
EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Persistent Homology Computation with a Twist

Chao Chen∗ Michael Kerber†

Abstract

The persistence diagram of a filtered simplicial com-
plex is usually computed by reducing the boundary
matrix of the complex. We introduce a simple op-
timization technique: by processing the simplices of
the complex in decreasing dimension, we can “kill”
columns (i.e., set them to zero) without reducing
them. This technique completely avoids reduction on
roughly half of the columns. We demonstrate that
this idea significantly improves the running time of
the reduction algorithm in practice. We also give an
output-sensitive complexity analysis for the new al-
gorithm which yields to sub-cubic asymptotic bounds
under certain assumptions.

1 Introduction

Persistent homology is a quickly-growing area of re-
search in the analysis of topological spaces. Substan-
tial progress, both theoretical and practical, has been
made during the last decade; we refer to [3] for a re-
cent textbook on the topic.

The classical way of computing the persistence of
a simplicial complex (or more precisely, a filtration of
it) is by reduction [4]: the boundary matrix of the
complex is transformed by column operations until
each column either turns zero, or has a unique lowest
nonzero entry. For a complex with n simplices, the
algorithm runs in cubic time in the worst case; an
example where this bound is actually achieved has
been presented in [6]. However, it has been observed
that the algorithm rather behaves linear in practical
applications [7, 1].

We present an optimization of the persistence algo-
rithm. The idea is that the reduction of a column that
corresponds to a negative simplex (one that destroys
an homology class) also reveals the simplex that cre-
ates the corresponding class. Since that column is
known to be zero after reduction, we can simply set it
to zero (“kill it”) without applying any column oper-
ation on it. We change the order of column reduction
in the algorithm to profit from this trick as much as
possible.

Our algorithm permits an output-sensitive com-
plexity analysis. Writing d for the dimension of the
complex, P for the persistence pairs of the filtration

∗IST Austria, Klosterneuburg, Austria; Vienna University
of Technology, Vienna, Austria, chao.chen@ist.ac.at

†IST Austria, Klosterneuburg, Austria, mkerber@ist.ac.at

(that is, the indices of creator/destroyer pairs), and
E for the set of homology classes of the underlying
simplicial complex, we obtain a bound of

O



d log n(#E ·
∑

(i,j)∈P

(j − i) +
∑

(i,j)∈P

(j − i)2)



 .

Although our variant does not improve the worst case
bound (and even worsens it by a factor of d log n),
the bound still shows that the algorithm can perform
sub-cubic, and even sub-quadratic if the total index
persistence, namely, the squared sum of indices differ-
ences of persistence pairs, is small.

We further investigate the case of cubical data,
which is the common format in computer vision and
visualization: the space is a cubical subset of Eu-
clidean space tiled into unit cubes; the filtration is
done with respect to a function f that assigns a value
to the center of each unit cube. Based on our com-
plexity bound above, we can prove a running time of
O(c2n log n) for computing persistence on such data,
where c is the number of critical points of f . We also
compare the practical performance of our implemen-
tation with the classical approach as well as with the
sophisticated cohomology algorithm of the Dionysus
library and observe a better running time of our op-
timization for cubical data in R

3.

2 Background

Let K = {σ1, . . . , σn} denote a simplicial complex of
dimension d. We assume an ordering on the simplices
such that for each i ≤ n, Ki := {σ1, . . . , σi} is a sim-
plicial complex again. The chain ∅ = K0 ⊂ Ki . . . ⊂
Kn = K is called a filtration of K. Normally, such a
filtration is defined according to a function f : K → R

that orders the simplices of K by function value.
For 0 ≤ i ≤ n and 0 ≤ p ≤ d, we denote the p-

th homology group of Ki by Hp(Ki), and we write
H(Ki) for the direct sum of all homology groups of
Ki. The rank of Hp(Ki) is called the p-th Betti num-
ber βp(Ki). We obtain Ki by adding the simplex σi

into Ki−1. Denoting di as the dimension of σi, there
are two possible changes of the homology due to the
addition of σi, either a class of dimension di is created
or a class of dimension di− 1 is destroyed. In the for-
mer case, we call σi a positive simplex, or a creator ;
in the latter case, it is called negative, or a destroyer.

To each negative simplex σj , we can associate a
unique positive simplex σi with i < j such that σj



27th European Workshop on Computational Geometry, 2011

destroys the homology class that was created when
σi was added in the filtration (see [3] for a precise
definition). We call (σi, σj) a persistence pair and j−i
its index persistence. Note that there are simplices
that are not paired, namely those (positive) simplices
that create homology classes of the simplicial complex
K; we call them essential simplices. By definition,
every simplex of K either belongs to a persistence
pair or is essential.
Reduction Algorithm. The boundary of a simplex
σ in dimension dσ is the set of its faces in dimension
dσ−1. For dσ = 0, the boundary is empty, otherwise,
it consists of exactly dσ + 1 simplices. The bound-
ary matrix ∂ ∈ (Z2)

n×n of a filtered complex K is a
n × n matrix where the j-th column represents the
boundary of σj , that is ∂i.j = 1 if and only if σi be-
longs to the boundary of σj . In this case, σi must
belong to the complex before σj is added, so ∂ is an
upper-triangular matrix.

For 0 6= Mj = (m1, . . . ,mn) ∈ Z
n
2 , we set

low(Mj) := max{i = 1, . . . , n | mi = 1}. For Mj = 0,
low(Mj) is undefined. A column operation of the
form Mj ← Mj + Mk is called reducing if k < j
and low(Mj) = low(Mk). A matrix is called reduced

if no reducing column operation can be performed on
it. We call a matrix R a reduction of M if R is re-
duced and arises from a sequence of reducing column
operations from M .

A reduction R of the boundary matrix ∂ as above
yields the complete information about the persistent
homology of the complex. Define

P := {(i, j) | Rj 6= 0 ∧ i = low(Rj)}

E := {i | Ri = 0 ∧ low(Rj) 6= i∀j = 1, . . . , n}.

Then, (i, j) ∈ P if and only if (σi, σj) form a persis-
tence pair of the underlying filtrated complex. More-
over, i ∈ E if and only if σi is essential [3]. In partic-
ular, this information does not depend on the choice
of the reduction. The simplest way of reducing ∂ is to
process from left to right and to reduce a column com-
pletely by adding columns from its left (Algorithm 1).
A lookup table can be used to identify the next col-
umn to be added in constant time. It can be observed
immediately that the running time is cubic in n, and
cubic running time is indeed necessary for certain in-
put filtrations as presented in [6].

Algorithm 1 Left-to-right persistence computation

1: procedure Persistence left right(∂)
2: R← ∂; L← [0, . . . , 0] ⊲ L ∈ Z

n

3: for j = 1, . . . , n do

4: while Rj 6= 0 ∧ L[low(Rj)] 6= 0 do

5: Rj ← Rj + RL[low(j)]

6: ifRj 6= 0 then L[low(Rj)]← j

7: return R

3 Reduction by killing

Let Rj 6= 0 a column of a reduction of ∂ and i =
low(Rj). Recall that σj kills the homology class that
is created by σi. The key observation exploited in our
new algorithm is that in this case, Ri must be zero,
since σi is in particular a positive simplex. So, we
can just set the i-th column of ∂ to zero and have it
reduced, without doing any further column operation
on it. We say in this case that we kill column i.

Reconsidering Algorithm 1, the killing idea does not
save any column operations, because whenever a col-
umn is identified as positive, it is already reduced due
to the left-to-right traversal strategy. Therefore, we
change the reduction order of the columns and pro-
ceed in decreasing dimensions: setting d := dimK,
we first reduce columns that correspond to d-simplices
(from left to right), then columns that correspond to
(d − 1)-simplices, and so on. Indeed, if the reduced
j-th column has lowest entry i, the corresponding sim-
plex σi has dimension dim σj − 1, so in the moment
when ∂j (namely, the j-th column of ∂) is reduced, ∂i

has not been processed yet. Algorithm 2 summarizes
the new method. The dimension of the complex K is
passed as a second argument. We also assume that
each column stores the dimension of the simplex that
it represents in an additional data field. We call this
the simplex-dimension of a column. By an inductive
argument on the simplex dimension, one can prove
that Algorithm 2 and Algorithm 1 return the same
reduction matrix R.

Algorithm 2 Decreasing dimension persistence com-
putation

1: procedure Persistence decr dim(∂, d)
2: R← ∂; L← [0, . . . , 0] ⊲ L ∈ (Z)n

3: for δ = d, . . . , 1 do

4: for j = 1, . . . , n do

5: if Mj has simplex-dimension δ then

6: while Rj 6= 0 ∧ L[low(Rj)] 6= 0 do

7: Rj ← Rj + RL[low(j)]

8: if Rj 6= 0 then

9: i← low(Rj)
10: L[i]← j
11: R[i]← 0 ⊲ Kill column i

12: return R

4 Analysis

The same analysis as before also shows a worst-
case bound of O(n3) for Algorithm 2. The example
from [6] can be adapted to show that cubic running
time can also be achieved for this algorithm. How-
ever, we will derive a complexity bound that depends
on the index persistence of the pairs in the complex,
and the number of essential classes of the complex.

We store a matrix M ∈ (Z2)
n×n as an array of



EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

size n, each entry representing a column. A column
is stored as a balanced binary search tree storing the
indices of nonzero entries as nodes. This way, an op-
eration of the form Mj ←Mi + Mj can be performed
with O(#Mi log(#Mi+#Mj)) = O(#Mi log n) oper-
ations, where #Mi is the number of nonzero entries in
column i. Compared to the usual list-representation
of columns, the worst case complexity worsens by a
logarithmic factor when using trees. However, the
complexity of an operation only depends logarithmi-
cally on the column to be reduced; this is advanta-
geous when a column accumulates more and more en-
tries by adding small columns during the reduction.

Lemma 1 Algorithm 2 (as well as Algorithm 1) re-

duces the j-th column in time O(
∑j−1

i=1 #Ri log n) =
O(#R log n), where #R is the total number of
nonzero entries in the final reduced matrix R.

Proof. In the reduction process for a single column,
we add only columns from the left to it, and each one
at most once. Moreover, all columns which can be
added are already reduced. �

The next goal is to bound #R. The crucial obser-
vation for that is the following:

Lemma 2 Let Rj 6= 0 be a reduced column and
i = low(Rj). Then, Rj is a linear combination
of the columns ∂i+1, . . . , ∂j . In particular, #Rj ≤
(d + 1)(j − i).

Proof. Assume that the claim is true for any non-
zero column with index smaller than j. Initially, Rj is
set to ∂j which is clearly a linear combination. During
the reduction, a column Rk is added to Rj only if
k < j and also only if ℓ := low(Rk) > i, because
otherwise low(Rj) < i at the end. It follows that
i < ℓ < k < j and so, Rk is by induction a linear
combination of ∂ℓ+1, . . . , ∂k. The number of 1’s in
any column ∂k is bounded by d + 1. Thus, only up to
(d + 1)(j − i) 1’s can appear in Rj . �

Corollary 3 #R ≤ (d + 1)
∑

(i,j)∈P (j − i)

We could simply multiply the bound from Lemma 1
by n to obtain an output sensitive bound both for
Algorithm 1 and 2. However, we can further improve
on this by exploiting that we zero out many columns
in Algorithm 2 instead of reducing them. As a first
step, we refine the argument from Lemma 2 to derive
a more adaptive bound for non-zero columns of R:

Corollary 4 Let Rj 6= 0 be a reduced column and
i = low(Rj). Algorithm 2 (as well as Algorithm 1)
reduces ∂j to Rj in O(d log n(j − i)2).

Proof. Recall from the proof of Lemma 2 that we
only add Rk to Rj if ℓ = low(Rk) satisfies i < ℓ <
k < j. So, the number of ones in Rk is bounded by
(d + 1)(k − ℓ) ≤ (d + 1)(j − i). Since at most (j − i)
column operations of that form must be performed
for Rj , the bound follows. �

Theorem 5 Algorithm 2 has a total running time of

O(d log n(
∑

(i,j)∈P

(j − i)2 + #E
∑

(i,j)∈P

(j − i))).

Proof. Note that the columns of ∂ are in one-to-one
correspondence to the simplices of K. It thus makes
sense to talk about negative, positive and essential
columns of ∂. We divide the columns in three dif-
ferent classes: for negative columns, we can bound
the cost by O(d log n

∑

(i,j)∈P (j− i)2) by Corollary 4.
For essential columns, Lemma 1 yields a total cost
of O(#E log n#R) = O(d log n#E

∑

(i,j)∈P (j − i)).
The remaining columns are positive, but inessential
columns. By the killing idea, they are zeroed out be-
fore any operation is performed on them, thus, the
cost for them is zero. �

5 Cubical Complex

We give an example of how this bound leads to sub-
cubic bounds for special input types. We refer to [3,
§VI] for definitions of concepts introduced in this sec-
tion. Let d be a fixed constant from now and consider
a regular cubical grid in d dimensions. We let f denote
a function that assign a (different) real value to each
grid point. By consistently triangulating each d-cube
of the grid without introducing new vertices (e.g., as
done in [1]), we can extend f to a piecewise linear
function. Depending on its lower star, each vertex is
either regular or critical; we let c denote the number
of critical points of f . We filter the complex accord-
ing to the lower star filtration with respect to f . Due
to the cubical structure, the number of simplices in
each lower star is bounded by a constant (which is
exponential in d).

The final complex is homeomorphic to a d-ball, so
there are no essential classes except for the connected
component; hence we only have to consider the cost of
negative simplices. We distinguish two cases: for per-
sistence pairs that are created and destroyed within
the same lower star, the index persistence is bounded
by a constant, and since there are up to n/2 such
pairs, the total cost for them is O(n log n) with Corol-
lary 4 (with n being the size of the complex). Second,
we consider pairs that span over more than one lower
star. There are O(c) such pairs, and by Lemma 1
and Corollary 3, we can reduce them in O(c#R log n)
operations, where #R is the number of ones in the
boundary matrix. Note that pairs that live in only
one lower star cause at most a constant number of



27th European Workshop on Computational Geometry, 2011

ones in R, and pairs that span over more lower stars
cause up to n ones in R. This yields a bound of
#R = O(n + cn), and thus a total running time of
O(c2n log n) for the reduction algorithm.

Our bound shows that when the complex is sub-
divided regularly (for instance, by a barycentric sub-
division), the running time of computing persistence
scales with a n log n factor which matches general ob-
servations in practice. However, our idealistic analysis
can only be a first step to investigate this behavior,
because introducing noise usually increases the num-
ber of critical points in the complex.

6 Experiments

We verify our optimization in practical data. In spe-
cific, we focus on cubical data, namely, when the
topological space of interest is a subset of Euclidean
space (e.g. a hypercube), and the function is sam-
pled uniformly. This class of data is common in im-
age processing and visualization. In specific, we use
3-dimensional data from the Volvis voxel data reposi-

tory1. A sample of the results are shown in Table 1.
We triangulate the domain with the Freudenthal

triangulation [5]. In this case, the lower star of each
vertex has a bounded size, which is exponential to the
dimension of the domain. Although originally given
as 256 × 256 × 256, we downsized the data to 100 ×
100 × 100, which leads to simplicial complexes with
25.4 million simplices.

We compare our method (KIL) with two other
implementations, the standard reduction algorithm
(STA), and the cohomology-reduction algorithm
(COH) in the Dionysus2 implementation by Moro-
zov [2]. We compare in terms of both execution time
and number of basic add operations. The execution
time includes both matrix reduction time and the time
for building boundary matrices based on given filtra-
tions. We use std::vector instead of a binary search
tree to represent each column because the former has
shown better practical behavior.

The testing platform of our experiments is a
six-core AMD Opteron(tm) processor 2.4GHz with
512KB L2 cache per core, and 66GB of RAM, run-
ning Linux. The code runs on a single core.

The experiments show a significant improvement of
our method over the standard algorithm and over co-
homology reduction. We also notice that the factor of
improvement highly depends on the particular input
instance. We remark that cohomology reduction is
even slower than the standard algorithm in some cu-
bical data. Although cohomology reduction appears
to have fewer add operations, it incurs more overhead
due to involved data structures in Dionysus.

We conclude by reporting the performance on two
non-cubical data by Morozov [2], namely, the alpha

1http://www.volvis.org/
2http://www.mrzv.org/software/dionysus/

Execution time (minute)
aneurism bonsai foot skull

KIL 1.02 1.10 1.16 1.45
STA 6.95 7.63 6.54 9.45
COH 1.47 19.76 59.20 95.09

Number of Add Operations (million)
aneurism bonsai foot skull

KIL 472.8 104.2 439.9 692.1
STA 24436.8 33664.6 27410.6 66693.3
COH 56.2 3276.1 7064.2 15362.3

Table 1: Performance on cubical data.

complex of uniform samples of a torus embedded in
3-dimensional Euclidean space (0.6 million simplices),
and the 4-skeleton of the rips complex of the mum-
ford data (2.4 million simplices). Although our algo-

Time(minute) Add Operations(million)
Torus Mumford Torus Mumford

KIL 0.17 0.68 1224.6 1459.8
STA 7.55 0.74 73926.3 1524.5
COH 0.04 0.26 3.8 0.004

Table 2: Performance on non-cubical data.

rithm again improves over the standard persistence
algorithm, it is slower than cohomology reduction al-
gorithm on this data. Hence, we observe that the
two methods (KIL and COH) have different behaviors
over different data; a deeper understanding of this is
needed and will be our future work.

Acknowledgement

The authors thank Dmitriy Morozov for helpful discussion and
answering our questions concerning Dionysus in depth. We
thank Herbert Edelsbrunner for helpful comments.

The first author’s work is partially supported by the Aus-
trian Science Fund under grant P20134-N13.

References

[1] P. Bendich, H. Edelsbrunner, and M. Kerber. Computing
robustness and peristence for images. IEEE Transactions

on Visualization and Computer Graphics, 16:1251–1260,
2010.

[2] V. de Silva, D. Morozov, and M. Vejdemo-Johansson. Du-
alities in persistent (co)homology. Manuscript, 2010.

[3] H. Edelsbrunner and J. Harer. Computational Topology,

An Introduction. American Mathematical Society, 2010.

[4] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topo-
logical persistence and simplification. Discrete & Compu-

tational Geometry, 28(4):511–533, 2002.

[5] H. Freudenthal. Simplizialzerlegungen von beschränkter
Flachheit. Annals of Mathematics, 43(3):580–582, 1942.

[6] D. Morozov. Persistence algorithm takes cubic time in the
worst case. In BioGeometry News. Duke Computer Science,
Durham, NC, 2005.

[7] A. Zomorodian and G. Carlsson. Computing persistent ho-
mology. Discrete & Computational Geometry, 33(2):249–
274, 2005.


