
two faces. Our topology traits class detects the different cases and
obviously computes the crossings of a path with the identifications
as a basic tool. It also assigns the resulting outer boundary cycles in
case (3) correctly to the faces. For an illustration of the mentioned
cases, we refer to Figure 5.1.

Beside these basic tools, each model of the TOPOLOGYTRAITS
concept defines small helper classes that are used to overlay two
such arrangements, to insert curves incrementally using a zone-
computation, or to perform efficient point location. Our model
is no exception. For the full description of the concept, we refer
to [Berberich et al. 2007b] and [Berberich et al. 2007a].

cv_1

cv_2
cv_2

cv_1

h_2

h_2

h_1

h_1

v

v

u

u

Figure 5.1: Adding curves on cyclide (left) and in its parameter
space (right): The initial arrangement consist of a single bounded
face that contains two one-dimensional hole-cycles h1, h2 (inner
boundaries). (Top) Case 2: Adding cv1 yields that h1 is trans-
formed into two outer boundary-cycles of the single face. (Bot-
tom) Case 3: Adding cv2 splits the face into two, while two outer
boundary-cycles emerge from h2.

5.1 Endpoints of arcs on the boundaries

Recall the u- and v-sequence that implement the identifications
of the parameter space’s top- and bottom-boundary, and left- and
right-boundary, respectively. Functors to report the order of points
on the identifications are part of the ARRANGEMENT TRAITS 2
concept. To do so, remember that these points are points at infinity
in the parameter space and assume that they are ends of unbounded
arcs.
As far as explained in [Eigenwillig et al. 2007] and [Eigenwillig

and Kerber 2008], the specified end of an unbounded arc is rep-
resented in two ways (if extending to infinity): Either, the arc is
asymptotic to a vertical line u = α (i.e., it approaches the top- or
bottom-boundary); in this case, the arc knows its symbolic endpoint
(α,+∞) or (α,−∞). In this case the u-sequence can be ordered
by comparing α values. Or, the arc is unbounded in u-direction
(i.e., it approaches the left- or right-boundary); then its end is just
represented by a fictitious vertex −∞i or +∞i. To sort the v-
sequence, this information is not sufficient, since it must know the
v-value of the boundary point to which the arc converges.
We next describe how to compute whether an arc that is un-

bounded in u has an asymptote v = β. If so, its symbolic end-
point is either (−∞, β) or (+∞, β). This corresponds to an arc
on the cyclide that intersects the tube circle at P (∞, β). Other-
wise, the arc is unbounded also in v-direction and converges to
one of the four “points” (±∞,±∞). This corresponds to an arc
on the cyclide running into the cyclide’s pole. After all, each un-
bounded arc has a symbolic endpoint of type (α,±∞), (±∞, β),
or (±∞,±∞), which suffices to compare the “v”-values of them.
We can concentrate on one plane curve f ; the method is inter-

actively applied to a curve in focus of the arrangement during its
construction- or update-step. Horizontal asymptotes can only occur
at a finite number of easily computable points, namely as roots of
the leading coefficient of f with respect to u:

Lemma 5.1. Let f =
Pn

i=0 ai(v)u
i ∈ Z[u, v]. If v = β is a

horizontal asymptote, then an(β) = 0.

Proof. Assume that an(β) 6= 0. We show that each arc converging
with its v-coordinate to β must be finite. This shows the absence of
an asymptotic arc at β.
As an(β) 6= 0, there is a closed, finite interval I around β

such that an(β̃) 6= 0 for all β̃ ∈ I . By the Cauchy bound [Basu
et al. 2006, Lemma 10.2], the absolute value of each real root of

f(x, β̃) is smaller than u(β̃) :=
Pn

i=0

˛

˛

˛

ai(β̃)

an(β̃)

˛

˛

˛. Since an(β̃) 6= 0,

this function is continuous, and thus bounded in I . Let umax
be the maximum. It follows that each arc which converges to
β in its v-coordinates converges to a u-coordinate in the interval
[−umax, umax].

Let β1 < . . . < βm denote the real roots of an(v). We define
β0 = −∞ and βm+1 = +∞. For each arc of f unbounded in
u-direction, we have to assign one of the points (±∞, βi), i =
0, . . . ,m+ 1 as endpoint.
We choose rational intermediate values q0, . . . , qm such that

βi < qi < βi+1 for all i ∈ {0, . . . , m}. We call the m + 2
intervals (−∞, q0), (q0, q1),. . .,(qm−1, qm),(qm,∞) the buckets.
Each buckets contains exactly one of the βi’s.
We explain our method for the left end side of the curve, it works

analogously on the right: Choose a (rational) value b on the left of
any critical x-coordinate (x-coordinates of singularities, x-extreme
points or vertical asymptotes) of the curve f . Since the curve analy-
sis of f knows about all critical x-coordinates, b is easy to compute.
Next, compute

u0 := min{b, min
j=0,...,m

min{µ | f(µ, qj) = 0}}

by isolating the real roots of f(x, qi). Isolate the real roots of
f(u0, y), and determine the bucket each root falls into.

−∞1

−∞2

−∞3

−∞4

(−∞, +∞)

(−∞,−∞)

(−∞, β4)

(−∞, β3)

(−∞, β2)

(−∞, β1)

−∞1

−∞2

−∞3

−∞4

(−∞, +∞)

(−∞, β4)

(−∞, β3)

(−∞, β2)

(−∞, β1)

(−∞,−∞) u0

Figure 5.2: (Left) Fictitious endpoints for the left end of the curve,
and the buckets of the curve. (Right) Roots of the curve for a u-
coordinate that is on the left of any bucket change. Information
about horizontal asymptotes can be read off directly.

Theorem 5.2. Let the i-th root of f(u0, y) be in the bucket of qj .
Then, the i-th arc of f with u→ −∞ converges to (−∞, βj)

Proof. Since u0 < b, the i-th root over f(u0, y) lies on the i-th arc
of f that goes to u = −∞. Moreover, u0 is smaller than any root
of f(x, qk), k = 0, . . . ,m. It follows that f does not intersect any
line x = qk on the left of u0. Consequently, the i-th arc of f cannot
change the bucket anymore on the left of u0. So, (−∞, βj) is the
only possible endpoint of the arc.

5.2 Other features on the boundaries

Currently, features on the boundaries are only detected if they are
incident to an arc in the arrangement, as just described. However,
two types of features cannot be detected this way: First, if a surface
just touches the cyclide in a point on one of the cut circles; in this
case, in parameter space there is an isolated point at infinity which
has no incident arc. Second, a surface might intersect the cyclide in
a whole cut circle. Then, in parameter space a whole line at infinity
is contained.
The current version of the framework does not take into account

such features, so they are missed in the output. However, we show

that they are obtainable with no additional computational effort, and
thus can be integrated in a later version without worsen the perfor-
mance.
Let C be a cyclide with parameterizations P whose cut circles

are parameterized by PT and PO, and whose pole is p, as defined
in Section 2. Consider a surface of degree n, implicitly defined by

F ∈ Z[x, y, z]. Again, let f(u, v) := F̂ (P̂ (u, v)). We show that
f also encodes the intersections of F with both cut circles in its
formal leading coefficients. Observe that deg f ≤ 4n, degu f ≤
2n and degv ≤ 2n.

Lemma 5.3. Let coef(f, xi, j) ∈ R[x1, . . . , xi−1, xi+1, . . . , xn]

denote the coefficient of f in xji . Then

F̂ (P̂ T (v)) = coef(f, u, 2n)

F̂ (P̂O(u)) = coef(f, v, 2n)

F̂ (p̂) = coef(coef(f, u, 2n), v, 2n).

Proof. Since coef(·, xi, j) is a linear function, it suffice to show the
equality for the case that F̂ = xiyjzkwl is a monomial with i+j+
k+l = n. For the first part of the lemma, we can assume that j = 0,

since for j > 0, F̂ (P̂ T (u, v)) = 0, and also, degu(f) < 2n. Let

P̂1, . . . , P̂4 denote the polynomials of P̂ ’s parameterization. Then,
we have

coef(f, u, 2n) = (coef(P1, u, 2))
i(coef(P3, u, 2))

k(coef(P4, u, 2))
l,

and comparing this with F̂ (P̂ T (u, v)) yields equality. The other
two statements follow with similar arguments.

This lemma shows that isolated intersection points on the cut cir-
cles appear as real roots of coef(f, u, 2n) or coef(f, v, 2n). More-
over, we have the following:

Corollary 5.4.

• degu f < 2n if and only if F and C intersect in the whole
tube circle.

• degv f < 2n if and only if F and C intersect in the whole
outer circle.

• deg f < 4n if and only if F and C intersect in the pole.

We finally describe how the framework can be extended to han-
dle such features: Recall u- and v sequence to store DCEL-vertices
for intersections with cut circles. So far, these sequences were filled
during the sweep whenever an infinite arc was detected. Instead,
we propose to fill them before the sweep starts, by isolating the real
roots of coef(f, u, 2n) and coef(f, v, 2n) for each parameter curve
f , whose degree is 2n with respect to u, or v, respectively. Also, if
any polynomial has a degree smaller than 4n, we insert a vertex for
the pole. This assures that all isolated vertices at the boundary are
inserted. Moreover, if any polynomial has degree smaller than 2n
in u, we connect consecutive vertices in the u-sequence by an edge
(this form a cycle, starting and ending at the pole) to represent the
tube circle. If any polynomial has degree smaller than 2n in v, we
do the same for the v-sequence.
Note that this treatment does not cause notable extra cost in the

computation: Computing the degree is trivial, and the root isolation
step is performed anyway when computing asymptotic arcs of a
curve f , so the result can be cached.
It is possible to extend this idea with respect to the in-

teractive constructions and updates triggered from within the
Arrangement on surface 2 package. We are currently wait-
ing for the finish of this recent extension of the framework, that nat-
urally improves the GEOMETRYTRAITS and TOPOLOGYTRAITS

Instance #S #V,#E,#F t t (2D)

ipl-1 10 119,190,71 0.14 0.14
ipl-1 20 384,682, 298 0.58 0.58
ipl-1 50 1837,3363,1526 2.14 2.00
ipl-2 10 358,575,217 1.07 1.25
ipl-2 20 1211,2147,937 3.14 3.04
ipl-3 10 542,847,305 4.84 4.62
ipl-3-6points 10 680,1092,412 32.43 31.17
ipl-3-2sing 10 694,1062,368 5.82 5.57
ipl-4 10 785,1204,419 50.42 49.97
ipl-4-6points 10 989,1529,540 461.74 450.54
ipl-4-2sing 10 933,1471,538 53.01 52.78

Table 1: Running times (in seconds) to construct arrangements on
S1 induced by algebraic surfaces

Instance #S #V,#E,#F t t (2D)

ipl-1 10 169,280,111 0.53 0.46
ipl-1 20 456,808,352 0.86 0.54
ipl-1 50 3228,6084,2856 3.78 3.33
ipl-2 10 450,710,260 1.22 1.21
ipl-2 20 1323,2247,924 3.44 3.57
ipl-3 10 474,682,208 5.24 5.36
ipl-4 10 988,1406,418 50.93 52.43

Table 2: Running times (in seconds) to construct arrangements on
S2 induced by algebraic surfaces

concepts. Then, the splitting of combinatorial and geometrical op-
erations is preserved, including even cases where geometric objects
lie on the boundary of parameter space, i.e., isolated points and
curves on an identification in the case of an cyclide.

6 Results

We first observed that implementing only quite small models and
relying in parallel on matured software reduces development and
debugging time compared to coding a full implementation from
scratch.
We also run experiments to check that this approach does not

lack efficiency. All test are executed on an AMD Dual-Core
Opteron(tm) 8218 multi-processor Debian Etch platform, each core
equipped with 1 MB internal cache and clocked at 1 GHz. The
total memory consists of 32 GB. As compiler we used g++ in
version 4.1.2 with flags -O2 -DNDEBUG. Two results were com-
puted for each instance, one that computes the arrangement using
the cyclidean topology (onSurface), the other is computing the
two-dimensional arrangement of the induced intersection curves in
parameter space, i.e., with the topology of an unbounded plane
(Arrangements).
Our implementation allows to transform a cyclide in standard

position and orientation, i.e., to translate it by a vector and to rotate
it with respect to a rotational matrix with rational entries. In our
tests, we used two different reference cyclides. First, the “standard
torus” S1 with a = 2, b = 2, µ = 1, centered at the origin with
no applied rotation. Second, a non-torical cyclide S2 with a = 13,
b = 12 and µ = 11, centered at (1, 1, 1) and a rotation defined by
the matrix

1

3

0

@

2 −2 1
2 1 −2
1 2 2

1

A .

Our first class of test examples are surfaces of fixed degree which

Instances #S #V,#E,#F t

quadrics 10 428,646,219 1.59
degree-3 5 240,314,74 1.56

Overlay - 942,1508,566 1.91

degree-3 10 794,1218,424 6.25
degree-4 10 325,418,93 13.36

Overlay - 1623,2644,1021 13.83

degree-4 10 816,1188,372 50.86
degree-4 5 325,418,93 13.52

Overlay - 1581,2488,907 47.30

Table 3: Running times (in seconds) to construct arrangements in-
duced by algebraic surfaces of different degree on S2, and to over-
lay them afterwards.

interpolate randomly chosen points on a three-dimensional grid,
having no or some degeneracies wrt S1: the surfaces in “6points”
instances share at least 6 common points on S1, one of them is the
pole of S1. The surfaces in the “2sing” instances induce (at least)
two singular intersections on S1.

Running times are listed in Tables 1 and 2. For such random
examples, our algorithm shows a good general behavior, even for
higher degree surfaces. Degeneracies with respect to the reference
surface result in higher running times as the instance “6points”
shows. But this effect already appears in parameter space, as the
last column indicates. In general, it is observable and remarkable
that in all tested instances, the spent time on the cyclides is (almost)
identical to the computation of the curves in their parameter space.
This let us conclude two outcomes: First, the performance of our
implementation is not harmed by the cyclidean topology traits, i.e.,
that one is as efficient as the topology traits of the unbounded plane.
Second, the additionally required computation of horizontal asymp-
totes seems (as expected) to be a cheap task. Most time is spent for
geometric operations on algebraic curves. Thus, we infer that the
chosen approach strongly hinges on the efficiency of the underly-
ing 2D-implementation for arrangements of algebraic curves and
conclude the parametric ansatz to be successfull in its idea.

The implementation of a small helper class in the TOPOLOGY-
TRAITSmodel enables CGAL’s overlay mechanism, i.e., to overlay
two arrangements on the same cyclide by using the capabilities of
generic programming. Thus, we also generated instances of random
surfaces with degree up to 4 intersecting S2, picked two of them,
computed their arrangement and finally overlaid them. A selection
of such combinations along with the size of the arrangements and
running times is presented in Table 3. We want to remark, that
due to persistent caching, the times for the overlay are usually less
than the sum of the times required to create the two originating ar-
rangements. The reason is simply that during the overlay only some
additional pairs of algebraic curves have to be newly created.

Finally, we want to remark, that we also can immediately use
other techniques implemented for CGAL’s Arrangement on

surface 2, such as notifications, extending the DCEL by user
data, or to locate a given point in the parameter space of the cyclide
in an induced arrangement.

7 Conclusion

Our work demonstrates the usefulness of generic programming:
the combination of the planar arrangement algorithm for arbitrary
curves with the software framework for arrangement on surfaces
yields an arrangement algorithm for tori and Dupin cyclides almost
immediately. New code was only written for the computation of
the parameterized intersection curves, for the asymptotic behavior
of infinite curve arcs (Section 5.1), and for the topology traits of the

cyclide. Relying on already tested and optimized code reduces the
implementation effort, and makes the algorithm more robust and
more efficient.
Though we propose solutions to missing parts of the framework:

as already mentioned in Section 5.2, isolated features at the bound-
ary of the parameter space are not yet handled. We are already
working on the adaptation of our traits classes with respect to the
extended framework that will support geometric objects on identi-
fications.
We also believe that the performance could be further im-

proved: the computed arrangements often contain numerous ver-
tically asymptotic arcs (compare Figure 4). The strategy proposed
in [Eigenwillig et al. 2007] to shear non-regular curves and shear-
ing back afterwards therefore results in a change of coordinates
for many curves. A comparably efficient alternative approach that
avoids to shear might be more suitable for this subclass of curves.

Acknowledgements

We want to thank Ron Wein, who answered our questions on
CGAL’s arrangements in depth. We also thank Ophir Setter for
comments on a draft of the paper.

References

ARGE, L., HOFFMANN, M., AND WELZL, E., Eds. 2007. Algo-
rithms - ESA 2007, 15th Annual European Symp., Eilat, Israel,
October 8-10, 2007, Proceedings, vol. 4698 of LNCS, Springer.

BASU, S., POLLACK, R., AND ROY, M.-F. 2006. Algorithms
in Real Algebraic Geometry, 2nd ed., vol. 10 of Algorithms and
Computation in Mathematics. Springer.

BENTLEY, J. L., AND OTTMANN, T. A. 1979. Algorithms for
reporting and counting geometric intersections. IEEE Transac-
tions on Computers C-28, 643–647.

BERBERICH, E., HEMMER, M., KETTNER, L., SCHÖMER, E.,
AND WOLPERT, N. 2005. An exact, complete and efficient im-
plementation for computing planar maps of quadric intersection
curves. In Proc. of the 21st Annual Symp. on Computational
Geometry (SCG 2005), 99–106.

BERBERICH, E., EIGENWILLIG, A., HEMMER, M., HERT, S.,
KETTNER, L., MEHLHORN, K., REICHEL, J., SCHMITT, S.,
SCHÖMER, E., ANDWOLPERT, N. 2005. Exacus: Efficient and
exact algorithms for curves and surfaces. In Proc. of the 13th
Annual European Symp. on Algorithms (ESA 2005), Springer,
vol. 3669 of LNCS, 155–166.

BERBERICH, E., FOGEL, E., HALPERIN, D., MEHLHORN, K.,
AND WEIN, R., 2007. A general framework for processing a
set of curves defined on a continuous 2D parametric surface.
http://www.cs.tau.ac.il/cgal/Projects/arr on

surf.php.

BERBERICH, E., FOGEL, E., HALPERIN, D., MEHLHORN, K.,
AND WEIN, R. 2007. Sweeping and maintaining two-
dimensional arrangements on surfaces: A first step. In Arge et al.
[Arge et al. 2007], 645–656.

BEZ, H. E. 2007. Rational maximal parametrisations of dupin
cyclides. In Mathematics of Surfaces XII, Springer, R. Martin,
M. Sabin, and J. Winkler, Eds., vol. 4647 of LNCS, 78–92.

BOEHM, W. 1990. On cyclides in geometric modeling. Computer
Aided Geometric Design 7, 243–255.

BÜHLER, K. 1995. Rationale algebraische Kurven auf Dupinschen
Zykliden. Master’s thesis, Universität Karlsruhe. in german.

CAZALS, F., AND LORIOT, S. 2007. Computing the exact ar-
rangement of circles on a sphere, with applications in structural
biology. Technical Report 6049, INRIA Sophia-Antipolis.

CHANDRU, V., DUTTA, D., AND HOFFMANN, C. M. 1989. On
the geometry of dupin cyclides. The Visual Computer 5, 277–
290.

DUPIN, C. 1822. Applications de Géométrie et de Méchanique.
Bachelier, Paris.

DUPONT, L., HEMMER, M., PETITJEAN, S., AND SCHÖMER, E.
2007. Complete, exact and efficient implementation for comput-
ing the adjacency graph of an arrangement of quadrics. In Arge
et al. [Arge et al. 2007], 633–644.

EIGENWILLIG, A., AND KERBER, M. 2008. Exact and efficient
2d-arrangements of arbitrary algebraic curves. In Proc. of the
Nineteenth Annual ACM-SIAM Symp. on Discrete Algorithms
(SODA08), 122–131.

EIGENWILLIG, A., KETTNER, L., KRANDICK, W., MEHLHORN,
K., SCHMITT, S., AND WOLPERT, N. 2005. A Descartes algo-
rithm for polynomials with bit-stream coefficients. In 8th Inter-
national Workshop on Computer Algebra in Scientific Comput-
ing (CASC 2005), vol. 3718 of LNCS, 138–149.

EIGENWILLIG, A., KERBER, M., AND WOLPERT, N. 2007. Fast
and exact geometric analysis of real algebraic plane curves. In
Proocedings of the 2007 International Symp. on Symbolic and
Algebraic Computation (ISSAC 2007), C. W. Brown, Ed., 151–
158.

EIGENWILLIG, A. 2008. Real Root Isolation for Exact and Ap-
proximate Polynomials Using Descartes’ Rule of Signs. PhD
thesis, Universität des Saarlandes, Germany.

FOGEL, E., HALPERIN, D., KETTNER, L., TEILLAUD, M.,
WEIN, R., AND WOLPERT, N. 2006. Arrangements. In Ef-
fective Computational Geometry for Curves and Surfaces, J.-D.
Boissonnat and M. Teillaud, Eds. Spinger, ch. 1, 1–66.

FORSYTH, A. 1912. Lectures on the Differential Geometry of
Curves and Surfaces. Cambridge University Press.

GALLIER, J., 2001. Internet supplement to ‘geo-
metric methods and applications for computer sci-
ence and engineering’, chapter 23: Rational surfaces.
http://www.cis.upenn.edu/˜jean/gbooks/geom2.html.

HALPERIN, D. 2004. Arrangements. In Handbook of Discrete and
Computational Geometry, J. E. Goodman and J. O’Rourke, Eds.,
2nd ed. Chapman & Hall/CRC, ch. 24, 529–562.

JOHNSTONE, J. K. 1993. A new intersection algorithm for cyclides
and swept surfaces using cycle decomposition. Computer Aided
Geometric Design 10, 1–24.

PRATT, M. J. 1990. Cyclides in computer aided geometric design.
Computer Aided Geometric Design 7, 221–242.

PRATT, M. J. 1995. Cyclides in computer aided geometric design
ii. Computer Aided Geometric Design 12, 131–152.

WEIN, R., FOGEL, E., ZUKERMAN, B., AND HALPERIN, D.
2007. 2D arrangements. In CGAL-3.3 User and Reference Man-
ual.

YAP, C. K. 2004. Robust geometric computation. In Handbook
of Discrete and Computational Geometry, J. E. Goodman and
J. O’Rourke, Eds., 2nd ed. CRC Press, ch. 41, 927–952.

