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Abstract

In this paper, we present the first output-sensitive algorithm to compute
the persistence diagram of a filtered simplicial complex. For any Γ > 0, it
returns only those homology classes with persistence at least Γ. Instead of
the classical reduction via column operations, our algorithm performs rank
computations on submatrices of the boundary matrix. For an arbitrary con-
stant δ ∈ (0, 1), the running time is O(C(1−δ)ΓRd(n) log n), where C(1−δ)Γ is
the number of homology classes with persistence at least (1 − δ)Γ, n is the
total number of simplices in the complex, d its dimension, and Rd(n) is the
complexity of computing the rank of an n × n matrix with O(dn) nonzero
entries. Depending on the choice of the rank algorithm, this yields a deter-
ministic O(C(1−δ)Γn

2.376) algorithm, a O(C(1−δ)Γn
2.28) Las-Vegas algorithm,

or a O(C(1−δ)Γn
2+ǫ) Monte-Carlo algorithm for an arbitrary ǫ > 0. The space

complexity of the Monte-Carlo version is bounded by O(dn) = O(n log n).

Keywords: computational topology, persistent homology, randomized
algorithms, rank computation

1. Introduction

Persistent homology is a general framework to measure the relevance of
topological features of a space with respect to a function. Its ability to handle
noisy data and to provide homological information in arbitrary dimensions
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has turned it into a successful tool for the analysis of various types of data;
see [1, 2, 3, 4, 5, 6] for applications in image analysis, sensor networks, and
biological research. Parallel to applications, the theoretical basis of persistent
homology has grown during the last decade, e.g. [7, 8, 9, 10, 11, 12, 13]. See
also [14] for a recent textbook covering both theory and applications.

We are concentrating on the computation of persistent homology of a
simplicial complex over Z2 in this work. The first algorithm by Edelsbrunner
et al. [15] as well as other related algorithms [16, 10], are based on column-
wise matrix reduction of the boundary matrix of the simplicial complex.
Their running time is O(n3), where n is the number of simplices of the given
complex, and Morozov [17] provides an example where the algorithm indeed
has cubic complexity. A simple optimization of that algorithm which avoids
columns operations on about half of the columns has been presented in [18].
Milosavljević et al. [19] present an algorithm to compute persistence in ma-
trix multiplication time O(nω), where the best estimation of ω is currently
2.376 [20]. Better bounds are only known for the special case of 0-dimensional
homology, for which a complexity of O(nα(n)) can be achieved by union-find,
where α(·) is the inverse of the Ackermann function [14]. Numerous efficient
solution, in theory and practice, have been presented for related problems
such as computing the Reeb graph of a simplicial complex [21] and comput-
ing persistence on special structures like clique complexes [22], point clouds
in higher dimensions [23], regular cubical grids [24], or dual complexes of
cubical subdivisions in R3 [25].

In this paper, we present the first output-sensitive algorithm for comput-
ing homology classes above a predefined threshold: Given some filtration,
namely, a d-dimensional simplicial complex filtered according to a filter func-
tion, and Γ > 0, our algorithm only returns those homology classes within
the filtration that have a persistence of at least Γ. In various applications,
classes with low persistence are considered as noise and one is only interested
in the (typically few) classes with high persistence. Denoting by C(1−δ)Γ the
number of homology classes with persistence at least (1−δ)Γ for some δ > 0,
our algorithm has a running time of O(C(1−δ)ΓRd(n) log n), where Rd(n) is
the complexity of computing the rank of an n× n binary matrix with O(dn)
nonzero entries. In this bound we assume δ to be a constant; a more detailed
bound covering the dependence on δ is derived in the body of the paper.

Our algorithm is the first one that does not transform the boundary
matrix into a reduced form (by row/column operations or matrix multiplica-
tions). Instead, it accesses the boundary matrix exclusively by computing the
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Type Ref. Rank Complexity Persistence Computation

Monte-Carlo [26] O(n2 log2 n log log n) O(C(1−δ)Γn
2 log3 n log log n)

Las-Vegas [27] Õ(n3−1/(ω−1)) = O(n2.28) O(C(1−δ)Γn
2.28)

Deterministic [28] O(nω)= O(n2.376) O(C(1−δ)Γn
ω log n)

Table 1: Time bounds of our algorithm using different types of rank computation algo-
rithms. Õ means that logarithmic factors are omitted in the bound.

ranks of submatrices. We obtain different types of results depending on the
choice of the rank algorithm in our method as shown in Table 1. The running
time of the Las-Vegas algorithm is only in expectation, and the Monte-Carlo
algorithm has a success probability of at least q for any predefined constant
q < 1.

None of the presented algorithms improves the worst-case complexity
for persistence computation in general because C(1−δ)Γ can be as large as
n/2. However, under the not too unrealistic assumption that the number
of relevant persistent homology class is small (say, logarithmic in n or even
constant), we obtain (randomized) algorithms with best known complexity.
Furthermore, the Monte-Carlo version only needs O(dn) = O(n log n) mem-
ory, independent of the choice of Γ; the standard persistence algorithm needs
O(n2) memory.

The randomized variants need to switch over to an extension field of
Z2 with O(n2 log n) elements for the computation, and the bounds refer to
the number of arithmetic operations in this finite field. When considering
bit complexities (i.e., number of bit operations performed in the algorithm),
another factor of O(log n log log n log log log n) appears in the bound. We
emphasize that although the base field changes internally, the final result
still yields persistence for Z2-homology.

The paper is organized as follows: We revisit the most relevant concepts
from the theory of persistent homology in Section 2. We then give a method
to compute certain areas of the persistence diagram by rank computations
in Section 3. The main algorithm and its analysis is described afterwards;
we split the discussion into the persistent inessential classes in Section 4 and
the essential classes in Section 5. We discuss more details of how to achieve
the running times from Table 1 in Section 6. In Section 7, we conclude with
final remarks.
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2. Preliminaries

In this section, we review persistent homology to the extent it is needed
for this work. We assume that the reader is familiar with the basic notions
of homology groups of topological spaces and of simplicial complexes. We
refer to [14, 29] for introductory textbooks. We focus on homology over Z2

in this work.

Persistent Homology. Given a topological space X and a continuous filter
function f : X → R, we call Xt = f−1(−∞, t] the sublevel set of f for t.
We denote Hp(Xt) as the homology group of Xt in dimension p, and H(Xt) =⊕

p≥0 Hp(Xt) be the direct sum of all homology groups. For s ≤ t, there is a
homomorphism f s,t : H(Xs) → H(Xt) on homology groups that is induced by
inclusion of the sublevel sets. Persistent homology tracks homological changes
of the sublevel sets by capturing the birth and death times of homology classes
of Xt as t grows from −∞ to +∞ in the following sense: A homology class α is
born at s if α is in H(Xs), but not in the image of f s−ǫ,s for any ǫ > 0. Such a
class dies at some t ≥ s, if t is the smallest value such that f s,t(α) ∈ Imf s−ǫ,t

for some ǫ > 0. In other words, the homology class α either becomes trivial or
identical to another class that was born earlier. The persistence, or lifetime,
of the class α is defined as t − s, the difference between its birth and death
time. Intuitively, the classes with large persistence reveal information about
the global structure of X filtered by the function f .

In computation, the input is usually a simplicial complex K (of size n)
with a filter function f : K → R that assigns each simplex a real value,
with the constraint that the function value of a simplex is no smaller than
those of its faces. We write all simplices in K in ascending order according
to their filter function values, under the condition that a simplex has to be
after his faces in the order. Denote fi = f(σi) for i ≥ 1, f0 = −∞, and
Ki = f−1(−∞, fi]. We have a filtration of K, namely, a nested sequence of
subcomplexes, ∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K. This filtration is not uniquely
determined by the filter function if simplices have the same function value,
but possible ties can be broken arbitrarily without changing the persistence
diagram (as defined later). We can imagine that the simplices with function
value fj are inserted into Kj−1 one by one. Then, the addition of a simplex
σj to Kj−1 either causes a birth or a death of exactly one homology class. In
the former case, the simplex is called creator, in the latter case it is called
destroyer. Homology classes in the filtration can thus be represented as
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persistence pairs (σi, σj) with i < j, meaning that the class is created when
σi is added, and destroyed when σj is added. For convenience, we say σi

creates and σj destroys the class. Also, we say a persistence pair is created
(resp. destroyed) in the index range [i1, i2] when the creator (resp. destroyer)
has an index between i1 and i2.

An essential class is a class that is created in the filtration, but never
destroyed later on. These classes exactly define the homology of K. We
define the persistence of an essential class to be ∞.

Boundary matrix. Given a filtration and the corresponding ordered sequence
of simplices, σ1, · · · , σn, the (ordered) boundary matrix ∂ is the n×n binary
matrix defined by ∂i,j = 1 if and only if σi is a face of σj of codimension 1.
In other words, the i-th column of ∂ encodes the boundary of the simplex
σi. Because a simplex enters a filtration after its boundary by definition, ∂
is upper-triangular. Also, each column has no more than (d + 1) nonzero
entries, where d is the dimension of the complex. Therefore, ∂ has O(dn)
nonzero entries, and any k × k submatrix of ∂ has O(dk) nonzero entries. It
is easy to see that d ≤ log(n+1)− 1 because a d-simplex has 2d+1 − 1 faces,
and thus,

O(dn) = O(n log n). (1)

This sparsity of the boundary matrices will be exploited in Section 6. This
sparsity was also exploited by Chen and Freedman [30, 31], in which the
Wiedemann’s algorithm was used for homology localization.

Reduction algorithm. For a non-zero column i, of a matrix, we call its low-
est entry the largest row index of a nonzero entry, denoted as low(i). The
standard persistence algorithm [14] performs left-to-right column reductions
on the boundary matrix. For a column i, assuming that columns 1, . . . , i− 1
are already reduced, we reduce i as follows. If there exists a reduced column
j, j < i, such that low(j) = low(i), subtract j from i. This is repeated
until either the i-th column becomes zero, or low(i) is unique among the
columns 1, . . . , i. Let R be the matrix that is obtained after applying this
algorithm to all columns. The i-th column of R is 0 if and only if σi is a
creator [14, §VII.1]. Moreover, let the i-th column of R be nonzero, and
let j = low(i) denote its lowest entry. Then, (σj, σi) is a persistence pair.
Unpaired simplices create essential homology classes. The given algorithm
has cubic running time in the size of the complex.
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The persistence diagram. Persistent homology can be described using a per-
sistence diagram, Dgm(f), which is a multiset of points in R× (R ∪ {+∞});
we call these points the dots of the diagram. In the simplicial complex case,
the diagram contains a dot (fi, fj) for every persistent pair (σi, σj), and a
dot (fi,∞) for every essential class that is created by σi. Of course, two per-
sistence pairs (as well as two essential classes) might define the same dot; we
call the multiplicity of a dot to be the number of persistence pairs that it rep-
resents. Often, the infinitely many points on the diagonal are also considered
to belong to the diagram, but we will ignore them for the rest of the paper.
The persistence of a homology class is the horizontal (or vertical) distance
of the representing dot from the diagonal line. Therefore, homology classes
with high persistence are further away from the diagonal. The persistence
diagram is stable under perturbations of the filter function [9].

3. Computing Persistence Pairs

From now on, we assume that a simplicial complex K, its dimension d,
and a filter function f are fixed, as well as a filtration of K with respect to
f , determined by the simplex order σ1, . . . , σn. We let P denote the set of
all persistence pairs of the form (σi, σj), that means, simplex σj destroys the
homology class created by σi.

µ-queries. Instead of performing row or column operations on the ordered
boundary matrix, ∂, we will access it exclusively by querying interval multi-
plicities (µ-values) of the filtered complex.

Definition 1. For integers i1 ≤ i2 ≤ j1 ≤ j2,

P j1,j2
i1,i2

:= {(σk, σℓ) ∈ P | k ∈ [i1, i2] ∧ ℓ ∈ [j1, j2]}

µj1,j2
i1,i2

:= CardP j1,j2
i1,i2

In words, P j1,j2
i1,i2

is the set of persistence pairs whose creators (resp. de-
stroyers) fall into the index range [i1, i2] (resp. [j1, j2]). In the persistence dia-
gram, this corresponds to the set of dots within the box [fi1 , fi2 ]× [fj1 , fj2 ] ⊆ R2,
except for dots on the boundary whose creators (resp. destroyers) have out-
of-range indices. In particular, for a dot on the boundary corresponding to
multiple persistence pairs, only a fraction of them belong to P j1,j2

i1,i2
.

We show next that µj1,j2
i1,i2

is determined by the ranks of 4 submatrices
of ∂ with at most j2 − i1 + 1 columns (resp. rows). The result generalizes
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the “Pairing Uniqueness Lemma” from [32] which handles the special case of
i1 = i2, j1 = j2.

For any matrix A, denote Ab1,b2
a1,a2

as the (a2−a1+1)×(b2−b1+1)-submatrix
of A consisting of rows a1, a1 + 1, · · · , a2 and columns b1, b1 + 1, · · · , b2.

i1

i2

j1 j2

1

1

1

1

1

1

1

1

Figure 1: Part of the completely reduced matrix S. µj1,j2
i1,i2

counts the number of 1’s in the
light gray submatrix.

Theorem 2 (µ-query).

µj1,j2
i1,i2

= rank(∂i1,j2
i1,j2

)− rank(∂i1,j1−1
i1,j1−1)−

rank(∂i2+1,j2
i2+1,j2

) + rank(∂i2+1,j1−1
i2+1,j1−1). (2)

Proof. Consider the reduced matrix R which is constructed from ∂ by left-
to-right column operations, as described in Section 2. We transform R into
S by setting all entries in a nonzero column to zero except the lowest entry
(Figure 1). It is straightforward to see by induction that S arises from R
by a sequence of bottom-up row operations. Moreover, S has a 1 at position
(i, j) if and only if (σi, σj) form a persistence pair. Therefore, µj1,j2

i1,i2
is equal

to the number of 1’s in Sj1,j2
i1,i2

. By inclusion-exclusion,

µj1,j2
i1,i2

=
(
# 1’s in S1,j2

i1,n

)
−
(
# 1’s in S1,j1−1

i1,n

)
−

(
# 1’s in S1,j2

i2+1,n

)
+
(
# 1’s in S1,j1−1

i2+1,n

)
. (3)

Since each row and column of S has at most one nonzero entry, the number
of 1’s in a submatrix of S is equal to its rank. Since we transform ∂ into S by
a sequence of left-to-right column operations and bottom-up row operations,
any lower-left submatrix of ∂ and its corresponding submatrix of S have the
same rank. Therefore we can replace the first term in the right hand side
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of (3) with rank(∂1,j2
i1,n

), which is equal to rank(∂i1,j2
i1,j2

) because ∂ is upper-
triangular. This also applies to the other three terms and thus leads to
(2).

Corollary 3. Let Rd(k) denote the cost for computing the rank of a k × k
square matrix with O(dk) nonzero entries. Then, computing µj1,j2

i1,i2
has a

complexity of O(Rd(j2 − i1 + 1)).

Computing P j1,j2
i1,i2

. Next, we compute P j1,j2
i1,i2

with a sequence of µ-queries. Our
algorithm proceeds in two steps. First, we compute the index of each creating
simplex of the set (the first element of a pair). Second, we compute the index
of the corresponding destroying simplex for every creating simplex.

To compute all creating simplices in P j1,j2
i1,i2

, we consider a binary tree
whose nodes are subintervals of [i1, i2]. The root is the whole interval [i1, i2]
and the children of an interval [a, b] are [a,m] and [m+1, b], wherem = ⌊a+b

2
⌋.

The leaves are the singleton intervals. Obviously, each [i, i] with i1 ≤ i ≤ i2
appears as a leaf in the tree. We call such a tree the bisection tree of [i1, i2]
(Figure 2).

[1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7] [8, 8]

[3, 4] [5, 6] [7, 8]

[5, 8]

[1, 8]

[1, 4]

[1, 2]

Figure 2: An illustration of the bisection tree of an interval [i1, i2] = [1, 8], which contains
two creators, σ6 and σ8. Only the nodes on the two solid paths (and their siblings) are
explored by the algorithm.

For any node [a, b] of the bisection tree, we define its µ-value to be µj1,j2
a,b .

The µ-value of every internal node equals the sum of µ-values of its two
children, and a leaf has a µ-value of either 0 or 1. By construction, σi is a
creating simplex in P j1,j2

i1,i2
if and only if the µ-value of the leaf [i, i] in the

bisection tree is 1. Therefore, computing the creating simplices is simply
computing the leaves of the bisection tree with µ-value 1.

To find these leaves, we compute the µ-value of the root and explore the
tree recursively as follows. Let I be a node with known µ-value, denoted as

8



µ. If µ = 0, we do nothing. Otherwise, if I is a leaf, we add I to the output
list. If I has two children I1 and I2, we compute µ1, the value of I1. Then,
the value of I2 is given by µ− µ1, and we recurse on I1 and I2. See Figure 2
for an illustration of which part of the tree is explored by the algorithm.

Lemma 4. Computing the creating simplices of P j1,j2
i1,i2

has a complexity of

O((1 + µj1,j2
i1,i2

log(i2 − i1 + 1))Rd(j2 − i1 + 1)).

Proof. We perform one µ-query initially for the root, and then one µ-computation
per non-leaf node whose value is nonzero. The tree has nonzero µ-value only
at nodes which lie on a path from the root to a nonzero leaf. Each path is
at most log(i2 − i1 + 1) long. There are at most µj1,j2

i1,i2
such paths, and thus

at most (1 + µj1,j2
i1,i2

log(i2 − i1 + 1)) µ-queries are executed. The claim follows
by Corollary 3.

In the second step, we compute the destroyer simplex for each creator
computed in step 1. Let us fix a creating simplex σi. By definition µj1,j2

i,i = 1,
and the index of its destroying counterpart is the unique integer j ∈ [j1, j2]
with µj,j

i,i = 1. Clearly, we can find j by a binary search on [j1, j2] which needs
O(log(j2−j1+1)Rd(j2− i1+1)) time. Doing this for all creating simplices of
P j1,j2
i1,i2

can be done in O(µj1,j2
i1,i2

log(j2 − j1 + 1)Rd(j2 − i1 + 1)). We summarize
the results of this section with the following theorem.

Theorem 5. For i1 ≤ i2 ≤ j1 ≤ j2, computing P j1,j2
i1,i2

has a complexity of

O((1 + µj1,j2
i1,i2

log(j2 − i1 + 1))Rd(j2 − i1 + 1)).

4. Computing Γ-persistence: Inessential classes

Our goal is to compute points with persistence at least Γ for a fixed Γ > 0.
There are two types of such classes, essential classes (whose persistence is ∞
by definition) and inessential classes whose birth and death time are at least
Γ apart. We will split the discussion into two sections, starting with the
inessential classes and postponing the essential case to Section 5.

Definition 6. We say that a persistence pair (σi, σj) is Γ-persistent if fj −
fi ≥ Γ. We also set

P (Γ)j1,j2i1,i2
:= {(σi, σj) ∈ P j1,j2

i1,i2
| fj − fi ≥ Γ},

µ(Γ)j1,j2i1,i2
:= CardP (Γ)j1,j2i1,i2
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We compute all the Γ-persistent pairs with a divide-and-conquer strat-
egy: Let [a, b] denote an index range, initially set to [1, n]. To compute all
Γ-persistent pairs living within the index range [a, b] (namely, created and
destroyed within [a, b]), we set m := ⌊a+b

2
⌋ and first compute the set P (Γ)m,b

a,m,
that is, all Γ-persistent pairs created in the range [a,m] and destroyed in the
range [m, b]. Then, we recursively compute the Γ-persistent pairs living in the
ranges [a,m] and [m, b]. In each recursion step, the persistence diagram of a
certain rectangular area of R2 is explored; see Figure 3 for an illustration of
the areas that are explored in the recursion steps, numbered by B1, . . . , B7.
There are at most 2n− 1 such areas explored by the algorithm.

Computing P (Γ)m,b
a,m in an output-sensitive fashion. The main challenge is to

ignore pairs with small persistence during computation. We achieve that by
computing persistent pairs within two (or more) different boxes. See Figure 4
for an illustration of the idea: We want to compute P (Γ)m,b

a,m, that is, all dots
in the dark shaded polygon in Figure 4. Instead, we compute the dots within
the two boxes in Figure 5. Note that their union contains all of P (Γ)m,b

a,m,
whereas each box is at least Γ/2 away from the diagonal.

To formalize this idea, let m− < m be the maximal index such that
fm − fm− ≥ Γ/2. Likewise, let m+ > m be defined as the minimal index
with fm+ − fm ≥ Γ/2. The two boxes in Figure 5 correspond to Pm,b

a,m−
and

Pm+,b
m−+1,m and we have:

Lemma 7. Each pair in P (Γ)m,b
a,m is created in [a,m−] or destroyed in [m+, b].

More precisely,

P (Γ)m,b
a,m ⊆ Pm,b

a,m−
⊔ Pm+,b

m−+1,m ⊆ P (Γ/2)m,b
a,m.

Proof. For the first inclusion, assume for a contradiction that a pair in
P (Γ)m,b

a,m is created in (m−,m] and destroyed in [m,m+). Then, its persistence
is obviously bounded by fm+−1 − fm−+1 = fm+−1 − fm + fm − fm−+1 < Γ,
a contradiction. The second inclusion is obvious from the definition of m−

and m+.

By the previous lemma, it suffices to compute all persistence pairs created
in [a,m−] and destroyed in [m, b] and all persistence pairs created in [m− +
1,m] and destroyed in [m+, b]. Among these, we only output the ones with
persistence at least Γ.
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(fn, fn)

(f7

8
n, f7

8
n)

(f6

8
n, f6

8
n)

(f5

8
n, f5

8
n)

(f4

8
n, f4

8
n)

(f3

8
n, f3

8
n)

(f2

8
n, f2

8
n)

(f1

8
n, f1

8
n)

(f0, f0)

B1

B3
B7

B6

B5
B2

B4

Figure 3: Compute persistence pairs in
a divide and conquer fashion.

Diagonal

fb

fm + Γ

fm

fm − Γfa fm

Figure 4: The dark gray polygon con-
tains all the Γ-persistence pairs created
in [a,m] and destroyed in [m, b].

By Theorem 5, the computation of Pm,b
a,m−

and Pm+,b
m−+1,m is bounded in total

by

O
((

1 + (µm,b
a,m−

+ µm+,b
m−+1,m) log(b− a+ 1)

)
Rd(b− a+ 1)

)
.

By the second inclusion of Lemma 7, we have that µm,b
a,m−

+ µm+,b
m−+1,m ≤

µ(Γ/2)m,b
a,m. So, the running time simplifies to

O
((
1 + µ(Γ/2)m,b

a,m log(b− a+ 1)
)
Rd(b− a+ 1)

)
.

We further improve the bound by replacing µ(Γ/2)m,b
a,m by µ((1− δ)Γ)m,b

a,m

for any δ ∈ (0, 1). For that, we generalize Lemma 7 as follows: Fix t :=⌈
1
δ

⌉
and define a monotonously increasing sequence of subdivision points

m−
1 , . . . ,m

−
t−1 as follows: m−

i < m is the maximal index such that fm −
fm−

i
≥ Γ · (1 − i

t
). Similarly, we define a monotonously decreasing sequence

m+
1 , . . . ,m

+
t−1 with m+

i > m as the minimal index such that fm+

i
− fm ≥

Γ · (1− i
t
). Note that this indeed generalizes the previous construction, where

we had t = 2 and m−
1 = m− and m+

1 = m+. We also define m−
t := m+

t := m
and m−

0 := a− 1. In this situation, we have that

P (Γ)m,b
a,m ⊆

t⊔

i=1

P
m+

t−i+1
,b

m−

i−1
+1,m−

i

⊆ P ((1− 1/t)Γ)m,b
a,m ⊆ P ((1− δ)Γ)m,b

a,m.

See Figure 6 for a case when t = 4. Here fm−

1
, fm−

2
, and fm−

3
equal to

fm − 3Γ/4, fm − Γ/2 and fm − Γ/4, respectively. Whereas fm+

1
, fm+

2
, and

fm+

3
equal to fm + 3Γ/4, fm + Γ/2 and fm + Γ/4, respectively.
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Figure 5: The two rectangles contain all
the Γ-persistence dots we want to com-
pute, and some extra Γ/2-persistence
pairs.

Diagonal

fb

fm + Γ

fm

fm − Γ

fa fmf
m

−

2

f
m

−

3

f
m

−

1

fm+
1

fm+
2

fm+
3

Figure 6: The four rectangles contain all
the Γ-persistence dots we want to com-
pute, and some extra 3Γ/4-persistence
pairs.

For computing a single P
m+

t−i+1
,b

m−

i−1
+1,m−

i

, we have a bound of

O

((
1 + µ((1− δ)Γ)

m+

t−i+1
,b

m−

i−1
+1,m−

i

log(b− a+ 1)

)
Rd(b− a+ 1)

)
.

Since all the P -sets are disjoint and their cardinality adds up to µ((1−δ)Γ)m,b
a,m,

we obtain a total complexity bound of

O

((
1

δ
+ µ((1− δ)Γ)m,b

a,m log(b− a+ 1)

)
Rd(b− a+ 1)

)
.

for the computation of P (Γ)m,b
a,m.

The main algorithm. Having established that bound, the analysis of the
divide-and-conquer algorithm to compute all Γ-persistent pairs follows from
standard methods: Let C(1−δ)Γ denote the total number of homology classes
in the filtration with persistence at least (1 − δ)Γ. By definition, µ((1 −
δ)Γ)m,b

a,m ≤ C(1−δ)Γ for every a, b ∈ [1, n], therefore the complexity of one
divide-and-conquer step is O((1

δ
+ C(1−δ)Γ log(b− a+ 1))Rd(b− a+ 1)).

Let Cost(n) denote the cost of computing the Γ-persistent pairs in an
index range [a, b] of size n. We have the recurrence relation

Cost(n) =

(
1

δ
+ C(1−δ)Γ log n

)
Rd(n)

︸ ︷︷ ︸
cost for P (Γ)m,b

a,m

+ 2Cost(n/2)︸ ︷︷ ︸
cost for pairs in [a,m] and [m,b]

(4)

12



This recurrence equation solves to O((1
δ
+CΓ(1−δ) log n)Rd(n)) by the Mas-

ter theorem [33].1 We can also see immediately that the space consumption
is proportional to the size of the boundary matrix of the complex, since that
matrix is essentially the only object that needs to be stored. However, com-
puting the rank might require additional memory. We can thus summarize:

Theorem 8. For a filtered simplicial complex of size n, computing the Γ-
persistent pairs has a time complexity of

O

((
1

δ
+ C(1−δ)Γ log n

)
Rd(n)

)

and a space complexity of O(dn+RS
d (n)), where R

S
d (n) is the space complexity

for computing the rank of an n× n-matrix with O(dn) nonzero entries.

We will show in the next section that the same complexity bound also
holds for computing the essential homology classes of the complex.

Necessity of δ. An unpleasant property of our bound is the presence of δ
because it prevents the bound from being fully output-sensitive. However,
we were not able to avoid that factor; a perhaps natural proposal is to use the
divide-and-conquer scheme illustrated in Figure 3 directly on the dark shaded
region from Figure 4 to find all dots in the diagram above the line which is
Γ away from the diagonal. That is, one may first compute all points created
in [a,m−] and destroyed in [m+, b] (they all have persistence at least Γ), and
then recursively compute points living in [a,m+) and (m−, b] respectively.
The overlapping of the intervals is due to the fact that Γ-persistence pairs
created or destroyed in (m−,m+) may not be captured in the first step. Such
an overlapping, however, leads to a recurrence relation of the form

Cost(n) = · · ·+ 2Cost(n− 1),

because the interval [a,m+) can contain up to b−a indices in the worst case.

5. Essential classes

We are left with the case of detecting those simplices whose addition
creates an essential homology class. We compute them with similar methods,
but we have to double the size of the complex:

1We assume here that Rd(n) ∈ Ω(n1+ǫ) for some ǫ > 0 which seems to be a realistic
assumption.
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For a filtered complexK whose simplices are sorted in the order (σ1, . . . , σn),
we choose a new vertex v0 /∈ K, and define σ′

i := σi ∪ {v0}. We extend the
filter function by setting f(v0) = −∞, and f(σ) = ∞ whenever v0 ( σ.
Then, the coned complex is defined as K ′ = K ∪ {v0} ∪ {σ′

i | i ∈ [1, n]}, with
the sorted simplex ordering (v0, σ1, . . . , σn, σ

′
1, . . . , σ

′
n). Note that, indeed, K

′

arises from K by attaching each simplex to v0. Moreover, K ′ has only trivial
homology classes, except for one connected component which is created when
v0 is inserted.

Observe that the persistence pairs of K appear also in K ′ because the
filtration of K equals the filtration of K ′ in the first n + 1 steps, except the
unrelated vertex v0. It follows that the homology class created at σi is essen-
tial in K if and only if there exists some j such that (σi, σ

′
j) is a persistence

pair of K ′. Therefore, we just have to compute the set P n+2,2n+1
2,n+1 of the coned

complexK ′. By Section 3, this can be achieved in O(βRd(2n) log(2n)), where
β is the number of essential homology classes (which is the sum of the Betti
numbers of the simplicial complex K). Finally, since β ≤ CΓ for any Γ > 0,
this computation is asymptotically not more expensive than the computation
of inessential classes as described in the previous section. We conclude

Theorem 9. For a filtered simplicial complex of size n, computing the ho-
mology classes of persistence at least Γ has a time complexity of

O

((
1

δ
+ C(1−δ)Γ log n

)
Rd(n)

)

and a space complexity of O(dn+RS
d (n)), where RS

d (n) is the space complex-
ity for computing an n× n-matrix with O(dn) nonzero entries.

Furthermore, we compute an upper bound of the number of rank compu-
tations, which will be useful in Section 6.

Lemma 10. The number of rank computation in the algorithm is not larger
than

ρ := ρ(n,

⌈
1

δ

⌉
) := 4n(2

⌈
1

δ

⌉
+ log n+ 1).

Proof. We let p denote the number of persistence pairs and e be the number
of essential classes and note that 2p+e = n. For convenience, we set t :=

⌈
1
δ

⌉
.

Recall the divide-and-conquer strategy to find persistence points. The size
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of the recursion tree is obviously bounded by 2n, and we require at least
t µ-queries per node. If some query yields a non-zero value in a node, we
need more µ-queries to identify births and deaths of persistence pairs. Note
that every persistence pair causes at most 2 log n additional µ-queries in the
algorithm, because the pair appears in only one P-set of only one divide-and-
conquer step, requiring log n steps both to identify the birth and the death
simplex. Since there are p persistence pairs, at most 2p log n+ 2tn µ-queries
are needed in total for finding the inessential classes. For each essential class,
log(2n) = 1 + log n µ-queries are necessary. Therefore, the total number of
µ-queries is bounded by

2p log n+ 2tn+ e(1 + log n)

≤ 2tn+ n+ (2p+ e) log n = n(2t+ log n+ 1).

Since a µ-query requires 4 rank computations, the bound follows.

Extended persistence. Note that in the coned complex defined above, the
simplices σ′

1, . . . , σ
′
n in the second half of the filtration can be arbitrarily

interchanged without changing the result, as long as the complex remains
simplicial when adding the simplices in order. By choosing a meaningful
order in the second half, it is straight-forward to harvest more information
from the filtration:

Assume that the original filtration (σ1, . . . , σn) is a lower star filtration
of a simplicial complex (that is, the function value at every simplex equals
the maximal function value at the vertices of its convex hull). We set f(σ′

i)
to f(σi) if σi is a vertex; otherwise, we set f(σ′

i) to be the minimal function
value of the convex hull vertices of σi. We sort the σ′

i in decreasing order,
breaking ties by dimension and otherwise arbitrarily. In this way, we get
a filtration (τ1, . . . , τn) that equals the upper star filtration of the original
complex, except that the additional vertex v0 appears in the vertex list of
every simplex. It is well-known that (v0, σ1, . . . , σn, τ1, . . . , τn) corresponds to
the extended filtration that is obtained by first filtrating a topological space
with respect to its sublevel sets H(Xt), for t from −∞ to +∞, and then
extending the filtration by taking relative homology groups H(X,Xt) with t
from +∞ to −∞, where Xt := f−1[t,+∞) is a superlevel set of X. This
concept has been introduced as extended persistence in [10] and has been
proven as a useful concept in the theory of persistent homology.

We can compute the extended persistence pairs in three steps: We first
compute ordinary pairs of the form (σi, σj) by computing P (Γ)2,n+1

2,n+1. Second,
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we compute relative pairs of the form (τi, τj) by P (Γ)n+2,2n+1
n+2,2n+1. Finally, we

compute extended pairs of the form (σi, τj) by P n+2,2n+1
2,n+1 . We obtain the same

complexity bound as for the non-extended case.
Note that we interpret extended pairs to have infinite persistence; this

makes sense if we define the persistence of a class to be the range of t-values
where the class is alive, which is conformal to our definition of persistence
for ordinary pairs. Alternatively, if we define the persistence of an extended
class to be the difference of the birth and death value, we have to com-
pute P (Γ)n+2,2n+1

2,n+1 instead. This can be computed with the same divide-and-
conquer approach as for ordinary and relative classes, but the complexity
analysis does not carry over because the input parameter of the cost func-
tion in (4) does not decrease to 1. We pose it as an open question whether
the algorithm can be extended to ignore extended pairs with small difference
in function values.

6. Instantiating rank algorithms

We consider three possible choices of finite field rank algorithm, obtaining
different complexity bounds:

Deterministic algorithm. The best known deterministic rank-computation
algorithm [28] has a complexity of O(nω) operations in Z2 where ω is the
matrix-multiplication exponent. The currently best known upper bound for
ω is 2.376 [20]. Thus, we can state

Corollary 11. There is a deterministic algorithm to compute Γ-persistence
with time complexity

O

((
1

δ
+ C(1−δ)Γ log n

)
nω

)
= O

((
1

δ
+ C(1−δ)Γ

)
n2.376

)
.

Note that according to [19], the whole persistence diagram can be com-
puted in O(nω) instead.

Randomized algorithms. The randomized rank algorithms that we use require
computations in a base field with sufficiently many elements, even though the
rank over Z2 is computed. We let K denote an extension field of Z2 with
at least (n2 log n) elements (according to [27] and [26], a field of that size
is sufficient for our purposes). We express the complexity in the number
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of arithmetic operations (i.e., addition, multiplications, and divisions) in K.
One operation in K has a bit complexity of O(log n log log n log log log n) by
Schönhage-Strassen multiplication [34], so we obtain the bit complexity by
multiplying with this factor.

Furthermore, the used algorithms exploit the sparsity of the input matrix.
Recall from (1) that the boundary matrix has up to O(dn) = O(n log n)
nonzero entries.

Let Õ denote a complexity bound with logarithmic factors omitted. For
Las-Vegas type (correct result, but running time depends on random choices),

there is a rank-computation algorithm with expected Õ(n3−1/(ω−1)) = O(n2.28)
arithmetic operations in K, for matrices with O(n log n) nonzero entries [27].

Theorem 12. There is a Las-Vegas algorithm to compute Γ-persistence with
an expected number of

Õ

((
1

δ
+ C(1−δ)Γ log n

)
n3−1/(ω−1)

)
= O

((
1

δ
+ C(1−δ)Γ

)
n2.28

)

arithmetic operations in K in the worst case.

By our preceeding remark, the arithmetic operations in K only add a
logarithmic factor to the bit complexity, so the Theorem 12 also bounds the
bit complexity of the algorithm.

Finally, we look at randomized algorithms of Monte-Carlo type, that
means, the result is correct only with a certain probability. The following
theorem follows from Theorem 3 of Kaltofen and Saunders [26]2 who improve
on Wiedemann’s seminal paper [35]. We give the details on how to get this
bound in Appendix A.

Theorem 13 (Kaltofen-Saunders). Given a matrix M ∈ Zn×n
2 with O(dn)

nonzero entries, there is an algorithm to compute an integer r ≤ rank(M)
such that r = rank(M) with a probability of at least 0.94. This algorithm
performs O(n2 log n log log n) arithmetic operations in K.

This results suggests to use Rd(n) = O(n2 log n log log n). However, our
goal is a Monte-Carlo algorithm that returns the correct persistence pairs

2The authors of [26] refer to their algorithm as Las-Vegas algorithm, although it is
Monte-Carlo according to the usual definition
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with some constant probability q. Note that a single wrong rank value leads
to a wrong µ-query, and thus a unpredictable output of our algorithm. Since
the number of rank computations increases with n, the probability of a wrong
rank result goes to 1 for large instances. On the other hand, we can rerun a
rank computation k times in order to achieve a higher success probability of
(1−0.06k) (by taking the maximum among the k return values). We analyze
next how often we have to repeat each rank computation such that, with
probability q, every rank is computed without error.

Let p ≥ 0.94 denote the success probability of the Monte-Carlo method
from [26]. Assume that every rank computation in our algorithm is performed
by calling that algorithm k times, and taking the maximal return value as
rank. According to Lemma 10, to guarantee a success probability of q for
our algorithm, we have to satisfy

(1− (1− p)k)ρ ≥ q,

with ρ := ρ(n,
⌈
1
δ

⌉
) being an upper bound for the number of rank computa-

tions as defined in Lemma 10. We solve for k and get

k ≥
1

log 1
1−p

· log
1

1− q
1

ρ

(5)

Note that the second factor of this expression depends on n and δ and thus
affects the time complexity of the algorithm. However,

log
1

1− q
1

ρ

= Θ(ρ),

which follows in a straight-forward way from the fact that for any constant
q < 1, x(1−q1/x) converges to − log q for x → ∞. This implies that choosing
the smallest k satisfying (5), every rank computation requires O(log ρ) =
O(log n + log 1

δ
) applications of the Monte-Carlo algorithm. Therefore, we

have that Rd(n) = O(n2 log n(log n + log 1
δ
) log log n). Moreover, the space

consumption for computing a rank using Theorem 13 is bounded by O(dn),
as stated in [26]. Therefore, we get

Theorem 14. For any fixed success probability q < 1, there is a Monte-Carlo
algorithm to compute Γ-persistence with

O

((
1

δ
+ C(1−δ)Γ log n

)
n2 log n(log n+ log

1

δ
) log log n

)

arithmetic operations in K and with a space complexity of O(dn).

18



If δ is considered as a constant, the time complexity simplifies to

O(C(1−δ)Γn
2 log3 n log log n)

as stated in Table 1. We are able to bound the bit complexity of the algorithm
by multiplication with O(log n log log n log log log n):

Corollary 15. For any fixed success probability q < 1, there is a Monte-
Carlo algorithm to compute Γ-persistence with bit complexity

O

((
1

δ
+ C(1−δ)Γ log n

)
n2(log n)2(log n+ log

1

δ
)(log log n)2 log log log n

)
,

and with a space complexity of O(dn).

7. Concluding remarks

We have presented the first output-sensitive analysis of an algorithm to
compute persistent homology that ignores homology classes of low persis-
tence. If ranks are computed using the Monte-Carlo approach, the algorithm
requires only O(dn) space, even for computing the whole persistence dia-
gram (we remark that this is not true for the deterministic and Las-Vegas
algorithms presented in this work) Although our complexity results do not
improve the worst-case time complexity of the problem, we think that the
approach of using state-of-the-art methods from symbolic computation (rank
computation in our case) can lead to more efficient algorithms in this research
context and should be investigated further.

Generalized complexes. Our analysis readily applies for persistence on cubical
complexes. In more generality, we can state the result of Theorem 9 also with
Rd(n) replaced by R(n, e), which stands for the cost of computing a rank of
an n×n-matrix with at most e nonzero entries. The determistic variant of the
algorithm does not require any sparseness condition and therefore remains
valid for any e. As long as e ∈ Õ(n), the statments of Theorem 12 and
Theorem 14 will also remain true (the latter possibly with a few additional
logarithmic factors).
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Generalized fields. We concentrated on Z2-homology for the sake of simplic-
ity, and because it is the most commonly used base field for persistence
computation. However, Theorem 9 remains true for any base field (finite
or infinite), with the interpretation that it counts the number of arithmetic
operations within the given field. For high characteristics, such an operation
can take non-constant time.

Computing representative cycles. Birth and death times are sufficient for
computing the persistence diagram. However, one may want to compute
representative cycles of each persistent homology class. The following addi-
tional steps achieve this without increasing our complexity bound. For each
computed Γ-persistence pair or essential class created by the simplex σi, we
solve a linear system Ax = bi, where bi is the column corresponding to σi,
and A consists of all columns on bi’s left. The solution yields a cycle repre-
senting a class created by σi. The linear equation system can be solved in
time Rd(n) (again, cf. [28], [27], [26] for deterministic, Las-Vegas, and Monte-
Carlo algorithms), and thus, the computation takes O(CΓRd(n)) which does
not worsen the overall bound. Note that the generated cycle represents one
out of the whole coset of classes created by σi, not necessarily the one which
becomes trivial when the corresponding destroyer σj enters the filtration.

Experimental results. The LinBox library3 [36] provides an implemented
variant of asymptotically fast Monte-Carlo algorithm for rank computation
that we use for our complexity bound. Note that our divide-and-conquer
algorithm computes the rank of the whole boundary matrix in the first step,
so the Monte-Carlo approach has to compute ranks significantly faster than
Gaussian elimination to turn our persistence algorithm practical.

Our preliminary experiments, however, do not show this outcome. On
all tested boundary matrices, Gaussian elimination performs better than the
randomized rank algorithm. This is affirmative to the experimental results
from [37] where Gaussian elimination is also observed to be generally faster
than the randomized version. The reason is that during Gaussian elimination,
the columns only fill up slowly in the beginning, and usually stay rather
sparse until the end of the algorithm (although one can construct worst-case
examples where the reduced matrix becomes dense quickly). However, for
very large instances, it is demonstrated in [37] that Gaussian elimination

3http://www.linalg.org
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can fail due to this fill-up because the algorithm runs out of memory. Since
our rank algorithm only requires O(n log n) space, we conjecture that it can
compute persistence diagrams of complexes where the reduction algorithm
fails. Moreover, our restrictions to simplicial complexes and to Z2 homology
favor the Gaussian elimination because they both reduce the speed of the
fill-up process during elimination.
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Appendix A: Details on the Monte-Carlo method

We explain how our Theorem 13 follows from Theorem 3 in [26]. For
that, we first state their Theorem in full generality. In their paper, they
assume that K is a finite field with sufficiently many elements, and state in
the introduction that 50n2 log n elements suffice (for an n× n matrix).

Theorem 16 (Kaltofen-Saunders, Thm.3). Let A ∈ Kn×n and S ⊂ K. Using
5n−2 random elements from S, we may probabilistically determine the rank of
A by O(n) multiplications of A by vectors and O(n2 log n log log n) arithmetic
operations in K. The algorithm returns an integer that is with probability no
less than

1−
3

2

n(n+ 1)

Card S

the rank of A.

We simplify their theorem in several respects:

• First of all, there is no restriction on S, so we can simply choose S = K.
It follows that we can bound the success probability by

1−
3

2

n(n+ 1)

CardK
≥ 1−

3

2

n(n+ 1)

50n2
≥ 1−

3

2

2n2

50n2
= 0.94.

• Moreover, the algorithm that they define always returns a value which
is at most the rank of A.

• Furthermore, we observe that, if A has O(dn) = O(n log n) nonzero
entries, a matrix-vector multiplication needs O(n log n) operations in
K, so that the O(n2 log n log log n) operations are dominant.

• Finally, we consider our case of a matrix A ∈ Zn×n
2 . The base field has

not enough elements, but we can pass to an algebraic extension field K

of Z2 with a sufficient number of elements. It is well-known that the
rank of A over Z2 equals the rank of A over K (because the rank is
defined by the maximal non-vanishing minor of A, and the property of
a minor being zero or not does not change when passing to an extension
field).

Putting everything together yields Theorem 13.
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