
Exact and Efficient 2D-Arrangements of Arbitrary Algebraic Curves

Arno Eigenwillig∗ Michael Kerber∗

This is the author-prepared version of the article. The definite version is published in
the Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA08). c©SIAM 2008

Abstract

We show how to compute the planar arrangement induced by segments of arbitrary algebraic curves
with the Bentley-Ottmann sweep-line algorithm. The necessary geometric primitives reduce to cylindri-
cal algebraic decompositions of the plane for one or two curves. We compute them by a new and efficient
method that combines adaptive-precision root finding (the Bitstream Descartes method of Eigenwillig
et al., 2005) with a small number of symbolic computations, and that delivers the exact result in all
cases. Thus we obtain an algorithm which produces the mathematically true arrangement, undistorted
by rounding error, for any set of input segments. Our algorithm is implemented in the EXACUS library
AlciX. We report on experiments; they indicate the efficiency of our approach.

1 Introduction

A fundamental task in computational geometry is this: Given a set of line or curve segments in the plane,
compute their arrangement [2] [29]. Many algorithms for this task have been studied, a popular one is
the sweep-line method going back to Bentley and Ottmann [5]. We show how to implement the basic
geometric operations on points and segments needed by the sweep-line method to compute the arrangement
of segments of algebraic curves of arbitrary degree (i.e., vanishing loci of polynomials f(x, y) =

∑

i,j aijx
iyj)

with integer coefficients. Our approach produces the exact result in all cases, including all degeneracies, but
is also fast (see the experiments in Sec. 5) due to a judicious combination of symbolic and adaptive-precision
numeric computations.

Reconciling exactness and efficiency in the computation of non-linear arrangements has attracted a lot of
attention in recent years (see below), which is not surprising due to the importance and wide applicability of
arrangements in computational geometry. We mention just two examples – boolean operations on polygons
bounded by algebraic curves (an immediate consequence of our result) and arrangements of intersection
curves on a surface or in its parameter space (important for CSG-to-BRep conversion in CAGD) – and refer
to the surveys [2] [29] for more.

Related work This work follows the Exact Geometric Computation (EGC) paradigm coined by Yap [44]:
use any numeric or symbolic technique for the basic geometric operations that works well, as long as
it produces the mathematically true result. Existing EGC algorithms for non-linear arrangements have
handled circular arcs [17] [41], conics [39] [7] [24], cubics [22], intersection curves of spatial quadrics [9],
Bézier curves [32], and non-singular algebraic curves [33] [42] but not, to our knowledge, algebraic curves
in full generality. 1

There are non-EGC approaches to arrangements of curves: Milenkovic and Sacks [36] compute an approx-
imate arrangement of algebraic curves and prove, under certain assumptions on the underlying numerical
solver, that there exists a perturbation of the input which realizes the computed arrangement. Halperin and
Shelton [31] show how to actually carry out a controlled perturbation of the input such that fixed-precision
arithmetic suffices; see also [30] and [35]. The guarantee offered by these methods bounds backward error :

∗Max-Planck-Institut für Informatik, Saarbrücken
email:{arno,mkerber}@mpi-inf.mpg.de

1Recently in [13], also quartic curves have been considered

1



the result is correct for a slight (implicit or explicit) perturbation of the original input. Eigenwillig et
al. [23] compute arrangements of Bézier curves with bounded forward error : the output is close to the true
arrangement, but vertex coordinates of the true arrangement are not computed explicitly. These approaches
have their merits but are simply inapplicable when an exact result is needed.

Besides computational geometry, symbolic computation [4] [14] [12] is a main source of important tools
for our algorithm. The geometric analyses of curves and curve pairs in Sections 3 and 4 are essentially
cylindrical algebraic decompositions (cads) of R2 for one and two polynomials, resp., augmented with
adjacency information. Cads of Rd were introduced by Collins [15] in a decision method for the first-
order theory of real closed fields; adjacency computation was added by Arnon et al. [3]. Their algorithms
compute purely symbolically, which is slow. More recent work2 [16] [11] [37] achieves significant speedups
with numerical computations, esp. for root finding, but they have to fall back to symbolic computation in
unfavorable situations. In contrast, our approach uses numerical adaptive-precision root finding based on
the Bitstream Descartes method [21] uniformly – there is no fall-back to a symbolic method in hard cases.

Regarding the geometry of algebraic curves, we refer to the textbooks by Gibson [27] and Walker [38].

Contents We describe the sweep-line algorithm for curves in Section 2 and show how it reduces arrange-
ment computation for segments to geometric analyses of curves that support segments and of pairs of such
curves. Section 3 summarizes the analysis of one curve, a full treatment is given in [20]. Section 4, the main
contribution of this work, extends these techniques to pairs of curves. We report on our implementation
and on runtime measurements in Section 5, and present our conclusions in Section 6.

2 Sweep-line algorithm
f

α1 α2

Q = (α2, f, 1)

s = (P,Q, f, 1)

R = (α1, f, 0)

P

Given a set of algebraic curve segments, we compute its arrangement using a
sweep-line algorithm. The algorithm operates on x-coordinates, points on curves,
and segments of curves. Every relevant x-coordinate α occurs as a pair (p, I) of a
square-free polynomial p(x) ∈ Z[x] and a bounded interval I ⊆ R such that x = α
is the unique root of p(x) = 0 in I. We call I an isolating interval for α. Every
point P = (α, β) considered lies on some supporting curve f and is represented as
a triple (α, f, i) such that y = β is the ith real root of f(α, y) = 0. We call i the
arc number of P . As segments of a curve f , we allow only x-monotone segments
whose x-range does not extend across an f -event (see below). We call such a segment s a sweepable segment.
With the possible exception of the endpoints P and Q, all points on s have the same arc number i on the
supporting curve f . We represent s as (P, Q, f, i). Arbitrary segments of a curve f can be split into
sweepable segments using the curve analysis of f . Our algorithm also allows vertical line segments and
segments with endpoints “at infinity”, which occur naturally when an entire algebraic curve is broken into
sweepable segments, and handles them akin to [8, §3.1]. Here, we restrict our presentation to bounded
non-vertical segments for brevity.

Conceptually, the sweep-line algorithm sweeps the plane with a vertical line ℓ from left to right and
records features of the arrangement as ℓ passes over event points, that is, points at which segments start,
intersect, or end [5] [34, §10.7]. To do so, the algorithm processes event points in xy-lexicographic order
while maintaining the following invariant: Left of ℓ, the arrangement has already been constructed. On
ℓ, we see a sorted sequence of intersections with segments, which is stored in the Y-structure. Right of ℓ
lies the unexplored part of the plane. The X-structure stores, in xy-lexicographic order, some of the future
event points; at least those at which segments start, end, or segments adjacent on the sweep line intersect.

The sweep line is advanced across an event as follows.

• Find the segments involved in the event by locating the event point in the Y-structure, exploiting its
order. (Requires: Comparison of y-coordinates of point and segment at common x-coordinate.)

• Remove ending segments from Y-structure. (Requires: Comparison of event point and endpoints.)

• Reorder remaining intersecting segments according to the situation right of the event (see below).
(Requires: Intersection multiplicity of segments.)

2We refer to [20] for a detailed discussion of previous work on computing a cad with adjacencies of R
2 for just one polynomial.

2



• Add starting segments to the sorted Y-structure. (Requires: Comparison of event point and endpoints.
— Comparison of segment y-order right of common point.)

• Add intersections of newly adjacent segments to the sorted X-structure. (Requires: Computation of
intersection points. — Lexicographic comparison of event points.)

The sweepable segments we consider possess an analytic implicit function y = ϕ(x) around each point in
their interior. Our way of finding the intersection points of segments adjacent in the Y-structure produces
their intersection multiplicity as a by-product, indicating up to which degree the power series expansions
of their implicit functions agree. This is enough to reorder them (see [7] [22, §5]) in linear time (see [10]).
As a consequence, the complexity analysis of the sweep-line method in terms of basic geometric operations
remains unchanged from the straight-line case.

0 1 2 3 4 3 4 3 2 1 0

2 0

1
1

20

20

1

2 2

2 0

1
1
1

11

1 1

1
1

All comparisons above reduce to comparing x-coordinates and to comparing
points on at most two supporting curves over a common x-coordinate. Hence these
comparisons as well as computing intersections reduce to a geometric analysis of
a single curve or a pair of curves in a cad-like fashion; cf. [22, §5] [6].

Single curves Let C be an algebraic curve with defining equation f(x, y) = 0.
In what follows, we will identify C with the polynomial f , talking about the curve f .
We assume for brevity that f is square free (i.e., h2 | f ⇒ deg(h) = 0) and that f
contains no vertical line component (i.e., ∀a ∈ C : (x − a) ∤ f).

We define the f -events to be the x-coordinates where f has a critical point
(singularity or regular point with vertical tangent line) or a vertical asymptote.
For each event α, an f -stack is created that reflects the geometry of f at α. This
stack stores the number of intersections on the curve with the line x = α in
increasing order. For each such intersection point, it stores how many arcs of the
curve enter that point from left side, and how many are leaving to the right side. Also, information about
vertical asymptotes approaching x = α is stored. For intervals between consecutive events, f -stacks are
created as well. See Section 3 for more.

f

f
g
f

f
g
f

f
gg

ff f

g
f

g g
f
f
f f

g g

f

g

1

1

i
i

Curve pairs We now consider two curves f and g such that h := gcd(f, g) is
constant. (This is no restriction; if h is non-constant, we can re-define segments
on f in terms of f/h or h, same for g.)

The x-coordinates of intersections of f and g together with f -events and g-
events are called fg-events. Note that the number and relative position of arcs of
f and g on a vertical line can only change at fg-events. For each fg-event and
each interval between fg-events, we store an fg-stack, which records the vertical
order of f -arcs and g-arcs. In addition, we store the intersection multiplicities of
intersection points (α, β) at fg-events α which are neither f - nor g-events.

Computing an fg-stack over an interval I is easy: Just pick a rational or
binary number a ∈ I, then find and sort the real roots y of f(a, y) and g(a, y),
which are all simple and distinct. However, fg-stack construction over an event α
is hard, because f(α, y) and g(α, y) may have common roots, multiple roots, and
not necessarily rational coefficients. Section 4 describes our new method for this.

3 Curve analysis

Given f ∈ Z[x, y], we have to compute the events (x-coordinates of critical points and asymptotes), and to
build the stacks at each event (number of points and number of incident arcs on either side at each point).
As it will be useful in Section 4, we also determine isolating intervals for the y-coordinate of the stack points
(we call them f -intervals) and an upper bound on their multiplicities as roots of fα := f(α, y). To do so, we
use the method presented in [20]. For completeness, we summarize it briefly. Let us begin with the generic
case.

Definition 3.1 We call a curve f ∈ Z[x, y] generic, if

(G1) f is y-regular, i.e., its leading term as a polynomial in y does not involve x; and

3



(G2) for each α ∈ R, the polynomial fα ∈ R[y] has at most one multiple root in C.

We first give an algorithm generic analyze that either performs the curve analysis of f or reports a failure.
If f is generic, then generic analyze does not report a failure. Later on, we give the full algorithm that
uses generic analyze to perform the curve analysis without genericity conditions.

The algorithm generic analyze The algorithm consists of three steps: It finds the events of f ; then
computes the points on the stacks over each event α by isolating the real roots of fα; finally, it computes
the number of arcs on either side for each point. The most interesting part is root isolation of fα for an
event α. The polynomial fα has algebraic coefficients and multiple roots; both complicates root finding.

We use the Bitstream Descartes method [21], which computes isolating intervals for the exact real roots
of a square free polynomial, using only approximations of the coefficients. It recursively subdivides an initial
interval containing all roots into intervals (c, d) for which the Descartes test indicates that they contain r = 0
or r = 1 real roots. This test is given by Descartes’ Rule of Signs (see [19] for history).

Theorem 3.2 (Descartes’ Rule, Bernstein form) Consider a polynomial g(t) =
∑

biB
n
i [c, d](t) ex-

pressed in the Bernstein basis Bn
i [c, d](t) =

(

n

i

) (t−c)i(d−t)n−i

(d−c)n for an interval [c, d]. Let v be the number of

sign variations in the coefficient sequence (b0, . . . , bn). Let r be the number of roots of g in (c, d), counted
with multiplicities. Then v ≥ r and v ≡ r (mod 2). In particular, v = r if v ≤ 1.

In the presence of an r-fold real root β with r > 1, the Bitstream Descartes method would run indefinitely
on fα, trying to separate the r roots at β. To overcome this, we precompute some exact information about
the polynomial fα, namely k, the degree of gcd(fα, f ′

α), and m, the number of distinct real roots of fα,
using the Sturm-Habicht sequence of f [28] (or equivalently the signed subresultant sequence [4, §4]).

The m-k-Bitstream-Descartes method proceeds as follows: Run the Bitstream Descartes method on fα,
exploring subintervals in breadth-first order, and stop in two cases: First, if m − 1 simple roots are found
and only one further interval counts more than zero in the Descartes test, then report this last interval as
the mth isolating interval. Second, if the Descartes test counts k or less in all intervals, report a failure.

If f is generic, (G2) implies that the m-k-Bitstream-Descartes method and thus generic analyze do
not fail. The second stopping criterion ensures termination even if there are no m− 1 simple roots, cf. [19].

On success, the f -intervals at α have been computed. Descartes’ rule gives an upper bound for the
multiplicity of the root inside each interval. The m − 1 simple roots of fα are adjacent to exactly one arc
on each side, all remaining arcs run into the mth isolating interval. The y-coordinates of points over α
can be approximated to any precision by refining the f -intervals further. The Bitstream Descartes method
provides a framework that controls the numerical precision necessary for the coefficients of fα and thus
for α when we refine f -intervals. Beyond this, there is no need for controlling numerical precision in our
algorithm.

Curve analysis in all cases If f is not generic, generic analyze may fail. We can escape from
non-genericity by passing to the sheared curve

Shsf := f(x + sy, y)

with all but finitely many choices of a shear factor s ∈ Z, see [4, Prop. 11.23].
The full curve analysis works as follows: Apply generic analyze on f . On success, return. Otherwise,

choose a shear factor s at random and compute the sheared curve Shsf . Apply generic analyze on Shsf .
If it fails, choose another shear factor s and retry. On success, apply transform analyze, using the stacks
of Shsf .

The procedure transform analyze takes a curve analysis of Shsf as input and computes the stacks of
f without any genericity condition. This is not a trivial operation, because the notion of a critical point
depends on the coordinate system. However, we have to omit it for brevity and refer to [20, §6] instead.

4 Curve pair analysis

We consider two algebraic curves f and g for which gcd(f, g) is constant. The goal is to determine the
sequence of fg-events and an fg-stack at each event. The fg-events are the x-coordinates of intersections

4



of f and g together with the f -events and g-events. An fg-stack is a sequence of elements f, g, and i

that represents the vertical order of points of f , points of g, and intersection points of f and g on the
vertical line at the event. Additionally, an fg-stack at an fg-event that is neither f - nor g-critical records
the intersection multiplicity of each intersection point. Generally, these intersection multiplicities arise as
by-products of our method, without extra effort. Only in special cases does their determination necessitate
a change into generic coordinates. For brevity, we do not go into details here of how they are obtained.

Both the fg-events and their stacks are computed in a “lazy” fashion: When the sweep-line algorithm
invokes a geometric operation involving the curve pair (f, g) for the first time, the fg-events are computed.
Also, the computation of each stack is delayed until it is queried the for the first time by the sweep-line
algorithm. This avoids unnecessary computations, since many curve pairs might not be considered at all,
and only few stacks might be needed for other curve pairs.

4.1 Finding events

The f - and g-events are already known from the f - and g-stacks. The x-coordinates of intersections are
roots of the resultant polynomial R := resy(f, g) ∈ Z[x]. Since gcd(f, g) is constant, R 6= 0.

The algorithm proceeds as follows: Compute R = resy(f, g). Factor R = R1
1 · · ·R

t
t such that R1, . . . , Rt ∈

Z[x] are square free [26, §8.1]. (Ri has exactly the roots of R with multiplicity i.) Isolate the roots of every
Ri with the Descartes method. Merge all of them and the f -events and g-events into one sorted sequence.
For each x-coordinate α in the sequence, store its multiplicity as root of R (which is 0 if R(α) 6= 0).

4.2 Stack creation

From now on, we fix one fg-event α, and specify our algorithm stack create to compute its fg-stack. We
use three different methods to do so: The method simple create handles resultant roots α of multiplicity
0 or 1; in these cases, the stack can be computed mostly from the position of arcs of f and g approaching
x = α from the left and right hand side. In generic cases, this method handles all simple intersections.
For roots α of higher multiplicity, the method generic create builds the stack by precomputing some
symbolic information and considering the f -stack and the g-stack at α; at least, it tries to do so but fails
in the presence of covertical intersections. If failed, the curve pair is sheared (by shearing both curves),
analyzed, and the information from the sheared coordinate system is used to build the stack in original
coordinates with the procedure shear create.

Here is how the algorithm stack create proceeds: Let µ be the multiplicity of α in R. If µ ∈ {0, 1}, call
simple create and return. If an analysis in a sheared system has already been computed, call shear create

and return. Otherwise, call generic create. On success, return. On failure, perform an analysis in a
sheared system and run shear create.

We explain the three subalgorithms now.

f

g

g
f

g
f

g

g
f
g

f
g
g
f

f
g
f
f

f
g

Simple stack creation Here, α is either a simple root of R or no root, so the geometry
of the curve pair around α is particularly easy: There is at most one intersection point p.
If p exists, it is a regular point of f and g, and the intersection is transversal, i.e., f and
g have different tangents at p. In the general case, neither of the two tangents is vertical,
and we see one transposition of an f -arc and a g-arc when we compare the fg-stacks over
the intervals incident to α. In the special case that one tangent at p, say the tangent to f ,
is vertical, we either see a transposition as in the previous case (if f changes sides with its
vertical tangent, which happens for an inflection point), or p has two adjacent arcs on one
side and none on the other (i.e., p is x-extreme), and the intersecting g-arc runs between the
two f -arcs.

In any case, there is a specific pattern of change in the arc sequence, which cannot occur
in the absence of an intersection. Looking for these patterns is an old trick. We give it a
new twist by exploiting these patterns even if critical points exist at this event. It is the task
of simple create to create the fg-stack at α by spotting these patterns in the fg-stacks at
the intervals incident to α on the left and on the right. We call them the L-stack and the
R-stack. To do so, it goes simultaneously through the f -stack and g-stack at α from bottom

5



upwards and has to decide for the next f -point and the next g-point: Do they coincide in an intersection,
or if not, does the f -point or the g-point come first? Points that have already been dealt with are marked.

In detail, simple create proceeds as follows:

Initialization: Fetch L-stack and R-stack. Unmark all arcs on the stacks. Create the f -stack and g-stack
at α, if not existing yet. Unmark all points on the stacks. Create an empty fg-stack for α. Mark all
arcs on L-stack and R-stack that are asymptotic at x = α.

Repeat until all points are marked: Consider the lowest unmarked points at the f - and g-stack. Find the
arcs at the L-stack and R-stack connected to them. If they show an intersection pattern described above,
then add i (with multiplicity one) to the fg-stack, mark the two points and four arcs considered, and
proceed with the next iteration. If the points both have an incident arc in the L-stack or both in
the R-stack, use that to decide which one is next; otherwise refine the f -interval and g-interval to
disjointness to decide which is next. If an f -point is next, add f, else add g to the fg-stack at α.
Mark the next point and its incident arcs, and proceed with the next iteration.

Once an intersection is detected, the test for the intersection pattern can be skipped, because a second
intersection is impossible. Also, it is not always necessary to create the f - or g-stack at α. For instance,
if α is not f -critical, one can start with the f -stack of the interval containing α (which contains the same
combinatorial information and has been already computed in the curve analysis). Only if some f -interval
is needed during the algorithm, one has to pass to the actual f -stack at α.

Generic stack creation We explain the subalgorithm generic create next. It is incomplete in that it
may succeed or fail. If it succeeds, it computes the stack of the curve pair at α. It is guaranteed to succeed
at least for those cases in which degy(fα) = degy(f) and degy(gα) = degy(g), and the polynomials fα and
gα have at most one common root in C (compare Lemma 4.3). In other cases, it may (but need not) fail.

g

f

p

p

g

f−stack g−stack

pre−stack

As a first step, we compute a pre-stack, which contains a preliminary ordering of the
points f and g at α. It is a sequence of entries f, g and p, where p stands for pair. Such
a pair either corresponds to an i-entry of the actual stack (an intersection), or to a (f,g)-
subsequence, or to a (g,f)-subsequence of the actual stack.

The pre-stack is computed as follows: Create the f -stack and g-stack at α, if not existing
yet. Refine each f -interval until it overlaps with at most one g-interval, and vice versa. As
result, each f -interval and each g-interval is either disjoint from any other f - or g-interval –
we call such intervals singles –, or it overlaps with exactly one interval from the other curve
– we say that these two intervals form a pair. Sort the pairs and singles in increasing order,
writing f for a single of f , g for a single of g, and p for a pair.

We say that a pair splits if the corresponding f - and g-intervals become disjoint due to
further refinement. If so, we replace the p entry by the correct subsequence in the pre-stack.
The idea of generic create is: Try to split all pairs in the pre-stack of α except one. Then verify an
intersection at the last pair. If the presence of more than one intersection at α is sure, report a failure.

The key source of efficiency lies in the cutback of algebraic calculations. However, it is unavoidable to
compute some exact algebraic information to ensure exactness. Subresultants [4, §4] [43, §3] [25] are our
tool for this. We denote by Sresi(f, g) ∈ Z[x, y] the ith subresultant of f and g with respect to y, and by
sresi,j(f, g) ∈ Z[x] the coefficient of yj in Sresi(f, g).

Lemma 4.1 Let f, g ∈ R[x, y] and α ∈ R. If degy(fα) = degy(f) and degy(gα) = degy(g), then

deg(gcd(fα, gα)) = min{k ≥ 0 | sresk,k(f, g)(α) 6= 0}.

With Lemma 4.1, the integer k = deg(gcd(fα, gα)) is efficiently computable using the subresultant
sequence. We use this number in the analysis of the stack:

Lemma 4.2 With f, g, α as above, let k = deg(gcd(fα, gα)). If there exists a unique intersection point
(α, β), β ∈ C, of f and g at α, then β ∈ R, and β is a root of multiplicity at least k of both fα and gα, and

β = −
sresk,k−1(f, g)(α)

sresk,k(f, g)(α)
.

6



Recall that from the curve analysis, we know upper bounds for the multiplicity of each f - and g-interval,
considered as roots of fα and gα. Moreover, [19] shows that this upper bound drops to the actual multiplicity
when the isolating interval is sufficiently refined. For a pair, we define its multiplicity to be the minimum
of the multiplicities of the contained f - and g-interval.

generic create proceeds as follows:

Initialization: Check that degy fα = degy f and degy gα = degy g, report a failure otherwise. Compute the
subresultant sequence of f and g, if not yet computed. Use Lemma 4.1 to compute k = deg(gcd(fα, gα)).

Iterate over the pairs: Refine the f - and g-interval for each pair until one of the following two conditions
holds: First, if all remaining pairs show a multiplicity less than k; report a failure. Second, if only
one pair remains, stop. (We call this last interval the candidate.)

Similar to the analysis of the m-k-Descartes algorithm [20], one can show that this method terminates,
and if it fails, this implies the presence of covertical (although not necessarily real) intersections at α.

The candidate is not necessarily an intersection, since fα and gα might intersect only at imaginary points.
Therefore, the candidate must be checked further. We prefer to find cheap evidence for an intersection.
First we check the parity of the already-computed k or µ. If one of these number is odd, the candidate
must be an intersection (since each common imaginary root appears with its complex conjugate, so they
push up both quantities by an even number). We remark that a unique intersection at α in a point that
is not critical on both f and g makes k = 1, so it is handled relatively cheaply, even if the intersection is
tangential, in contrast to the costly solutions of [22, §4.2.4] [42].

f

g

g

f

In other cases, we can spot an intersection by looking at the fg-stacks of the left and right
neighboring intervals: If on one side, an arc of g is “sandwiched” between two arcs of f (or
vice versa) that run into the candidate, then the curves must intersect.

generic create treats the candidate as follows: If k or µ is odd, replace the candidate
with an intersection. Otherwise, examine the incident arcs of the left- and right-neighboring fg-stacks. If
one arc of the one curve is between two arcs of the other curve, replace the candidate with an intersection.

Otherwise, exploit the second part of Lemma 4.2: set ρ(α) := −
sresk,k−1(f,g)(α)
sresk,k(f,g)(α) . Check symbolically whether

f(α, ρ(α)) = 0 = g(α, ρ(α)). If this is the case, (α, ρ(α)) ∈ R2 is an intersection, and so it must be the
candidate pair; replace the candidate with an intersection. If this is not the case, report a failure.

When does generic create succeed? In analogy to the case of one curve, one can show:

Lemma 4.3 If f · g is generic according to Definition 3.1, generic create is successful for each event.

Note that also for non-generic curve pairs, we might not observe a failure: generic create might still work
in presence of covertical (imaginary) intersections. Also, generic create just might not be called for an
x-coordinate that presents a degeneracy of the curve pair.

Stack creation with a shear In case the generic method in the original coordinate system failed for some
α, stack create makes a “detour” over the sheared curve pair to obtain enough information for building
the fg-stack. The sheared analysis is performed as follows: Choose some s ∈ Z at random. Compute Shsf
and Shsg and analyze the single curves. Create all stacks of the sheared curve pair, applying simple create

if possible, and generic create otherwise. If the latter fails, choose a new shear factor s and retry.
This methods terminates since, eventually, the pair (Shsf, Shsg) becomes generic, and generic create

succeeds by Lemma 4.3. Having the sheared curve pair analyzed, a so-called intersect-info-object is com-
puted. It contains for each fg-event of the original curve pair the number of distinct intersection points at
the event, and intervals indicating at which y-coordinates these intersections take place (approximately).

How is this information obtained from the sheared curve pair? Intersections of f and g are in bijective
correspondence to intersections of Shf and Shg. So the number of intersections of f and g at α can be
obtained by explicitly shearing back the intersections of Shf and Shg (i.e., applying the inverse shear), and
counting how many have x-coordinate α. To approximate the y-coordinate of an original intersection, note
that the corresponding sheared intersection is approximated by a Shf -interval (and also by a Shg-interval).
When shearing, the y-coordinate of a point does not change. Thus, one can simply store (a pointer to) the
Shf -interval in the intersect-info-object to represent the y-coordinate of the original intersection as well.

To construct the intersect-info-object, the algorithm proceeds as follows: Iterate over the intersection
points of the sheared curve pair. Let p∗ be the current intersection point. This point corresponds to a unique

7



n AlciX cad2d n AlciX cad2d
a 0.106 0.393 a 3.059 4.656

6 b 0.135 0.404 12 b 3.117 4.322
c 0.123 0.401 c 3.455 5.091
a 0.747 1.073 a 8.569 12.814

9 b 0.793 1.417 15 b 7.559 12.250
c 0.821 1.128 c 9.733 15.503

Table 1: Timings (in sec) for pairs of random curves with 50-bit coefficients and degree n.

intersection point p of the original curve f and g, and p’s x-coordinate must be an fg-event. Compute an
interval approximation of the x-coordinate of p, and refine it until it overlaps with exactly one fg-event γ.
Obtain this approximation by considering both the x- and y-coordinates of p∗ as interval approximations,
yielding a rectangle containing p∗, and explicitly shear back the (rational) corners of this rectangle. The
event so obtained is the x-coordinate γ of p; update γ’s intersect-info-object by adding a new intersection
with y-coordinate represented by the Shf -interval of p∗.

Knowing both a pre-stack and an intersect-info-object for α, creating the final stack is relatively straight-
forward: the pre-stack gives the ordering of the stack points, only that some non-intersecting points might
be paired. With the intersect-info-object, these “wrong” pairs are easily detected.

Here is the procedure shear create:

Initialization: Create the pre-stack, if not existing yet. Create an intersect-info-object, if not existing yet.

Iterate over the intersect-info-object for α: Let I denote the current Shf -interval that approximates the y-
coordinate of an intersection. Refine I until it overlaps with a unique pair; replace this pair with an
intersection.

Postprocessing: Split each remaining pair on the pre-stack by repeatedly refining its intervals.

By passing to a sheared system, the algorithm loses its locality: although only the stack at α is of
interest, all intersection points of the curve pair are considered. Also, the analysis of the sheared system
is usually more expensive since shearing increases the bitsize of a curve’s defining equation, and it involves
the complete curve analysis of Shf and Shg. For these reasons, stack create tries to avoid a shear and to
analyze the curve pair directly using generic create if possible. On the other hand, generic coordinates
help a lot in reducing the amount of symbolic computations, and our approach nicely encapsulates coordinate
changes inside the curve and curve pair analysis. It does not burden the user with the choice of one global
generic coordinate system, as earlier approaches did [22, §4.4.3] [42].

5 Implementation

The algorithm presented has been implemented in the AlciX library as part of EXACUS3 [6], a collection
of C++ libraries for exact computations on curves and surfaces. AlciX mainly uses the EXACUS library
NumeriX for computations with algebraic objects. The underlying number types can be chosen from
LEDA [34] or CORE/GMP4. Also, for specific computations, boost5 (interval arithmetic), NTL6 (univariate
modular gcd) and Maple (modular bivariate resultant) are in use.

Our curve and curve pair analyses are implemented as class templates that satisfy the EXACUS concepts
AlgebraicCurve 2 and AlgebraicCurvePair 2. The SweepX library of EXACUS implements Generic Algebraic
Points and Segments (GAPS) on top of them; these can be used with the LEDA-based sweep-line algorithm
of SweepX and also with the sweep-line algorithm of the CGAL7 Arrangement package [40]. In either case,
the result is a doubly-connected edge list (DCEL) representing the arrangement. We have implemented

3http://www.mpi-inf.mpg.de/projects/EXACUS/
4http://cs.nyu.edu/exact/core pages/
5http://www.boost.org/
6http://www.shoup.net/ntl/
7http://www.cgal.org/

8



c AlciX cad2d c AlciX cad2d
a 0.054 0.394 a 2.426 5.165

26 b 0.149 0.456 210 b 2.072 13.975
c 0.113 0.457 c 2.432 5.051
a 0.470 2.230 a 20.510 62.657

28 b 0.390 1.169 212 b 19.273 64.957
c 0.378 1.734 c 19.098 64.602

Table 2: Timings (in sec) for pairs of random curves with c-bit coefficients and degree 6.

n, m AlciX cad2d n, m AlciX cad2d
a 0.216 0.638 a 7.903 191.710

3, 2 b 0.090 0.431 4, 3 b 8.268 215.337
c 0.181 Error c 8.162 199.597
a 0.596 7.012 a 36.646 Prime∗

3, 3 b 0.533 7.464 4, 4 b 39.589 Prime∗

c 0.630 5.780 c 21.437 552.641

Table 3: Timings (in sec) for projections from random surfaces with 8-bit coefficients and degrees n and m.
∗ Prime: cad2d halted because “Prime list exhausted”.

both options; they showed a similar performance. The running times in the tables are for the creation of
the LEDA-based arrangement.

Our implementation allows to exchange subalgorithms and data structures easily. Our experiments
showed that there is no unique best configuration for all instances; sophisticated methods optimized for
higher-degree instances seem to incur a considerable overhead that deteriorates the performance for low-
degree arrangements. We ran experiments on a Linux PC with a Pentium-4 processor at 2.80 GHz and
1 GB of RAM.

We have compared AlciX with CubiX [22], another EXACUS library, providing curve and curve pair
analyses for algebraic curves of degree up to three. CubiX’ default configuration has been chosen for
both libraries: LEDA number types are used, isolating intervals are refined by bisection, no modular
gcd computation is used. This turned out to be optimal also for AlciX for cubic curves. We have tried
benchmark instances from [22, §7] for comparison. AlciX is slower for the random (generic) arrangements
by a factor 1.5, and equally fast (deviation < 10%) for the degenerate instances (which still contain many
simple intersections). The fact that CubiX’ advantage shrinks when tangential intersections come into play
indicates that they are handled better by AlciX. Beyond that, it is not too surprising that the numerous
tricks of CubiX for the special case of degree 3 incur a moderate speedup over the general method of AlciX.

For algebraic curves in full generality, there is no exact implementation available from the Computa-
tional Geometry community. So we have compared AlciX’ performance with software from the Symbolic
Computation community, namely Brown’s cad2d, an optimized version of QEPCAD-B8 1.46 for computing
cylindrical algebraic decompositions in the plane. It uses floating point methods in the lifting step to speed
up calculations in favorable situations [11].

For AlciX, we have observed the best performance with the following setting: CORE/GMP number types
and the modular gcd algorithm from NTL (V. 5.4) are used, isolating intervals are refined with Abbott’s
Quadratic Interval Refinement [1] (the same setting was used in [20]). To compute resultants, we use the
modular resultant algorithm from Maple 10 (via the OpenMaple interface) for curves of degree 11 and more.
For smaller degree resultants and for subresultants, we implemented Ducos’ algorithm [18]. It turned out
that subresultant computation is the algorithm’s main bottleneck for curves of high degree.

We have compared two kinds of input: For Tables 1 and 2, we created pairs of curves of degree n with
random c-bit integer coefficients, three examples for each choice of n and c. For Table 1, we fixed c = 50

8http://www.cs.usna.edu/∼qepcad/B/QEPCAD.html

9



c AlciX cad2d c AlciX cad2d
a 0.204 1.425 a 0.536 15.062

16 b 0.190 1.505 48 b 0.520 15.611
c 0.127 0.597 c 0.536 15.107
a 0.489 6.021 a 0.748 34.926

32 b 0.385 5.863 64 b 0.828 32.964
c 0.131 1.255 c 0.678 33.059

Table 4: Timings (in sec) for projections from random surfaces with c-bit coefficients and degrees 3 and 2.

N AlciX nodes edges N AlciX nodes edges
a 12.635 1300 2284 a 110.396 9684 18402

25 b 10.792 1058 1858 75 b 110.434 9978 18988
c 13.488 1418 2502 c 124.191 11354 21758
a 53.368 5128 9578 a 204.483 18296 35354

50 b 50.052 4804 8980 100 b 237.359 21694 41996
c 47.506 4418 8250 c 223.088 20332 39338

Table 5: Timings (in sec) for N random curves of degree 6 and 50-bit coefficients.

and varied the degree. For Table 2, we fixed n = 6 and varied the coefficient bitsize. We expect a good
performance of cad2d in these examples since it profits from its improved lifting in each instance.

For Tables 3 and 4, we created two surfaces F , G of degrees n and m with random c-bit coefficients, and
have computed the arrangement of resz(F, Fz), resz(G, Gz), and resz(F, G). Geometrically, these are the
projections of the two silhouettes and the intersection curve of F and G. Generically, they have the degrees
n(n − 1), m(m − 1), nm, resp., contain singularities and intersect tangentially. For Table 3, we fixed c = 8
and varied the surface degrees. For Table 4, we fixed the degrees n = 3, m = 2 and varied c.

AlciX performs slightly better than cad2d for random curve pairs (Tables 1 and 2). Note that both
algorithms can cope with rather large coefficients. The more remarkable improvement, however, is visible
for the degenerate arrangements of three curves (Tables 3 and 4): AlciX outperforms cad2d, since its
optimized numerical stack construction applies in degenerate cases, too.

We have also investigated arrangements for more input segments: we fixed degree 6 and 50-bit coef-
ficients, and created up to 100 algebraic curves. Table 5 shows the running times and the sizes of the
resulting arrangements. Note that the running time is roughly proportional to the number of edges in the
arrangement. This matches the linear-logarithmic output sensitive complexity bound for the sweep-line
algorithm.

Finally, we have investigated the effect of shearing: We interpolate otherwise random curves of degree 7
through the covertical points (0, 0) and (0, 1) so that a shear must be applied for each curve pair. We
observed a slowdown by a factor of roughly 4, compared to completely random curves of same size.

6 Conclusion

We have presented an algorithm for computing the exact planar arrangement induced by any set of seg-
ments of algebraic curves. For brevity, we had to skip the treatment of some special cases in this extended
abstract, but they do not add substantial complications. The crucial new tool of our algorithm, compared
to previous EGC approaches for arrangement computation, is exact yet efficient root isolation at the alge-
braic x-coordinate of an intersection by a careful combination of symbolic and adaptive-precision numeric
techniques. For example, tangential intersections in regular points are not a hard case anymore, and all
singular points can be treated in a systematic and uniform way. Sometimes, we have to change coordinates,
but that is encapsulated in the geometric analyses and does not limit the user’s choice of coordinates.

The experiments have indicated that our algorithm is efficient, both in handling many segments and in

10



handling degenerate geometric situations; at least as long as the degrees of individual curves do not hit the
fundamental barrier inherent in (sub)resultant computation.

Acknowledgements We have enjoyed many useful discussions with Nicola Wolpert. Eric Berberich has
been a great source of help during the implementation of AlciX and commented on a draft of this paper.

References

[1] J. Abbott: “Quadratic Interval Refinement for Real Roots”. URL http://www.dima.unige.it/
∼abbott/. Poster presented at the 2006 Int. Symp. on Symb. and Alg. Comp. (ISSAC 2006).

[2] P. K. Agarwal, M. Sharir: “Arrangements and Their Applications”. In: J.-R. Sack, J. Urrutia (eds.)
Handbook of Computational Geometry, 49–119. Elsevier, 2000.

[3] D. S. Arnon, G. E. Collins, S. McCallum: “Cylindrical Algebraic Decomposition I+II”. SIAM J. on
Computing 13 (1984) 865–889. Reprinted in [14], pp. 136–165.

[4] S. Basu, R. Pollack, M.-F. Roy: Algorithms in Real Algebraic Geometry, Algorithms and Computation
in Mathematics, vol. 10. Springer, 2nd edn., 2006.

[5] J. L. Bentley, T. A. Ottmann: “Algorithms for Reporting and Counting Geometric Intersections”.
IEEE Transactions on Computers C-28 (1979) 643–647.

[6] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, L. Kettner, K. Mehlhorn, J. Reichel, S. Schmitt,
E. Schömer, N. Wolpert: “EXACUS: Efficient and exact algorithms for curves and surfaces”. In: Proc.
of the 13th Annual European Symposium on Algorithms (ESA 2005), LNCS, vol. 3669. Springer, 2005
155–166.

[7] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, K. Mehlhorn, E. Schömer: “A Computational Basis
for Conic Arcs and Boolean Operations on Conic Polygons”. In: Proc. of the 10th Annual European
Symposium on Algorithms (ESA 2002), LNCS, vol. 2461. Springer, 2002 174–186.

[8] E. Berberich, E. Fogel, D. Halperin, K. Mehlhorn, R. Wein: “Sweeping and Maintaining Two-
Dimensional Arrangements on Surfaces: A First Step”. In: Proc. of the 15th Annual European Sym-
posium on Algorithms (ESA 2007), 2007 To appear in Springer LNCS.

[9] E. Berberich, M. Hemmer, L. Kettner, E. Schömer, N. Wolpert: “An Exact, Complete and Efficient
Implementation for Computing Planar Maps of Quadric Intersection Curves”. In: Proc. of the 21st
Annual Symposium on Computational Geometry (SCG 2005), 2005 99–106.

[10] E. Berberich, L. Kettner: Linear-Time Reordering in a Sweep-line Algorithm for Algebraic Curves In-
tersecting in a Common Point. Research Report MPI-I-2007-1-001, Max-Planck-Institut für Informatik,
66123 Saarbrücken, Germany, 2007. URL http://domino.mpi-inf.mpg.de/internet/reports.nsf/

NumberView/2007-1-001.
[11] C. W. Brown: “Constructing Cylindrical Algebraic Decompositions of the Plane Quickly”, 2002. URL

http://www.cs.usna.edu/∼wcbrown/. Unpublished.
[12] B. Buchberger, G. E. Collins, R. Loos (eds.): Computer Algebra: Symbolic and Algebraic Computation.

Springer, 2nd edn., 1983.
[13] J. Caravantes, L. Gonzalez-Vega: “Computing the Topology of an Arrangement of Quartics”. In: R. R.

Martin, M. A. Sabin, J. R. Winkler (eds.) IMA Conference on the Mathematics of Surfaces, LNCS,
vol. 4647. Springer, 2007 104–120.

[14] B. F. Caviness, J. R. Johnson (eds.): Quantifier Elimination and Cylindrical Algebraic Decomposition,
Texts and Monographs in Symbolic Computation. Springer, 1998.

[15] G. E. Collins: “Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition”.
In: Second GI Conference on Automata Theory and Formal Languages, LNCS, vol. 33, 1975 134–183.
Reprinted in [14], pp. 85–121.

[16] G. E. Collins, J. R. Johnson, W. Krandick: “Interval Arithmetic in Cylindrical Algebraic Decomposi-
tion”. J. of Symbolic Computation 34 (2002) 145–157.

[17] O. Devillers, A. Fronville, B. Mourrain, M. Teillaud: “Algebraic methods and arithmetic filtering for
exact predicates on circle arcs”. Computational Geom. 22 (2002) 119–142.

[18] L. Ducos: “Optimizations of the Subresultant Algorithm”. J. of Pure and Applied Algebra 145 (2000)
149–163.

11



[19] A. Eigenwillig: “On Multiple Roots in Descartes’ Rule and Their Distance to Roots of Higher Deriva-
tives”’. J. of Computational and Applied Mathematics 200 (2007) 226–230.

[20] A. Eigenwillig, M. Kerber, N. Wolpert: “Fast and Exact Geometric Analysis of Real Algebraic Plane
Curves”. In: C. W. Brown (ed.) Proocedings of the 2007 International Symposium on Symbolic and
Algebraic Computation (ISSAC 2007). ACM, 2007 151–158.

[21] A. Eigenwillig, L. Kettner, W. Krandick, K. Mehlhorn, S. Schmitt, N. Wolpert: “A Descartes Algorithm
for Polynomials with Bit-Stream Coefficients”. In: 8th International Workshop on Computer Algebra
in Scientific Computing (CASC 2005), LNCS, vol. 3718, 2005 138–149.

[22] A. Eigenwillig, L. Kettner, E. Schömer, N. Wolpert: “Exact, Efficient, and Complete Arrangement
Computation for Cubic Curves”. Computational Geom. 35 (2006) 36–73.

[23] A. Eigenwillig, L. Kettner, N. Wolpert: “Snap Rounding of Bézier Curves”. In: Proc. of the 23rd
Annual Symposium on Computational Geometry (SCG 2007). ACM, 2007 158–167.

[24] I. Z. Emiris, A. Kakargias, S. Pion, M. Teillaud, E. P. Tsigaridas: “Towards an Open Curved Kernel”.
In: Proc. of the 20th Annual Symposium on Computational Geometry (SCG 2004). ACM, 2004 438–446.

[25] J. von zur Gathen, T. Lücking: “Subresultants revisited”. Theoretical Computer Science (2003) 199–
239.

[26] K. Geddes, S. Czapor, G. Labahn: Algorithms for Computer Algebra. Kluwer, 1992.
[27] C. G. Gibson: Elementary geometry of algebraic curves. Cambridge University Press, 1998.
[28] L. Gonzalez-Vega, T. Recio, H. Lombardi, M.-F. Roy: “Sturm-Habicht Sequences, Determinants and

Real Roots of Univariate Polynomials”. In [14], pp. 300–316.
[29] D. Halperin: “Arrangements”. In: J. Goodman, J. O’Rourke (eds.) Handbook of Discrete and Compu-

tational Geometry, chap. 24. CRC Press, 2nd edn., 2004.
[30] D. Halperin, E. Leiserowitz: “Controlled perturbation for arrangements of circles”. Internat. J. of

Comput. Geom. & Appl. 14 (2004) 277–310.
[31] D. Halperin, C. R. Shelton: “A perturbation scheme for spherical arrangements with application to

molecular modeling”. Computational Geom. 10 (1998) 273–287.
[32] I. Hanniel, R. Wein: “An exact, complete and efficient computation of arrangements of Bézier curves”.

In: Proc. of the 2007 ACM Symposium on Solid and Physical Modeling (SPM 2007). ACM, 2007
253–263.

[33] J. Keyser, T. Culver, D. Manocha, S. Krishnan: “Efficient and exact manipulation of algebraic points
and curves”. Computer-Aided Design 32 (2000) 649–662.

[34] K. Mehlhorn, S. Näher: LEDA: A platform for combinatorial and geometric computing. Cambridge
Univ. Press, 1999.

[35] K. Mehlhorn, R. Osbild, M. Sagraloff: “Reliable and Efficient Computational Geometry Via Controlled
Perturbation”. In: Automata, Languages and Programming, 33rd Internat. Colloquium (ICALP’06),
Part I, LNCS, vol. 4051. Springer, 2006 299–310.

[36] V. Milenkovic, E. Sacks: “An Approximate Arrangement Algorithm for Semi-algebraic Curves”. In-
ternat. J. of Comput. Geom. & Appl. 17 (2007) 175–198.

[37] A. W. Strzebonski: “Cylindrical Algebraic Decomposition using validated numerics”. J. of Symbolic
Computation 41 (2006) 1021–1038.

[38] R. J. Walker: Algebraic Curves. Princeton University Press, 1950.
[39] R. Wein: “High-Level Filtering for Arrangements of Conic Arcs”. In: Proc. of the 10th European

Symposium on Algorithms (ESA 2002), 2002 884–895.
[40] R. Wein, E. Fogel, B. Zukerman, D. Halperin: “2D Arrangements”. In: CGAL-3.3 User and Reference

Manual, 2007. URL http://www.cgal.org/Manual/.
[41] R. Wein, B. Zukerman: Exact and Efficient Construction of Planar Arrangements of Circular Arcs and

Line Segments with Applications. Tech. Rep. ACS-TR-121200-01, Tel Aviv University, Israel, 2006.
[42] N. Wolpert: “Jacobi Curves: Computing the Exact Topology of Arrangements of Non-Singular Alge-

braic Curves”. In: Proc. of the 11th Annual European Symposium on Algorithms (ESA 2003), LNCS,
vol. 2832. Springer, 2003 532–543.

[43] C. K. Yap: Fundamental Problems of Algorithmic Algebra. Oxford University Press, 2000.
[44] C. K. Yap: “Robust Geometric Computation”. In: J. E. Goodman, J. O’Rourke (eds.) Handbook of

Discrete and Computational Geometry, chap. 41, 927–952. CRC Press, 2nd edn., 2004.

12


