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Abstract

We use a distortion to define the dual complex of a cubical
subdivision of R™ as ann-dimensional subcomplex of the
nerve of the set ofi-cubes. Motivated by the topological
analysis of high-dimensional digital image data, we coasid

such subdivisions defined by generalizations of quad- and

oct-trees tan dimensions. Assuming the subdivision is bal-

representations of image data, a conversion to a simplicial
representation facilitating a piecewise linear approtioma

is sometimes advantageous. An example is the construction
of level sets, which requires a continuous function as input
In this work, we define and study such a conversion dine
complexof a cubical subdivision.We build on Freudenthal’'s
early work on triangulations of the-dimensional cube [7].
The main results of this paper are as follows:

anced, we show that mapping each vertex to the center of the

corresponding:-cube gives a geometric realization of the
dual complex irnR™.

Keywords. Simplicial complexes, (hierarchical) cubical subdivi-
sions, counting, distortion, Freudenthal triangulation, geometric re-
alization.
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We are interested in cubical subdivisions®f as a gen-
eralization of the quad-tree and oct-tree data structwes c
monly used foR- and3-dimensional images [14, 15]. Think-

Introduction

I. We introduce a distortion of the integer grid Ri* to
generalize the Freudenthal triangulation of theube
to the dual complex of a cubical subdivision®¥.

[I. We analyze the dual complex, giving tight bounds on its
size and a detailed description of its local structure.

Ill. We show that using the cube centers as the vertices of
the dual complex of Balanced hierarchicalibical sub-
division gives a geometric realizationRi*.

The work reported in this paper is motivated by the de-
sire to compute the persistent homologyreflimensional
images, generalizing the work of [2]. Indeed, from the dual

ing of an image as a discrete representation of a real-valuedcomplex of a cubical subdivision, we get an approximation

function, we view these trees as hierarchical represemtsti
andpiecewise constarpproximations of the same. The ex-
tension ton > 4 dimensions is motivated by the availability
of high-resolution time-series @fdimensional images (eg.
Stock [16] observing the breaking of bone structure under

of the image’s persistent homology using standard reduictio
algorithms [6]. Alternatively, the same algorithms can pe a

plied directly to the cubical grid [10]. Enhancements of the
reduction algorithm based on collapses within the complex
can be found in [4]. For images of moderate size, the per-

pressure) and by the general quest to analyze multi-variateSistent homology can be computed directly from the uniform

scientific data [8, 9]. While quad-trees and their higher-
dimensional analogues are natural and efficient hieraathic
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cubical subdivision. While the size of this image represen-
tation may be large, its regular structure is amenable to im-
plicit memory referencing, leading to implementationsttha
are an order of magnitude faster than their counterparts for
simplicial complexes of similar size [17]n this context, it

is important to distinguish between tipgecewise constant
approximations of a function furnished by cubical subdivi-
sions, and th@iecewise lineaapproximations provided by
their dual complexes. The number of elements needed to
achieve the same degree of approximation can be signifi-
cantly smaller for the latterTherefore, replacing a cubical



subdivision by its dual complex can be an attractive option, this reason, we introduck : R™ — R defined by mapping a
in spite of the existence of algorithm that work directly on pointz = (1,22, ...,2,) to A(z) = Y, z;. We refer to
the primary structure. A as thediagonal height functiomoting thatA—1(0) is the
Computing a simplicial refinement of a cubical subdivi- (n — 1)-dimensional plane normal to the diagonal direction
sion is a well-studied problem in geometry processing,espe that pass through the origin, add ) is ++/n times the Eu-
cially in two and three dimensions; see [18] for an extensive clidean distanc&om that(n—1)-plane. The orthogonal pro-
discussion with numerous references. All these approachegection of then-cube ontaA~'(0) is an(n — 1)-dimensional
work by decomposing the cubes, with the constraint that the convex polytope. This polytope has two decompositions into
decompositions agree on the shared faces; see e.g. [5, Chagprojections of(n — 1)-cubes, generated by tie — 1)-faces
ter 14]. In contrast, our dual complex of a cubical subdi- of U™ anchored a0 and by the(n — 1)-faces anchored at
vision is not a refinement and instead consists of simplices Thesilhouetteof U” consists of all points whose projection
connecting cube centers. As a consequence, it generally hadelongs to the boundary of th@t — 1)-polytope. A face be-
fewer simplices than the refinements. longs to the silhouette iff it is neither anchoredator at1.
Indeed, each such face is shared by:ar 1)-face anchored
at 0 and another anchored &t It is therefore easy to count

Outline. Section 2 reviews the Freudenthal triangulation o . )
g them. Specifically, the number éffaces in the silhouette of

of then-cube and counts its simplices. Section 3 explains the
distortion and uses it to define the dual of a subdivision into
unit cubes. Section 4 generalizes the construction to albic n Y\ ek
subdivisions of nonuniform size. Section 5 introduces dual Sk T (k) (2 -2), ®)
complexes and proves the geometric realization for bathnce
hierarchical subdivisions. Section 6 concludes the paper. forall 0 < k& < n — 1. Since the silhouette i&1 — 2)-
dimensional, the number df-faces vanishes fok = n —

. . 1,n. In Table 1, we give the number of faces, anchored faces,

2 Freudenthal’s Triangulation andsilhouette facefor a few small values of, and.

In this section, we review the Freudenthal triangulation

[7], also known as the Kuhn subdivision [11] of the | k=0 ! 2 3 4
dimensional cube. n=1 2,1 11
2 4,11 4,2 11
. _ . 3 816 12,36 63 11
The n-cube. Theunitn-cubeis then-fold Cartesian prod- 4 || 16,1,14 32,424 246,12 84 11

uct of the unit intervallU” = [0, 1]™ C R™. Pickingk < n

of the intervals and eithegy or 1 from each of the remain-  Table 1: From left to right in each entry: the numberkefaces of
ing n — k intervals, we get &-faceof U, which is itself a then-cube, the number of-faces anchored @ (or at1), and the
k-dimensional cube. The number lofaces is therefore number ofk-faces in the silhouette. Zeros are omitted.

e = n> on—k 1
g (’f 7 @ Chains. We triangulate then-cube using increasing se-
quences in a partial order of its vertices. Writihg=
(il,ig, Ce ,Z'n) andj = (jl,jg, ce ,jn), with Zk,jk S {0, 1}
for all k&, we sayi precedeg if iy, < ji for all k. A chainis
a sequence of distinct vertices in which each vertex precede
the next one in the partial order. lengthis the number of
vertices. A chain ignaximalif its length isn + 1. Each
chain of lengtht + 1 defines &-simplex, namely the convex
hull of its k& 4 1 vertices.Freudenthal’s triangulatiorof the
n-cube, denoted bfF™ = F(U"), is the set of all simplices
defined by chains [7]; see Figure 1.

A maximal chain corresponds to a schedule of changing
L (n> ) 0'ston 1's, one coordinate at a time. It follows that there are

forall 0 < k& < n. To distinguish between different classes
of faces, we writd = (0,0,...,0)and1 = (1,1,...,1) for
the extreme vertices in the diagonal direction, callingaefa
of U™ anchoredat0 (or 1) if it contains0 (or 1) as one of its
vertices. Some faces are anchore@,atome are anchored at
1, and some are anchored at neither. Only one fadé'as
anchored at both, namely thecube itself, which is its only
n-face. For each choice df unit intervals, the only:-face
anchored ab is the one for which the other— &k coordinates
are0. Hence, the number déf-faces anchored #&tis

@ k n! maximal chains, and similarly there at&n-simplices in

F™. To count thek-simplices, we partition the set afcoor-
forall 0 < k < n. We are also interested in the silhouette of dinate directions inté+2 color classes, which we label from
the n-cube, when viewed along the diagonal direction. For 0to k£ + 1. Here we require that each color class between
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Figure 1. The Freudenthal triangulation of tBe&ube consists of

dr = Zf:o(*l)i(’?)(k —4)7, forall0 < k < n. The num-
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ber of k-simplices that triangulate the silhouette is therefore

(6)

forall 0 < k < n. Similar to the number of faces, we
getsy = 0 for k = n —1,n. We note thats} = dj.,,
because thék + 2)-colorings count thék + 2)-simplices
anchored at botl® and 1, and each suckk + 2)-simplex
has a uniqué:-face that is anchored at neither. In Table 2,
we give the number of simplices, anchored simplices, and

sp = ¢ —2ay +dy,

six tetrahedra, arranged cyclically around the space-diagonal con-sijlhouette simplicefor a few small values of, andk.

necting0 with 1, and the faces of these tetrahedra.

andk contain at least one direction; the clas8edk + 1
may or may not contain directions. A maximal chaic@n-
patible with a (k + 2)-coloring if the coordinate directions

that connect the vertices in sequence are ordered by color,

from 0 to k£ + 1. Note that any two maximal chains compati-
ble with the samék + 2)-coloring agree on the vertices that

transition from one color to the next. We can therefore use

the (k + 2)-coloring to identify a uniqué-simplex, namely
the convex hull of the transition vertices, from the begngni
of color 1 to the end of colok.

The number ofk+2)-colorings of the: coordinate direc-

| k=0 1 2 3 4
n=1 2,1 11
2| 41,2 53 2,2
3| 81,6 19,7,6 18,12 6,6
4| 16,1,14 65,1536 110,50,24 84,60 24,24

Table 2: From left to right in each entry: the numbekesimplices
in the Freudenthal triangulation of thecube, the number anchored
at0, and the number in the silhouette. Zeros are omitted.

We note relations between the number of anchored sim-
plices and the number of simplices in the silhouette, in the
same and in one higher dimension. To express the relations

tions is(k + 2)". To count the colorings that use each of the \yithout special cases, we s€t, = 1 ands”, = 0 for all

middlek colors at least once, we count &t + 2)-colorings

dimensionsa.

and subtract the ones that do not use at least one of the mid-

dle colors. Note thatk + 2 — 7)™ of the (k + 2)-colorings
do not use some fixed subsetiafolors. Inclusion-exclusion
now impliesthat the number ok-simplices in the Freuden-
thal triangulation of thes-cube is

g = i(—w(’j) (k42—

=0

(4)

forall 0 < k < n. Itis easy to see that this formula gives
¢y = 2" but not quite as easy that it give’ = n!.

Anchors and silhouettes. A simplex is anchored ab iff
color0 is not used. We can therefore drop cdlceind com-
pute the number af-simplices in the Freudenthal triangula-
tion of then-cube that are anchored@by counting(k+1)-
colorings as

a = i(—l)i(’j) (k+1-0)",

=0

(5)

forall 0 < k£ < n. If we now subtract the number of
simplices anchored & or at1 from ¢}, we get the num-
ber of k-simplices that triangulate the silhouette of the
cube. We still need the number éfsimplices anchored
at both,0 and 1, which we get by counting:-colorings:

ANCHOR FORMULAS. We havea} =

ap = spty/(k+1),forall0 <k < n.

sp_y + sp_o and

PrRoOF Weemploystraightforward algebraic manipulations
to prove both relations. Using) = (*1') — (.*,), we get

k
(k+1
E= —-1) E+1—49)"
i = e (")
- zk:(—l)i b (k+1—9)".

p 1 —1
Adding the vanishing term far= k41, we note that the first
sum isdy. ;. Adding the vanishing term far= k£ + 1 and
then transforming the index, we note that the second sum is
—dj;. The first relation now follows froms;; _, = dj’,; and

o = di. Using (%) = EE152 (F17), we get

.k
kK+1—1 (k+1
r = — —1) kE+1—4)".
I O M [RED
Moving the factork + 1 — i into the sum and adding the
vanishing term for = k + 1, we note that the sum i Ljrrll

The second relation follows fronf " = d}'f].



3 Uniform Cubical Subdivisions Triangulation. We now formally prove that the nerve of
the set of Voronoi cells gives an-dimensional simplicial
complex. More than that, we show thBt'(¢) triangulates
every integer translate of the unitcube by a copy of its
Freudenthal triangulation.

The circumscribedn — 1)-sphere of everyn-simplex in

F" passes through th& vertices of the unit:-cube. The

Freudenthal triangulation is therefore a degenerate Dalau

triangulation. In this section, we study a distortion thet s

lectsF" among all degenerate Delaunay triangulations. TRIANGULATION THEOREM. D"(¢g) = F"+Z", for ev-
ery0<e < 1.

Distortion in diagonal direction. Write Z™ for the set of
integer points irfR™, and recall that th&oronoi diagramas-
signs to each point € Z™ the cell of pointsz € R” for
which i is a closest integer point. Fér= (i1,i2,...,0,),
this cell is the Cartesian product of the intervials— %, i+
%], for 1 < k < n, which isa translate of thenit n-cube.
To remove common intersections of more thana 1 cells,

PROOF We give the proof in two steps, simplifying by fixing

¢ and dropping it from the notation. The first step is geomet-

ric and shows that the claimed identity holds for thekeleta

of D" andF". The second step is combinatorial and shows

that if we have the same edges, " and 7" + Z", then

we must also have the same higher-dimensional simplices.

X X i To prepare the two steps, we note that all Voronoi cells are

we move the integer points by slightly compressifigalong jieqer translates of each other. Hen®s, is invariant un-

the diagonal direction. Choosirlig< ¢ < 1, we mapi to der integer translation. It therefore suffices to prove hat
A(i) containsF".

Tel = 1- ETI In the first step, we show that an edge connecting two in-
A(i) . A(i) _ A(i) teger points belongs tB™ iff it is an integer translate of an
= (a—e— “yia—e— = in—e— =), edge inF". It is not difficult to see that every edge "
Here,T. is the linear transformation defined by mapping the connects two vertices of an integer translate of the wnit
k-th unit coordinate vectoy, to e, — £1. Itis the iden- cube, so we may as well assume that both endpoints are ver-
tify for ¢ = 0 and the orthogonal projection ontd~(0) tices of U™. Writing V for its set of vertices, we observe that

for e = 1. With thiS, we get Voronoi cells that are simp|e U™ is the convex hull ofi”. Since the distortion is a linear

convex polyhedra, all of the same shape, namely combina-transformation, and linear transformations preserve eonv
torially the same as a truncateecube; see Figure 2 for the iy, 7U" is the convex hull off V. Let S be the(n — 1)-
3-dimensional case. As we will see shortly, the intersection Sphere that circumscrib&g'. Its center ig(3, 3,.. ., 3) and
its radius is}/n. Recall thatA=!(2) is the(n — 1)-plane
orthogonal to the diagonal that passes through the center of
M S. ItintersectsS in an (n — 2)-sphere,f = S N A~ (%),
[ ] which we refer to as thequatorof S. The image ofS un-
der the linear transformatiofS, is an(n — 1)-dimensional
ellipsoid. It has one axis of lengtti — ¢)+/n, in the direc-
tion of the diagonal, and — 1 axes of length/n, all axes
of TE, which is a translate of the equator. Consider now
a k-dimensional planeP, and the image of its intersection
with the (n — 1)-sphere:T(P N S) = TP NTS. Assume
first that P passes through the center®f ThenP N S is a

Figure 2: Sketch of the Voronoi cell of an integer point after the . . .
g ger p (k—1)-sphere, and unled3is orthogonal to the diagonal di-

distortion inR3. It has the combinatorial structure of a cube after

truncating two vertices and six edges. rection,P N Eis a(k — 2)-sphere, both with radiub/n. It
follows thatT’P N T'S is a(k—1)-dimensional ellipsoid with
of any k& + 1 Voronoi cells is either empty or afn — k)- one axis of length betwedhn —¢)+/n and/n andk — 1 axes
dimensional convex polytope, and which case it is does not of length/n. Indeed, the latter are axesBfP N E), which
depend on the particular value ofc (0,1). The intersec- is a translate of” N E. The first axis is strictly shorter than

tion of n + 2 or more Voronoi cells is necessarily empty. We /n unlessP C A*l(g). To understand the case in which
can therefore take the nerve of the set of Voronoi cells and P does not pass through the centerSfwe note that par-
get ann-dimensional simplicial complex: the Delaunay tri- allel k-planes give rise to homothetic ellipsoids. The short
angulation of the distorted set of integer points. We drde/ th  axis of such an ellipsoid is always in the direction closest t
complex inR™, using the (undistorted) integer points as ver- the diagonal oiR", connecting the points with minimum and
tices. In other words, we draw the complex as a degeneratemaximum diagonal height.

Delaunay triangulation of the integer points, denotingyit b Consider now two vertices di"* and letk be the small-
D"(e) = D(Z™). est dimension such that both belong to a comrhdace of



U, which we denote a&*. It has2*~! antipodal pairs of
vertices, the chosen pair being one. The vertices of each pai
differ from each other in precisely coordinates. Hence,

there is only one antipodal pair whose vertices are relatedis thereforez}!

to each other by the partial order, namely the pgiru; in
whichug has0’s andu, hasl’s where they differBy defini-
tion of the Freudenthal triangulation, this pirms an edge
in 7™. To show that is also forms an edgelf¥, we let P

be thek-plane spanned by* and note that,, andu, are
the orthogonal projections @f and1 onto P. For reasons
of symmetry, this implies that among the points/in S,

ug Minimizes and:; maximizes the diagonal heighit.fol-
lows thatug, u; is the closest diagonal pair after distortion,
implying thatug, u; are the endpoints of an edgedi'. In
summary, we proved that two vertices@f are connected
by an edge irD™ iff they are related to each other in the par-
tial order. Hence, theé-skeleton ofD™ is equal to the union
of integer translates of thieskeleton ofF™.

In the second step, we extend the result from edges to

higher-dimensional simplices. Of course, a simplex can be-
long to D™ only if all its edges belong t®™. Restricting
ourselves to the unit-cube,U", the vertices of a simplex

in D™ thus form a chain in the partial order. Siné& con-
tains all such simplices, we just need to show thétalso
contains all such simplices. But if it does not, then it would
be missing at least one of thesimplices of 7", leaving

a hole in the covering oR™ by the simplices ifD™. This
contradicts the Nerve Theorem, which states fPahas the
same homotopy type as the union of Voronoi cells, namely
the homotopy type aR"; see e.g. [6, Section II1.2].

Implicit in the statement of the above theorem is that the
triangulation does not depend on the particular choice of
in the open unit interval. It is therefore convenient to drop
the parameter from the notation and to wri@¢ = D" (¢)
throughout the remainder of this paper.

Ratios of limits of ratios. Now we know enough about
D™ to count its simplices. Since there are infinitely many,
we form unions of vertex stars and consider the ratio of the
number ofk-simplices over the number of vertices. Finally,
we take the limit, letting the number of vertices go to infinit
Recall that each simplex i®™ has a unique lowest vertex
with respect to the diagonal height functidn and that it
belongs to the Freudenthal triangulation of theube with
the same lowest vertex. Hence, the limit of the ratio is the
same as the number &fsimplices anchored d, counted
in (5). Summing this over alk, we get the limit ratio for
the total number of simplices over the number of vertices as
Do -

It is instructive to compare these numbers with the cor-
responding ratio limits for the subdivision &" into unit

cubes, which we denote By*. Eachk-dimensional cube in
V" has a unique lowest vertex, at which it is anchored. The
limit of the number ofk-cubes over the number afcubes
(1); see (2). In Table 3, we show the ratios
of the ratio limits for small values af andk. For example,

for k = n, we haven! n-simplices petm-cube and therefore

a ratio ofn/!.

| k=0 1 2 3 4 5 |
n=1 1.0 10 1.0
2 1.0 15 20 1.5
3 1.0 23 40 6.0 3.2
4 1.0 37 83 150 240 9.3
5 1.0 62 180 39.0 720 1200338

Table 3: The ratio of the number @tsimplices inD™ over the
number ofk-cubes inV™, up to one decimal position. The last
column gives the ratio of the sums overll}", ay />, ai.

Levels. We gain further insight into the structure Bf* by
studying its relationship wittD"*!. For this purpose, we
consider the collection of-faces of integer translates of the
unit (n + 1)-cube inR™*1. Each suct-face has a unique
lowest vertex in the diagonal height direction®?!. We
definelevel/ as the faces whose lowest vertices have diago-
nal height¢. Projecting the level n-faces orthogonally onto
A~1(0), we get a subdivision oR™ by distortedn-cubes,
which we denote ag}; see Figure 3. LeD}’ be the further

Figure 3: The projection of a level iR to the planeA~*(0), and
its triangulation.

subdivision of£} into the simplices we get by projecting the
Freudenthal triangulations of thefaces. Fom > 2, we
havel} # L7, ; unlessj is a multiple ofn + 1. In contrast,
the triangulations are all the same.

LEVEL LEMMA. D} = Dy, ; for all integers/ and;j.

PrOOF It suffices to showDj = D7. Since a level con-
sists ofn-cubes inR™ !, its vertices come on + 1 different



diagonal heights, namely, 1,...,n for level 0. Removing
the integer points at heiglitand adding the ones at height
n + 1, we get the vertices for levél But the integer points
at height®) andn + 1 have the same projections &x1(0).
This implies thatDy' andD} have the same vertices. It re-

mains to show that they also have the same simplices of di-

mension larger than zero.

Consider a simplex ofDf, and assume without loss
of generality that it is the projection of a simplex in the
Freudenthal triangulation of a lowerface of U"*!. The
vertices of that simplex have diagonal heights betweand
n and they form a chain in the partial orde®%**. If none
of its vertices has heighti, this is also a chain in level,
hence its projection also belongsig. However, if0 is one
of the vertices of the simplex, then we need to replace it.by
The remaining vertices in the chain all succ@ezhd they all
precedel in the partial order. Hence, we get a chain on level
1, which implies again that the projection of the simplex also
belongs taD}, as required.

Links. Suppose now that’ is the orthogonal projection
onto A=1(0) of the integer point at height?/ = A(i) in
R"*1, Hencej’ is a vertex of£?, and the distorted-cubes
that shard’ are the projections of the + 1 lower n-faces

of Un*! +1i. The link of i’ in D} is therefore the projec-
tion of the triangulated silhouette of th@t + 1)-cube. By
the Level Lemma, everyertex inDy is combinatorially the
same as every other vertex. This implies that all links are in
teger translates of each other and of the projection of the tr
angulated silhouette d@f"*. It is now not difficult to prove

a vertex inD™ has(sZ'Jrl k-simplices, for0 < k <n —1. It
follows that the star of a vertex iP™ ha&g’,jﬂ k-simplices.
Since eaclk-simplex belongs t@ + 1 vertex stars, the ratio
of the number of-simplices over the number of vertices is
st /(k+1). By the second Anchor Formula, this is indeed
equal toa}.

4 Non-uniform Cubical Subdivisions

In this section, we extend the results from uniform to non-
uniform cubical subdivisions, focusing on generalizagioh
quad- and oct-trees to hierarchical subdivisionRbf

Cubical subdivisions. Recall the setting in Section 3,
where we begin with the subdivision Bf* into unitn-cubes
centered at the integer points. We relax the size requiremen
and consider subdivisions &* into n-cubes that are unions
of these unitn-cubes. To avoid the otherwise easy confu-
sion betweem-cubes and unit-cubes, we will refer to the
former ascells.

DEFINITION. A cubical subdivisiorof R™ is a collection,
C, of n-dimensional cubical cells with disjoint interiors that
coverR"™, for which we require thatach unitn-cube cen-
tered at a point ifZ." is contained in a cell i@.

See Figure 4 for &-dimensional example. By definition,
each cellC € C with edges of lengtlY is the union of
£" unit n-cubes,C = Uy UU; U ... UUpm. EachU; is
the Voronoi cell of an integer point € Z™, and corre-
sponds to a distorted truncated cube(e), the Voronoi cell
of the integer point after distortior.i € 7.Z". We call

that a similar statement holds for the degenerate Delaunayc(g) = U1(e) UUs(e) U ... UUm(e) afractually dis-

triangulationD™ in R™.

LINK LEMMA. The links of the vertices i®" are integer

translates of each other, and they are all isomorphic to the

triangulated silhouette of the urfit + 1)-cube.

PROOF The n-dimensional simplicial complexe®} in
A~1(0) and D" in R" are geometrically different but
combinatorially the same. Specificallp™ is the (non-
orthogonal) diagonal projection of a level ! onto the
n-dimensional plane spanned by the fiisstoordinate axes.
Hence, we geD}’ as the image oP™ under the linear trans-
formationT,, withe = 1 —1/4/n + 1. This implies thaD"
andDj are isomorphic, so the links of their vertices are iso-
morphic. The second part of the claim follows because the
vertex links inD} are isomorphic to the triangulated silhou-
ette of U™+, by construction.

Since all vertex links irD™ are isomorphic to the triangu-
lated silhouette of thén + 1)-cube, we can use the results
of Section 2 to count their simplices. Specifically, the lofk

torted cell Note thatC'(¢) is different from7.C, as can

be seen in Figure 4. Since tli&(¢) depend orx, we get a

1-parameter family of fractually distorted cell§ <) for each

C € C. Assumingl > 2, C(e) is not convex for any positive
e but has a convex limit, at = 0.

7
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Figure 4: Left: a piece of a cubical subdivision of the plane with
overlaid piece of the dual complex. Right: the fractually distorted
images of the squares.



Distorted intersections. Let nowCy, C1,...,Cy be cells
in a cubical subdivisionf’ = ﬂfzo C; their common inter-
section, andF(¢) = (_, Ci(e) the common intersection
after distortion. Since th€’; are convex [ is either empty
or convex. In contrastf’(¢) is not necessarily convex. Fur-
thermore,F’ = () implies F'(¢) = (), but not the other way

to the limit of F'(¢). Hence, thev, cannot form a chain,
and neither can the;. It follows thatlim. .o F'(¢) = F
wheneverF'(¢) # (), as claimed.

The contrapositive form of the Limit Lemma is perhaps a
more vivid description of how a cubical subdivision relates

round. To describe the relationship between a face beforetg jts fractually distorted image: i # lim._ F(c) then

and after distortion, we consider the limit 6%<), for € go-
ing to 0. It consists of all points: for which there are points
z(e) € F(e) such thate = lim._¢ z(¢). If the C; are unit
n-cubes, then the limit o& non-emptyF'(¢) is equal toF.
More generallyall pointsz in the limit of £'(¢) belong toF’,
but there can be poinise F that are notin the limit of(¢).
We now prove that such poingsexist only if F'(¢) = 0.

LIMIT LEMMA. If F(e) # 0 thenlim._,o F'(¢) = F.

PROOF. We assumé’(¢) # () and note thalim._.o F'(¢) C

F. We prove equality indirectly, assuming there is a point
y € F notin the limit of F(¢). The interiors of the unit-
cubes and of their faces partition eachand therefore also
F. Hence, there is a unigue unit cube that contgims its
interior, and we suppose its dimension is maximal, that is,
equal to/ = dim F'. Let L be thel-plane that contains this
unit /-cube, and let/y, Uy, ..., U, be a selection of unit-
cubes withy € U; C C;, for0 < ¢ < k. Let N be the
(n—¢)-plane orthogonal td. that passes through the centers
of the U;. We may assume thaY is defined byz,, ;.1 =
Tp_gro = ... = x, = 0. The centers of th&/; do not form

a chain, elsg would be in the limit ofﬂf:0 U;(e) C F(e).

It follows thatﬂf:0 Ui(e) = 0, fore > 0. We need to prove
that the same is true for every other selection of uniubes
Vo, Vi,.... Vi with V; C C;, for 0 < ¢ < k. Note that we
do not require thay belongs to the common intersection of

F(e) = 0 fore > 0. In particular, if the dimension of’
exceeds: — k thenF(e) = 0.

Face structure. After distortion, the unitr-cubes form a
simple cell complex. It follows that the non-empty intersec
tion of & + 1 distorted unitz-cubes is necessarily: — k)-
dimensional. HencelF'(¢) = ﬂfzo C;(e) is either empty
or (n — k)-dimensional. In the latter case, it is not difficult
to show thatF’(¢) is an(n — k)-dimensional manifold with
boundary, forz: > 0. In the limit, fore = 0, the common
intersection is convex and therefore contractible. It ex¢h
fore plausible thaf'(¢) is contractible also for > 0. This

is implied by the following result.

FRACTUAL DISTORTIONLEMMA. For every0 < k <
n, thecommon intersection of the fractually distorted images
of k + 1 cells in a cubical subdivision &&" is either empty
or an(n — k)-ball.

PROOFR We give an explicit construction af (¢). Suppos-
ing F(e) # (), we can find unitn-cubesUy, Uy, ..., Uy,
with U; C C; for eachi, whose centers form a chain of
lengthk + 1. Here, we choose the indices so their order-
ing is consistent with the ordering of the centers along the
chain. For each paid < i < ¢/ < k, there is at least one
coordinate directiong, for which a normal(n — 1)-plane

the V;. To get a contradiction, we assume the centers of the separateg’; from ;. We callj aseparatingcoordinate di-

V; form a chain. Define theectangular hullof V; andU; as
the collection of unit cubeB’; such that
min{uij, 'Uij} § wl-j § max{uij, Uij}

for eachl < j < n, whereu; is the center of the unit-
cubel;, u,; is its j-th coordinate, and similar far;, v;; and
w;, w;;. Clearly, alllW; in the rectangular hull o¥; andU;
belong toC;. Let V/ be the unitz-cube whose centev;, is
the orthogonal projection af; onto V. In other words,

U —

SinceV; belongs to the rectangular hull ®f andU;, it also
belongs ta’;. It follows that theV; arek + 1 distinct unitn-
cubes. But then, the inherit the property of forming a chain
from thev;. We havey € ﬂf;o V/, since thev! all lie in
N, which contradicts the assumption thatloes not belong

forl<j<n-—4¢
forn—/¢<j<n.

Vij
Ujg j

rection forC; andC;.. The separating directions fafy and

C, aredistinctfrom those forC; andC>, and so on. Let-
ting S be the collection of separating coordinate directions,
we therefore havéS| > k. Let T' be the complementary
collection of non-separating coordinate directions, aotn
thatdim F = n — |S| = |T|, with F = N_, C;, as be-
fore. Writing ¢ = |T'|, we know thatF is an/-dimensional
rectangular box. For each uritcube in its subdivision, we
have a chain in which the first vertex and the last vertex diffe
in n — ¢ coordinates. Equivalently, their unitcubes have

n — £ separating directions. The corresponding- 1 dis-
tortedunit n-cubes intersect in afrn — k)-dimensional face
whose limit, fore = 0, is ¢-dimensional. We project these
(n — k)-dimensional faces into am — k)-plane, which we
choose so that the images of the— k)-faces are disjoint,
as in Figure 5. To construct this — k)-plane, we select
coordinate directions, one each separatihg, andC;, for

1 < i < k. Finally, we take the distorted images of these



Figure 5: Left: the regular subdivision @ into unit /-cubes, for
¢ = 2. Right: the corresponding distortéecubes with filled gaps
between them.

directions and get the: — k)-plane as the intersection of the
(n — 1)-planes normal to the distorted directions.

the subdivision, and so does the interior.reéfinemenbf C

is a hierarchical cubical subdivision whose closure caostai
C. While hierarchical cubical subdivisions are necessarily
infinite, we can extract finite pieces. Specifically, for eaeh
cubeB € C, we defineC(B) = {C € C | C C B}, referring

to it as afinite hierarchical cubical subdivision. See Figure
4 for an example in the plane. Accordingly, the closure and
interior of C(B) are the subsets of cells thandC® that are
contained inB. In the finite case, the sizes of a subdivision,
its closure, and its interior are tightly coupled:

| =

C(B) C(B)| +[c°(B)]

9" |Cc°(B)| + 1. @)

In the last step of our proof, we construct the faces that |t should be clear that we can think 6fB) as a tree in the

fill the gaps between the projections of the — k)-faces
whose limits are the unif-cubes decomposing’. These

computer science sense. lts cells arertbdes distinguish-
ing between thenternal nodesin C°(B) and theexternal

faces can be enumerated by moving the vertices in a chainnodesin C(B). The childrenof a node are the cells of half

one by one in a non-separating coordinate direction in suchthe size contained in it, and tiparentis the cell of twice the
a way that the chain remains a chain. In other words, we Usesijze that contains it. Other than theot of the tree, which

chains in which some of the directionsihseparate the cor-
responding unit-cubes. Letting the number of additional
separating directions be < /¢, the chain corresponds to an
(n — k)-face whose limit ig¢ — m)-dimensional. Using alll
subsets off” and, for each subset, all chains for which the
directions in the subset separate, we fill all gaps between th
distorted/-cubes. We may even get more, namely an incom-
plete extra layer of faces around the configuratio(vof k)-
faces whose limits are the urfitcubes decomposing. In
any case, the collection ¢fi — k)-faces forms arin — k)-
dimensional ball whose limit, far = 0, is an¢-dimensional
rectangular box.

Hierarchical cubical subdivisions. We are interested in
cubical subdivisions that arise from a hierarchical decom-
position of R", generalizing quad-trees iR? and oct-trees
in R3. To define them, we limit the set of available cells to a
basisBB of n-dimensional cube® for which there are inte-
gers? > 0 andmy, ms, ..., m, such thatB is the union of
the unitn-cubes centered at the integer poifits is, . . . , i)
with 2my + 1 < i < 2%(my, + 1), foreachl < k < n. We
call 2¢ thesizeof B. Taking all cubes of siz& gives a uni-
form cubical subdivision aR™. Hence, we can think df as

a hierarchy of uniform subdivisions in which the number of
cubes grows exponentially from one level to the next.

DEFINITION. A hierarchical cubical subdivisionf R" is
a cubical subdivisio® C B. Its closure C, consists of all
cubes inB that contain cubes i@, and itsinterior is the

closure minus the subdivision itself® = C — C.

Every hierarchical cubical subdivision has a unique clesur

is B, every node has exactly one parent, every internal node
has2™ children, and every external node has no child.

Balancing. We refer to cells whose fractually distorted im-
ages have a non-empty intersectionmnagghbors General-
izing [3], we call a hierarchical cubical subdivision Bf*
balancedif any two neighboring cells are either of the same
size or one is twice the size of the other. For example, the
quad-tree subdivision in Figure 4 is not balanced as it has
neighboring squares whose sizes differ by a factor of fdur. |
is however easy to make it balanced, namely by subdividing
the upper left square into four. It is not difficult to see that
every hierarchical cubical subdivision has a unique sraglle
balanced refinemenighich is obtained by greedily subdivid-
ing cells that violate the balancing condition [12]o com-
pareC with this refinement, wadapt a result of Moore [12];
see [5, Thm. 14.4] for the special casenof 2.

BALANCING LEMMA. Let C be a hierarchical cubical
subdivision ofR™ and R..;, its smallest balanced lefine-
ment. ThenRmin(B)| < 3™|C(B)| for every cellB € C.

PrRooOFE Call two cells in a subdivisioadjacentif they have
a non-empty intersection, and note that any two neighboring
cells are adjacent but not the other way round. We call the
subdivisionstrongly balancedf any two adjacent cells dif-
fer in size by at most a factor of two. L& be the smallest
strongly balanced refinement 6f Since strong balance im-
plies balance, it suffices to show th&(B)| < 3"|C(B)| for
everyB ¢ C.

We use the language of trees to explain the proof. The key
insight is the following: if an external node is split duritige

and a unique interior. Conversely, the closure determinesrefinement process, theélt contains a node adjacent to and



of the same size as the split node; see [12] or [5, Thm. 14.4]
for more details. It follows that every split in the process
can be charged to a node ©f. Now, each internal node is
charged at most™ — 1 times because this is the number of
adjacent nodes of same size. With every split, the number o
external nodes increases &y — 1, so we get

IR(B)| < [c(B)|+ (2" -1@E" —1)|c°(B)|
< le(B) + (3" - 1)(e(B)] - 1),
becauseC(B)| — 1 = (2™ — 1)|C°(B)|, which we get from
(7). The claimed inequality follows.

5 Dual Complexes

In this section, we introduce the main new concept of this
paper, namely the dual complex of a non-uniform cubical
subdivision. It is not necessarily a Delaunay triangulatio
so we have to worry about embedding it.

Triangulation.  Similar to the uniform case, we need the
distortion to control the explosion in dimension we othessvi
get by taking the nerve of a collection of cubes.

DEFINITION. Thedual complexof a cubical subdivision
C of R™ is the system of subsets” = K(C) that contains
« C Cifthe fractually distorted images of the cellsdarhave
a non-empty common intersection.

We extend this notion by calling the full subcomplex@(iC)
defined by a subset df the dual compleof the subset. Ob-
serve that the definition of the dual complex is independent
of the particular choice of the parametee (0, 1) that con-
trols the distortion. Moreover, the dual complex can be com-
puted purely combinatorially, without constructing diséol
cells, as in [2].We putK™ into R™ by mapping each cell to

its (undistorted)center and drawing each subset of cells as
the convex hull of their centers. This does not necessarily
give a simplicial complex, in which any two simplices are
either disjoint or intersect in a common face. However, we
will identify an important class of cubical subdivisions fo
which this drawing ofC™ is a geometric realization iR™.

Ratio bounds. Before addressing the question of geomet-
ric realization, we give an upper bound on the number of
simplices in a dual complex. Recall thiat* = D™ if all
n-cubes are of unit size. As shown at the end of Section 3,
in this case the ratio of the number bfsimplices over the
number of vertices ig}. We now show that this is the largest
ratio we can get.

Size LEMMA. The number of-simplices over the num-
ber of vertices in the dual complex of a hierarchical cubical
subdivision ofR™ is at most},.

fPROOF. Our argument works by stepwise refinement of the

subdivisionC until we arrive af", in which all cells are unit
n-cubes. We already have a good understandinf’of=

K (V™). Specifically, the ratio of the number &fsimplices
over the number of vertices " is a}}; see Section 3. We
express this by saying that the average numbgrsimplices
per vertex isi;. We will prove that each refinement step adds
one vertex and at leasf! k-simplices. Since the average
is ai at the end, fo/”, it cannot be more than; at the
beginning, forC.

e}

1S

;

d

e}

Figure 6: Cutting the middle square into two creates one new vertex
and three new edges.

We refineC by subdividing its cells in the order of non-
increasing sizeysing2™ — 1 straight cuts to subdivide a cell
into 2™ cells of half the size. We do these cuts in sequence
but not consecutively, as we now explain. When we cut a
cell, we get two rectangular boxes, each withg sides of
the same length as the edges of the cell, asdat side of
half the length. In general, we get boxes with- & long
andk short sides, wherk is anywhere betweehandn. We
order the cuts such that the short sides are parallel to 8te fir
k coordinate directions and the long sides are parallel to the
lastn — k coordinate directionslo comparewe say a box3
is larger than another box if the long sides Bfare longer, or
the long sides of the two boxes have equal lengthbbias
more long sides. Finally, we refirieby cutting the boxes in
the order of non-increasing size.

Let now B be a largest box and its number of short
edges. Because of the order of the cuts, the neighbols of
are smaller than or of the same sizelasWe cutB in half,
with an (n — 1)-plane normal to thék + 1)-st coordinate
direction. Cutting the box corresponds to splitting thereor
sponding vertex in the dual complex; see Figure 6. A new
edge connecting the two copies of the split vertex appears.
The link of this edge is a triangulation of tlie — 2)-sphere.

We denote this link by, observing that it is a subcomplex
of the link of the vertex before the split. If all neighbors of
B are of the same size d3, thenL is isomorphic to a ver-

tex link in D"~ !; see the remark after the Link Lemma in



Section 3. In this casd, hass} k-simplices. If some of the  implies that the triangle lies partially outside the thrabes.
neighbors ofB are smaller, then the number kfsimplices Now we just need to place a unit cube on topdfso it
inthe linkis at least}. The split doubles the set of simplices touches bot andB. Its center lies on the triangle and thus
connecting the vertex with simplices Iy and it triangulates ~ forms an improper intersection.

the space in between. In other words, for eaedimplex in The configuration in Figure 7 is part of a hierarchical cubi-
L, we get an additionglk + 1)-simplex by doubling and an  cal subdivision of3. Note, however, that this subdivision is
additional(k + 2)-simplex by filling. Hence, the number of  not balanced. In the remainder of this section, we show that
new k-simplices that appear as a result of the split is at least halance prohibits improper intersections between siraplic
Si—1 T Si_o- The result follows because this sumis equal to in the dual complex in all positive dimensions.

ay by the first Anchor Formula in Section 2.

By the Size Lemma,} is the largest possible ratio Seed configurations. Let nowC be a hierarchical cubical

between the number of-simplices and vertices for non-  subdivision ofR", and letCy, C1, . .., €, be cells inC form-
uniform cubical subdivisions. On the other hand, the ra- iNg ann-simplex ink" = K(C). By the Fractual Distortion
tio between the number df-cubes anch-cubes cannot be  Lemma, the corresponding fractually distorted cells meet i
smaller than(}). Therefore, Table 3 gives upper bounds for & single common point, which we denotefas. The coordi-
the number of:-simplices in the dual complex over the num-  nates of the corresponding undistorted paingreoddmul-
ber of k-cubes in the cubical subdivision. tiples of . The point7.z is also common to the distorted
images ofn 4+ 1 unit n-cubes, one in eachi(¢). In other
words, there is a unique collection of unitcubesl;, C Cy,

Counterexample to geometric realization. We are now
for 0 < k < n, such that

ready to address the question of geometric realization. For
dimensiom = 2, itis fairly easy to prove that the dual com- n n
plex of a cubical subdivision is geometrically realizedtif T.x = m Cr(e) = ﬂ Ui (e);

The key insight is that every edge &F is contained in the k=0 k=0

union of the two squares that define it; compare with Figure

4. While this property generalizes®, it no longer implies ~ See Figure 8. Writing.,. for the center otJ,,, for eachk, we
the geometric realization of the dual complex. Following[2 ~ €@ll uo, u1, . .., u, the seed configurationf the n-simplex.
we now describe a counterexample in three dimensions. 10 study this configuration, we may assume thatihere

" A

B

Figure 8: Seed configuration of a tetrahedron in the dual complex
of a cubical subdivision oR®. The white dots are the centers of
the unit cubes in the seed configuration, and the black dots are the
centers of the corresponding cubes of twice the size.

Figure 7: Three cubes iR® whose centers span a triangle that is
not contained in the union of the three cubes.

We begin with two cubes4 and B, that share a common
edge of lengts. To this, we add a cub@ of size2 suchthat ~ Vertices ofU” = [0, 1]". Writing uy; for the j-th coordinate
one of its edges overlaps with the last quarter of the sharedof ux, we can make this more specific by assuming = 1
edge of4 and B; see Figure 7. The line segment connecting if j < k anduy; = 0if k£ < j. The common point of th&
the centers ofd and B passes through the midpoint of the iSthenz = (3, 3,...,3), the center o).
shared edge. This midpoint lies outsi@e and the center Two orderings of the vertices of amrsimplex belong to
of C' lies outsideA U B. The line segment connecting the the sameorientation if they differ by an even number of
midpoint and this center belongs to the triangle spanned bytranspositions. Writing the vertices as the rows of a matrix,
the three centers but it is not containeddru B U C. This in the sequence of their ordering, and adding a columirisof
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on the left, we can use the sign of the determinant to dis- claim that the orientation of the-simplex is still positive. To
tinguish between the two orientations. For example, for the see this, we consider again the matrix of vertex coordinates

orderingug, u1, . .., u, We get The k-th row is either the same as in (8) or different in the
way described above. Let be the smallest index for which
L 00 ... 0 cm # um. We subtract rown from each rowk > m with
L 10 ...0 cr # ug. This way we ge® in the diagonal position of row
det| 1 1 1 ... 0 = 1, (8) k followed byn — k 0's. Rowm < n is the only remaining
ool reason for the matrix not to be lower triangular. To fix this,
11 1 ... 1 we use rown which is either alll’s or consists ofn + 1 0's
followed byn — m 2’s. Adding half or one quarter of row
and we say this ordered-simplex hagositive orientation n to rowm, we get the matrix in lower triangular form. The

The determinant is alsa! times the signech-dimensional row operations do not affect the determinant, which is now
volume of then-simplex. Since the volume is a continu- the product of the diagonal elements, which arelal%, or

ous function of then + 1 points, we can move the points 2. This implies that the determinant is positive and theefor
around and be sure the determinant does not change its sigrhas the same sign as for the seed configuration, as claimed.

unless the points pass through a configuration in which they  |n, the last step of the proof, we consider other choices for
are affinely dependent. Because of this property, it is possi the centers of the),, reducing them to the above configura-
ble to compare the orientations of differemisimplices, as  tjon, which we already know has positive orientation. Fie th
we will do extensively below. set of indices: with ¢;, # u;, and letm be the smallest such
index, as before. We have,; equal to} or 3 for j < m
Orientation. In a geometrically realized dual complex, all and equal to—% or % for m < j. Fixing ¢,,, leaves only one
n-simplices have the same orientation as their seed config-choice for eacly;, # uy, elsec;, andc,, would contradict
urations. We now prove that dual complexes of balanced (9). In the case we already studied, we had # % for
subdivisions have this property. all j. The remaining cases useat least once as a coordi-
) ] nate. We claim that doing so does not change the determi-
ORIENTATION LEMMA. Every n-simplex in the dual  nant we prove this by induction over the numberesf in
complex of a balanced hierarchical cubical subdivisioR'df the coordinate vector af,,. Each step decreases this number
has the same orientation as its seed configuration. while preserving the set of rows for which # us. Let
be such that,,,; = 1. Changing this coordinate te 1 or
%, whichever is possible considering the valueugf;, de-
creases the number ¢fs, so it suffices to show that making
that change does not affect the determinant. Indeed, the ma-
trix before differs from the matrix after the change only in
the j-th column. Under the current assumptions, we have
dCi-1 = u;-1, elsec;_; would be a vertex olU; andCj_,
would contain/;. Symmetrically, we get; = u;. It follows
that subtracting rowj — 1 from row j leaves only one non-
zero element in row, namely thel in column;. Using this
row, we can now transform one matrix into the other by row
operations, implying that the determinant does not change.
Hence, the orientation of the simplex is the same as that of
its seed configuration in all cases. m]

PrROOE LetCy, C1, ..., C, be a sequence afdimensional
cubical cells in the balanced hierarchical cubical sulsitivi,
assume they define ansimplex in the dual complex, and
letUy, Uy, ..., U, be the corresponding sequence of unit
cubes in the seed configuration. We writefor the center of
C, andcy; for its j-th coordinate. It is convenient to assume
that the seed configuration has the special form describe
above. Since th€’;, come in at most two sizes, we may
assume that eith&r;,, = U, or C}, is twice the size ot/;. In

the latter casey, is a vertex oy, and we havéry,; —uy;| =

3 for all j. Assumingk # ¢ are indices withc,, # uy
andc, # uy, the difference between the coordinates of their
centersis

Ckj — Cpj € {—2, 0, 2}, (9)

It is convenient to order the vertices of the simplices such
that all n-simplices inD" have positive orientation. Two
neighboringn-simplices then induce opposite orientations
on the sharedn — 1)-simplex.

foreachl < j < n. The difference is a multiple &fbecause
C), andC, are part of a hierarchical subdivision, and it can-
not be larger tha because they are corners of neighboring
unit n-cubes.

A particular choice for the center @y is ¢, = 2uy —

x with x = (%, %, cee %); see the black dots in Figure 8. Geometric realization. We are now ready to prove that
Here, the coordinate vector of, consists ofk Ieading%’s dual complexes of balanced hierarchical subdivisions are
andn — k trailing —%’s. We consider the case in which = simplicial complexes. To cope with the infinite size, we

2uy, — x, for some indices, andc¢, = uy, for others. We again consider finite subsets.
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GEOMETRIC REALIZATION THEOREM. Let C be a bal-
anced hierarchical cubical subdivision®f. Then the dual
complex/C(C(B)) is geometrically realized ifR™, for each
cellBeC.

PROOFE Let R..x be the largest refinement af with
C(B) C Rmax- We can construcR,,.x by repeatedly
adding cubical cells on the outside Bf choosing the small-
est size possible without violating balance. The layers of
cells aroundB get smaller toward the outside until they
shrink to unit size. Leaving two full layers of unit-cubes,
we remove all cubes outside those layers and con&idgr.
in this extended box only. The two outer layers of unit cubes
are usefulbecause we understand how unitubes are con-
nected to each other in the dual complex. In particular, the
full subcomplex defined by the subset of umitubes in the
two layers is geometrically realized ™. Indeed, this is a
subcomplex o™, which we analyzed in Section 3.

For the final step of the argument, we compackfy to
the n-dimensional spher&™, by adding a point at infinity.
Similarly, we construcC” from K(R.x) by adding a new
vertex at infinity and connecting it to all simplices triangu
lating the outer boundary. By the Nerve Theorem applied to
the fractually distorted image, the thus modified dual com-
plex of R..x triangulatesS™. It follows that the drawing
of K(Rmax) € K™ in R™ defines a continuous mapping
g : S™ — S™. We use the fact that theegreeof ¢ at a point
2 not in the image of anyn — 1)-simplex is the number
of n-simplices that contaig~—!(x), counting ann-simplex
positive or negative depending on the orientation of its im-
age undeyw; see [1, p. 474] but also [13]. Since all cells in
the last two layers are unit-cubes, the:-simplices they de-
fine all have positive orientation. Hence, the degrekifsz
lies inside the layer ofi-simplices formed by the two layers
of unit n-cubes. However, the degree of a mapping between
manifolds without boundary is a global property and does
not depend on the location of see eg. [1, p. 490]. Hence, it
is 1 for anyx. By the Orientation Lemma, the image under
g of everyn-simplex has positive orientation. Hence, the de-
gree can only bd if z lies in the interior of exactly one
n-simplex. This prohibits improper intersections between
simplices INK(Rumax). Sincek(C(B)) C K(Rmax), this
implies the claim.

6 Discussion

The main new concept in this paper is the dual complex of a
cubical subdivision oR™. Important examples of the latter
are quad-tree subdivisions & and oct-tree subdivisions
of R3. We count the number of simplices and prove that
dual complexes of balanced hierarchical cubical subdivisi
are geometrically realized iR". We predict applications of

12

these results in the analysis of four- and higher-dimeradion
images, and in particular in the computation of their persis
tent homology.

The detailed analysis of cubical subdivisions raises a num-
ber of technical questions. For example, the Geometric Re-
alization Theorem applies only to balanced hierarchical cu
bical subdivisions. We know it does not necessarily hold for
unbalanced such subdivisionsldf, for n > 3. How about
balanced cubical subdivisions that are not hierarchical?
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