
Fast and Exact Geometric Analysis of

Real Algebraic Plane Curves

Arno Eigenwillig
Max-Planck-Institut für

Informatik
Saarbrücken, Germany

arno@mpi-inf.mpg.de

Michael Kerber
Max-Planck-Institut für

Informatik
Saarbrücken, Germany

mkerber@mpi-inf.mpg.de

Nicola Wolpert
Hochschule für Technik

Stuttgart, Germany

nicola.wolpert@hft-
stuttgart.de

ABSTRACT

An algorithm is presented for the geometric analysis of an
algebraic curve f(x, y) = 0 in the real affine plane. It com-
putes a cylindrical algebraic decomposition (CAD) of the
plane, augmented with adjacency information. The adja-
cency information describes the curve’s topology by a topo-
logically equivalent planar graph. The numerical data in the
CAD gives an embedding of the graph.

The algorithm is designed to provide the exact result for
all inputs but to perform only few symbolic operations for
the sake of efficiency. In particular, the roots of f(α, y) at
a critical x-coordinate α are found with adaptive-precision
arithmetic in all cases, using a variant of the Bitstream
Descartes method (Eigenwillig et al., 2005). The algorithm
may choose a generic coordinate system for parts of the anal-
ysis but provides its result in the original system.

The algorithm is implemented as C++ library AlciX in
the EXACUS project. Running time comparisons with top

by Gonzalez-Vega and Necula (2002), and with cad2d by
Brown demonstrate its efficiency.

Categories and Subject Descriptors:
I.1.4 [Symbolic and Algebraic Manipulation]: Appli-
cations; I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms; G.1.5
[Numerical Analysis]: Roots of Nonlinear Equations—
Polynomials, methods for

General Terms: Algorithms, Performance

Keywords: Algebraic curves, cylindrical algebraic decom-
position, topology computation, Descartes method, Sturm-
Habicht sequence, exact geometric computation

1. INTRODUCTION
A bivariate polynomial f with integer coefficients defines

an algebraic curve in the plane as its vanishing set. Our goal
is to analyze the geometry of this curve f in the following
sense: Imagine a vertical line ` moving from x = −∞ to

c©ACM, 2007. This is the authors’ version of the work.
It is posted here by permission of ACM for your personal
use. Not for redistribution. The definitive version was pub-
lished in the Proceedings of the 2007 International Sym-

posium on Symbolic and Algebraic Computation (ISSAC
2007), http://doi.acm.org/10.1145/1277548.1277570

x = +∞ through the plane. At each position, ` intersects
f in finitely many points, as long as f has no vertical line
as a component. While moving `, the number of intersec-
tions can only change if f has a critical point (singularity
or point with a vertical tangent line) at this x-coordinate
or if an arc of f diverges at this x-coordinate, i.e., if ` is
a vertical asymptote. We call all these positions critical x-
coordinates. For each such critical x-coordinate α, our algo-
rithm computes a stack, i.e., the y-coordinates of the points
on the curve for that x-value (dashed lines at the right of
Figure 1.1); these are the real roots of fα(y) := f(α, y). Fur-
thermore, for each interval between critical x-coordinates, a
stack is constructed for some sample point in that interval
(dotted lines at the right of Figure 1.1), and it is computed
how the points on neighboring stacks are connected to it.
This extension from x-coordinates to stacks is called lifting
phase. The ensemble of stacks gives a cylindrical algebraic
decomposition (or CAD) of the plane (see [2], [7] for the
general definition for n polynomials in R

d) augmented with
adjacency information. This result describes the topology
of the curve as well as the position of critical points.

Figure 1.1: The critical values of an algebraic curve
(left), and the result of the analysis (right)

There is a substantial body of previous work on computing
a CAD; we mention the pioneering work led by Collins [7],
[2], [3], work by Hong [17] and its references, and also the
recent textbook [4]. A popular restriction of the problem is
to compute just the topology of f , in the form of a topolog-
ically equivalent planar graph, see, e.g., [14], [15], [24]. This
gives the freedom to change coordinates such as to escape
from a degenerate position of f .

The literature agrees (e.g., [6], [9], [15], [17], [25]) that
a pivotal source of efficiency is to avoid, as much as possi-
ble, exact arithmetic with the critical x-coordinates α in the
lifting phase, because these are algebraic numbers, typically



with a degree on the order of magnitude deg(f)2. Frequently
([6], [9], [17], [25]), verified fixed-precision arithmetic is used
to solve easy cases fast, but exact arithmetic is still needed
as a backup in case of failure. A different approach is ex-
emplified by the work of Gonzalez-Vega and Necula [15]:
use symbolic computations to remove a multiple root from
f(α, y) and solve the remaining square free equation numeri-
cally; repeat at higher precision if the result looks suspicious.
This works quite well in practice; however, [15] does not give
a rigorous proof that a sufficient precision is selected for all
inputs.

Our result. We present a solution that produces the ex-
act result for all inputs, and it does so with an adaptive-
precision numerical lifting phase. From a theoretical point
of view, the uniform use of numerical lifting combined with
the guarantee of an exact result is a pleasant novelty. From
a practical point of view, the comprehensive use of approxi-
mate arithmetic makes our algorithm fast (see Section 7 for
running time comparisons). The only “exact” information
we need for a critical x-coordinate α is obtained from evalu-
ating the signs of the principal Sturm-Habicht coefficients of
f at α, see Section 2. This allows us to drive the Bitstream
Descartes method for root isolation (presented in Section 3)
properly in the presence of a multiple root.

During our algorithm, we may change from the original co-
ordinate system into “sufficiently generic” coordinates. As a
consequence, we will get adjacencies almost for free. This is
a well-known trick for topology computation; see, e.g., [14],
[15]. However, deciding genericity exactly requires symbolic
computations. Unlike previous approaches, we abstain from
a precise decision and do not rely on an initial genericity
test. Instead, our analysis detects along the way whether a
non-generic position poses a problem and only then triggers
a change of coordinates. Thus we avoid the costly exact
genericity test.

The benefits of coordinate changes are easy to use in algo-
rithms for topology analysis [14] [15] [24], because topology
is invariant under coordinate changes. However, we want an
analysis in the original system. We exploit our analysis in
the generic system to drive a numerical lifting in the original
system and attain a CAD (with adjacencies) there. To our
knowledge, this is new.

In the next two sections, we describe the two fundamental
tools that we use. Our algorithm itself is introduced in Sec-
tion 4. We report on our implementation and experimental
comparisons in Section 7.

2. STURM-HABICHT SEQUENCES
Given a curve f(x, y) = 0 without vertical line compo-

nents, our curve analysis needs to count the curve points
on lines x = α. These points are the distinct real roots of
fα(y) := f(α, y). Sturm-Habicht sequences are a suitable
tool to count them. For the reader’s convenience, we repeat
their definition and relevant properties. We use a simplified
definition as in [15], and refer to [16] for proofs.

Definition 2.1. Let D be any domain, f ∈ D[y] with

deg f = n, and δk := (−1)k(k+1)/2. For k ∈ {0, . . . , n},
the kth Sturm-Habicht polynomial of f is defined as

StHak(f) =

8

>

<

>

:

f if k = n,

f ′ if k = n − 1,

δn−k−1Sresk(f, f ′) if 0 ≤ k ≤ n − 2,

where Sresk(f, f ′) is the kth subresultant of f and f ′. We
define sthak(f), the kth principal Sturm-Habicht coefficient
of f , as the coefficient of yk in StHak(f).

The next two results are well-known from subresultant the-
ory.

Theorem 2.2. For any f ∈ D[y] of degree n > 0,

deg(gcd(f, f ′)) = min {k ∈ {0, . . . , n − 1} | sthak(f) 6= 0} .

Theorem 2.3 (Specialization property). For a poly-
nomial f ∈ D[x, y], let (StHai(f))n

i=0 be its Sturm-Habicht
sequence w.r.t. y. Then, for any α ∈ D with degy(f) =
deg(fα), (StHai(f)(α))n

i=0 is the Sturm-Habicht sequence of
the polynomial f(α, y).

Sturm-Habicht sequences allow to count the number of dis-
tinct real roots in intervals (c, d). We only consider the inter-
val (−∞, +∞), for which use of the principal Sturm-Habicht
coefficients suffices. For a sequence I := (a0, . . . , an) of
real numbers with a0 6= 0, we define the counting function
C(I) :=

Ps
i=1 εi, where s is the number of subsequences

of I of the form (a, 0, . . . , 0, b) with a 6= 0, b 6= 0, k ≥ 0
intervening zeros, and

εi :=

(

0 if k is odd,

(−1)k/2sgn(ab) if k is even.

Theorem 2.4. For f ∈ R[y] with deg f = n > 0, we have

C(sthan(f), . . . , stha0(f)) = #{β ∈ R | f(β) = 0}.

Let us summarize: Given the curve f(x, y) = 0, we can
consider the sequence (sthan(f), . . . , stha0(f)) of its prin-
cipal Sturm-Habicht coefficients w.r.t. y with a parameter
x. Its last element stha0(f) is the resultant resy(f, ∂f

∂y
) (up

to sign). After specialization to a value x = α (subject
to the degree condition from Theorem 2.3), the signs of
(sthan(f)(α), . . . , stha0(f)(α)) indicate both k := deg(fα, f ′

α)
and m := #{β ∈ R | fα(β) = 0}.

3. BITSTREAM DESCARTES METHOD
The Descartes method [8] (see also [23], [13] and their

references) computes isolating intervals for a square free
univariate polynomial g ∈ R[t]; that is, it assigns pair-
wise distinct enclosing intervals to the real roots of g. It
is based on the following upper bound for the number of
roots in an open interval (c, d). The [c, d]-Bernstein basis
(Bn

0 [c, d], . . . , Bn
n [c, d]) of the vector space of polynomials of

degree up to n is given by Bn
i [c, d](t) =

`

n
i

´

(t − c)i(d −

t)n−i/(d − c)n.

Theorem 3.1 (Descartes’ rule of signs). Let g(t) =
P

biB
n
i [c, d](t) ∈ R[t] have v sign variations in its coeffi-

cient sequence (b0, . . . , bn) and p roots in the interval (c, d),
counted with multiplicities. Then v ≥ p and v ≡ p (mod 2).

The Descartes method maintains an interval queue, initially
comprising a single interval that encloses all real roots. While
the queue is non-empty, we remove its front element I and
apply Descartes’ rule to it. If v = 0, we know p = 0 and
throw I away. If v = 1, we know p = 1 and output I as an
isolating interval. If v > 1, we subdivide I and enqueue its
two parts. For reasons that will become clear in Section 5,



we insist that new intervals are enqueued at the back. If we
think of the intervals inspected by the algorithm as a tree,
this means the tree is traversed breadth first.

Although Descartes’ rule appears weak compared to the
exact root count offered by Sturm or Sturm-Habicht se-
quences, its simplicity makes the Descartes method very fast
in practice, already when implemented with exact integer
arithmetic [18] [19]. It can be accelerated further by replac-
ing exact coefficients by approximations [9] [23], especially
when the coefficients are not integers but more general al-
gebraic numbers. However, as the method imposes a fixed
grid of subdivision points, some inputs force it to exactly
determine the sign of a vanishing coefficient, thus requiring
to fall back from approximate to exact arithmetic [9, p. 152].
Eigenwillig et al. [12] have overcome this problem by ran-
domizing the choice of subdivision points and controlling
numerical precision adaptively. Their Bitstream Descartes
method isolates the real roots of any square free real polyno-
mial g(t) whose coefficients are “bit-streams”, i.e., arbitrary
real numbers that are approximable to any positive abso-
lute error but may not be known exactly. The necessary
approximation precision is controlled automatically by the
Bitstream Descartes method. The method comes with the
rigorous guarantee that the resulting isolating intervals are
valid for the exact polynomial g(t) in all cases.

We show in Section 5 how to use the Bitstream Descartes
method in the lifting phase of our algorithm, that is, for
isolating the real roots of fα(y) = f(α, y), even if fα has a
multiple root. Its coefficients can be approximated to any
desired accuracy by refining the isolating interval of α. For
this, we use Abbott’s Quadratic Interval Refinement [1].

4. CURVE ANALYSIS: OVERVIEW
The two preceding sections have introduced the two major

tools for our algorithm. We now describe the algorithm
itself. Let f ∈ Z[x, y] be the input polynomial that defines
the algebraic curve. We restrict our exposition to the case
that f is square free and has no vertical lines as components.
Vertical lines can be divided out and added to the CAD after
the analysis; we skip the details for brevity.

Our algorithm consists of two parts: The first part is a
direct method of analysis by projection and lifting (see be-
low) that always succeeds in a generic coordinate system but
might reject a curve in non-generic coordinates. If the direct
method rejects f , we change coordinates randomly until it
succeeds. In that case, the result of an analysis in changed
coordinates needs to be transformed back into the original
coordinate system. This is achieved by the second part of
our algorithm: a method of analysis in the original system
that always succeeds, but depends on information from a
successful direct analysis in a different coordinate system.

We take a look at the direct method first. We want to
understand the curve’s geometry at critical x-coordinates.

Definition 4.1. A point p ∈ R
2 on a curve f is critical,

if f(p) = 0 = ∂f
∂y

(p). If moreover ∂f
∂x

(p) = 0, p is called
singular. Non-singular points are called regular. A critical
x-coordinate is the x-coordinate of a critical point or of a
vertical asymptote of f .

It is well-known that critical x-coordinates of a curve are
contained in the roots of the resultant resy(f, ∂f

∂y
). Our

approach uses the standard strategy for the curve analysis
(compare [2], [14], [15], [24]), which consists of two phases:

• Projection phase: Compute the real roots α1 < · · · <
αn of the resultant, and rational sample points ρ0 <
α1 < ρ1 < α2 < · · · < αn < ρn for each interval
between roots.

• Lifting phase: (Try to) construct a stack for each αi

and each ρi, and compute how the points in neighbor-
ing stacks are connected.

For us, a stack is simply the increasing sequence of the y-
coordinates for the curve points at some x-coordinate. We
call the collection of stacks and their adjacencies a CAD
for f (cf. the general CAD definition from Collins [2], [7]).

A stack is easily computed for a rational sample point ρ by
using the Descartes method on the square free polynomial
fρ(y) = f(ρ, y). The interesting part is the stack construc-
tion over some root α of the resultant. Isolating the roots
of fα(y) = f(α, y) efficiently is not easy because the coef-
ficients of fα are algebraic, and additionally because fα is
not square free. In Section 5, we present an efficient solution
that is based on the following conditions.

Definition 4.2. We call a curve f ∈ Z[x, y] generic, if

(G1) the leading term of f , considered as a polynomial in y,
is a constant; and

(G2) for each real root α of resy(f, ∂f
∂y

), the polynomial fα ∈

R[y] has at most one multiple root in C.

This notion of genericity also appears in [15], [14], [4, §11.6],
and in a slightly more restrictive form in [24]. If (G1) is
violated, we reject the curve immediately. Otherwise, we
attempt lifting, as explained in Section 5. This succeeds if
genericity holds. However, unlike previous approaches, it
does not guarantee to reject the curve if genericity is vio-
lated; i.e., it does not decide genericity. This allows to avoid
certain symbolic computations. Whenever lifting succeeds,
it guarantees correctness of its result, whether f is generic
or not.

Now we talk about the case that this direct method for
lifting has not been successful. We transform the input curve
by applying a shear (compare [24], [15], [14]). For a shear
factor s ∈ Z, the sheared curve is defined as

Shsf = f(x + sy, y).

The curve Shsf is the image of f under the shear mapping
(x, y) 7→ (x − sy, y) of the plane onto itself. Repeatedly
choosing s at random and invoking the analysis eventually
produces a CAD for Shsf , since only finitely many shear
factors make Shsf non-generic (see, e.g., [4, Prop. 11.23]).
But the CAD for Shsf is not the one we are looking for;
thus, we need the following additional phase.

• Transformation phase: Construct a CAD for f out of
the CAD for Shsf .

This is not trivial. The critical points of f do not corre-
spond to those of Shsf (see Figure 6.1) and are therefore
not covered by the stacks of Shsf . Finding the image of
all kinds of critical points of f on Shsf would necessitate
further symbolic calculations in unfavorable cases. We will
avoid this by considering a restricted class of critical points
(Def. 6.1): An event point of the curve f is a point where
f cannot be expressed locally as a continuous function in
x, i.e., where the curve does not traverse from left to right.



Event points are always critical, but not vice versa: For in-
stance, a vertical cusp (depicted on the left of Figure 6.2)
is critical and even singular, but it is not an event point.
Event points are detected more easily in the sheared sys-
tem, and they contain the complete geometric information
for the analysis. We refer to Section 6 for details.

5. DETAILS OF THE LIFTING PHASE
We describe how to produce the stack over a real root

α of resy(f, ∂f
∂y

). Regarding genericity of f , condition (G1)
of Def. 4.2 has already been checked, so f has no vertical
asymptotes. (G2) has not yet been checked; we may reject
f if it turns out that (G2) is violated.

We isolate the real roots of fα(y) = f(α, y) using a variant
of the Bitstream Descartes method (Section 3). We want to
avoid the initial step of making fα square-free. Instead, we
use the principal Sturm-Habicht coefficients of f , special-
ized to x = α, and obtain m, the number of distinct real
roots of fα, and k, the degree of gcd(fα, f ′

α); see Section 2.
Then we apply the Bitstream Descartes method directly on
fα. Recall from Section 3 that the method maintains an
interval queue, and this queue will never become empty in
case of multiple roots. Therefore, we interrupt the execution
if one of the two following termination conditions is satis-
fied. Either, m − 1 simple roots of fα are found, and there
is only one more interval in the interval queue: this is the
success case of the algorithm, we have found exactly m iso-
lating intervals. Or, no interval in the queue has more than
k sign variations: the curve is rejected in this case. We call
this the m-k-Descartes algorithm to point out that it needs
knowledge about m and k.

Lemma 5.1. m-k-Descartes terminates for any polyno-
mial fα.

Proof. By the termination proof for the square-free case
(cf. [21]), all intervals free of multiple roots count 0 or 1 sign
variations eventually. If fα has at most one multiple root,
this implies that the first condition is eventually satisfied.
If fα has more than one multiple root over C, then each
root has multiplicity at most k, because each multiple root
contributes at least one to the degree k. It has been shown
[11] that any sufficiently small interval containing an r-fold
root of fα counts exactly r sign variations. Therefore, from
that point onwards, all intervals count at most k.

Lemma 5.2. If the curve f is generic, m-k-Descartes suc-
ceeds for any fα.

Proof. It is enough to show that the second termina-
tion condition is never satisfied for fα. By the definition
of genericity, fα has at most one multiple root over C, so
gcd(fα, f ′

α) = (x−β)k for some β ∈ R. Thus, β is a (k +1)-
fold root of fα, and an interval containing β will always
count at least k + 1 sign variations.

We point out two further properties of the m-k-Descartes
algorithm. First, it can be also successful for polynomials
with more than one multiple root: If fα has at most one real
multiple root and further imaginary ones, either termination
conditions may be satisfied after suitable subdivision of the
initial interval, and one cannot easily predict which one is
satisfied first.

Second, on success, the sign variations counted for the last
remaining interval in the queue only give an upper bound of

the root’s multiplicity with the correct parity (Theorem 3.1).
For odd multiplicities, it is not certified that the root inside
is in fact multiple. Translated to our geometric problem, we
cannot guarantee that such a point over α is critical. We
call such roots (points) candidates roots (points). All non-
candidate roots are non-critical. Observe that root isolation
with Sturm’s method instead of the Descartes method would
not provide any information about roots being simple or
multiple.

If lifting succeeds for all α, we have computed stacks for
each critical x-coordinate. It remains to find the adjacencies
between the points at α with the left and right neighboring
stacks. Let ρ− and ρ+ be the x-coordinates of the sample
points for the neighboring stacks. We say that a point p on
α is adjacent to a point p+ (or p−) on ρ+ (or ρ−) if there
is an x-monotone curve segment that joins p and p+ (or p−,
respectively). A non-critical point at α must have exactly
one adjacent neighbor at the left and at the right by the
implicit function theorem.

The output of the m-k-Descartes algorithm, together with
our genericity conditions, allows to compute adjacencies in
a purely combinatorial way, as explained next. The same
method was already used in [15], and it is more efficient
than putting boxes around critical points and performing
root isolation at the box boundaries, as other approaches
do [3] [17] [24].

Assume that fα has a+b+1 roots, where a roots are above
the candidate point p, and b roots below. Further assume
that there are m+ (or m−) points on the stack of ρ+ (or ρ−,
respectively). The curve does not have a vertical asymptote
at α, so the a points above p are adjacent to the a highest
points at ρ− and at ρ+. The analogous statement is true
for the b points below p. The remaining m− − a − b arcs
on the left and the remaining m+ − a − b on the right are
adjacent to p. An example is depicted in Figure 5.1. Note
that both the presence of vertical asymptotes and more than
one candidate over α would spoil this simple argument.

αq− q+ αq− q+

Figure 5.1: Example for the adjacency algorithm.

It might appear unsatisfactory not to have more validated
geometric information about the candidate. Optionally, one
can decide whether the candidate is singular with some extra
symbolic computations: For generic curves, the candidate’s
y-coordinate has a rational expression in terms of the x-
coordinate [14] [15]. With that, one can check whether the
partial derivatives vanish or not [20, §5.4].

We remark an optimization for the lifting step that can
be applied quite often. If α is a simple root of the resul-
tant, there is exactly one critical point at α, and this point
is a regular x-extreme point, i.e., a point having greatest (or
smallest) x-coordinate among all curve points in some neigh-



borhood [20, Thm. 4.2.1]. This case was already treated by
Brown [6, §3.2]. The number of roots at the two neighboring
stacks of α differ by exactly two (the two points adjacent
to the x-extreme point), and the number of roots over α
is the mean of these values. Moreover, since there is only
one critical point, the m-k-Descartes algorithm will always
be successful. In other words, the stack for such an α is
constructed without using the Sturm-Habicht sequence, or
other symbolic calculation with α.

6. DETAILS OF THE TRANSFORMATION

PHASE
Let us now treat the case that the curve f was rejected

because of non-genericity, but Shsf = f(x + sy, y) has suc-
cessfully been analyzed by the method described above. For
brevity, we omit s and write Shf . For a more compact
description, let us assume temporarily that f is a bounded
subset of R

2, postponing the treatment of unbounded curves
to §6.3.

Our goal is to construct a CAD for f , the original curve.
The following class of points on f will be of importance.

Definition 6.1. A point p on f is an event point, if,
locally around p, the curve f is not the graph of a continuous
function y = ϕ(x).

Geometrically, event points are either self-intersections of
the curve, isolated points of the curve, or x-extreme points.
In terms of a CAD, event points are precisely those points
that do not have exactly one adjacent point in both the
left and right neighboring stack. Event points are always
critical, but not vice versa.

The event points of the curve induce the event graph for
the curve, a combinatorial graph with nodes for event points
and edges for the curve segments connecting them. We ex-
ploit the CAD of the sheared curve to compute the event
graph; the event graph in turn bears enough information to
construct the CAD for f . Note that the sheared images of
event points of f are not necessarily critical points of Shf
(Figure 6.1), so they are not covered by the computed CAD
of Shf and must be detected additionally.

Let P := {p1, . . . , pr} denote the set of event points of f .
Our algorithm proceeds in four steps:

1. Find the sheared images P ∗ := {p∗

1, . . . , p
∗

r} of the
event points of f .

2. Construct the sheared event graph G∗ := (P ∗, E∗)
with edges (p∗

i , p
∗

j ) for the segments of Shf connecting
p∗

i and p∗

j .

3. Compute the event graph G = (P, E) by replacing
sheared points p∗

i by their preimages pi.

4. Using G, construct the stacks for the original curve f .

Step 1 is described in §6.1. Step 2 is straightforward, ex-
ploiting the CAD of Shf .

In Step 3, we compute the coordinates of pi out of p∗

i .
Note that y-coordinates of pi and p∗

i are equal, so it is only
about finding the correct x-coordinate for pi. Since event
points are critical, the x-coordinate of pi must be a critical
one, i.e., a root of the (already known) resultant resy(f, ∂f

∂y
).

To find out which root it is, approximations of the x- and

y-coordinate of p∗

i are computed and the inverse shear is ap-
plied using interval arithmetic, yielding an x-range of pos-
sible x-coordinates for pi. The approximations are refined
iteratively until the resulting x-range overlaps with exactly
one isolating interval of the resultant roots.

Step 4 is described in more detail in §6.2. It employs
another variant of the Bitstream Descartes method, again
using extra information to terminate despite the presence of
multiple roots. This extra information now comes from the
event graph, and no symbolic computation is needed for this
step.

p3

p2

p1

p4 p5

p6

p7

p∗2

p∗1

p∗3 p∗4 p∗5

p∗6

p∗7

Figure 6.1: On the left: A (non-generic) curve of
total degree four and its event points. On the
right: Its sheared curve (with shear factor 2) and
the sheared event points. Note that all p∗

i except p∗

3

are non-critical points of the sheared curve.

6.1 Sheared event point detection
We search for the sheared event points of the curve f . We

begin with their x-coordinates.

Lemma 6.2. Let (α, β) be a sheared critical point, i.e., the
image of a critical point of f under the shear. Then α is a
root of Rev := resy(Shf, Sh ∂f

∂y
).

As event points are always critical, it is enough to search for
sheared event points over each root of Rev. We refine the
CAD for Shf by introducing new stacks at those roots α of
Rev at which no stack exists yet, by running the Bitstream
Descartes method on the square free polynomials (Shf)α.
Such newly created stacks subdivide some intermediate in-
terval in two parts, and at least one new intermediate stack
must be created as well.

Now we consider any point p∗ over some root of Rev and
ask whether it is a sheared event point. If p∗ does not have
exactly two adjacent points in total in its two neighboring
stacks, it obviously is an event point (e.g., the point p∗

3 in
Figure 6.1). However, what if it does have exactly two adja-
cent points? Let us call them q∗1 and q∗2 , and their preimages
q1 and q2. Clearly, p, the preimage of p∗, is an event point
if and only if q1 and q2 are both “on the same side” of p,
hence one could just shear back p∗, q∗1 and q∗2 and compare
their x-coordinates. We will derive a more efficient criterion
which only depends on the q∗i ’s and does not shear back any
point; cf. Figure 6.2.

Lemma 6.3. The point p∗ on Shf is a sheared event point
of f if and only if sgn((Sh ∂f

∂y
)(q∗1)) 6= sgn((Sh ∂f

∂y
)(q∗2)).

Proof. Notice that (Sh ∂f
∂y

)(q∗i ) = ∂f
∂y

(qi). We let qi =

(ai, bi) and observe that ∂f
∂y

(qi) = f ′

ai
(bi). Hence it suffices



to show in the original system that p is an event point if
and only if sgn(f ′

a1
(b1)) 6= sgn(f ′

a2
(b2)). The plane decom-

poses into the curve f = 0 and into regions (connected open
subsets) that are positive (f > 0) or negative (f < 0). Con-
sider the x-monotone segments σi of f that connect p to qi,
i = 1, 2.

If σ1, σ2 extend to different sides of p, then p is not an
event point, and σ := σ1 ∪ σ2 is x-monotone and separates
two regions. W.l.o.g., let the region below σ be negative.
A vertical upward ray at x = ai leaves this region at the
simple root bi of fai

, so the region above σ is positive, and
f ′

ai
(bi) > 0 for both i.

If σ1, σ2 extend to the same side of p, then p is an event
point, and w.l.o.g. there is a negative region above σ1 and
below σ2. An upward vertical ray at x = a1 enters this
negative region at the simple root b1 of fa1

, hence f ′

a1
(b1) <

0. A similar ray at x = a2 leaves this negative region at b2,
hence f ′

a2
(b2) > 0.

q2

q1

q1

q2

σ1 σ2

f > 0
f > 0

f < 0

f < 0

σ1

σ2

Figure 6.2: At the left: For i = 1, 2, the function
fai

(dashed line) changes from the negative to the
positive region, so ∂f

∂y
(qi) > 0. On the right, it is

∂f
∂y

(q1) < 0, ∂f
∂y

(q2) > 0.

Consequently, to check whether the point p∗ is a sheared
event point, we only need one function evaluation at its two
adjacent points. Since the sign is known to be non-zero, it
can be determined numerically by approximating q∗i suffi-
ciently.

6.2 Stack construction
We explain the last step in our transformation algorithm

next: We already have computed the graph G∗, containing
the sheared event points and their connections, and for each
sheared event point p∗

i we know the corresponding event
point pi. When each p∗

i is replaced by pi in G∗, we obtain
the event graph G that contains all event points of f and
their connections (compare Figure 6.1). Moreover, two event
points must be connected via an x-monotone segment of the
curve since otherwise the segment would contain a further
event point. This allows to count the number of points in
each stack combinatorially.

Proposition 6.4. Let G = (V, E) be the event graph of
f , and let α be a real root of resy(f, ∂f

∂y
). Let m1 denote

the number of event points with x-coordinate α, and m2 the
number of edges in the graph such that one endpoint has x-
coordinate smaller α and one endpoint greater α. Then, the
number of points over α is m := m1 + m2.

As an example, consider the stack over p4 in Figure 6.1:
There is one event point, and the edges (p1, p6) and (p2, p7)
cause additional points at α, so there are three roots in total.

We also get the number of adjacent points at the left and
right neighboring stack for each event point by the analogous
counting argument.

The event graph does not indicate in which order event
points and non-event points are arranged over α. We need
to isolate the real roots of fα as a final step. We already
know m, the number of points over fα, from the event graph.
Also, we know m1, the number of event points over α, and
we can approximate their y-coordinates up to any precision,
because we have the coordinates of their sheared images,
and the y-coordinate does not change when shearing back.

We run the Bitstream Descartes algorithm for the non-
square free fα. During the subdivision process, those inter-
vals that contain an event point are marked. If m1 marked
intervals are found, they all contain exactly one event point.
We further subdivide until we find m−m1 = m2 unmarked
intervals with an odd number of sign variations. Such an
interval must contain at least one real root, and with the
knowledge of m and m1, we can stop and report the isolat-
ing intervals.

It remains to show that eventually m2 unmarked intervals
with odd sign variation are found. This follows from the next
lemma.

Lemma 6.5. Let (α, β) be a non-event point. Then, β is
a root of fα with odd multiplicity.

Proof. By using the same argument as in the proof of
Lemma 6.3, the function fα changes its sign at the root β
(see Figure 6.2(left)).

6.3 Unbounded arcs
We now discuss the case that f is unbounded, which we

have omitted so far. An unbounded arc can either be un-
bounded in x-direction, we say then it goes to x = −∞ or
x = +∞, or it is bounded in x-direction, but unbounded
in y-direction. In that case, the arc converges to the verti-
cal asymptote x = α for some critical value α, and we call
the arc asymptotic arc for α. Asymptotic arcs either go to
y = +∞ or y = −∞; we say the arc goes up or down.

For brevity, we only sketch the treatment: Unbounded
arcs of f and Shf are in one-to-one correspondence, and the
latter curve only has unbounded arcs to x = ±∞ by generic-
ity condition (G1). To deduce the type of an unbounded arc
of f , we choose a point on each unbounded arc of Shf which
is “far” enough out towards x = ±∞, and we shear it back
to the original system. The position of this sheared point
determines the type of the unbounded arc. See [20, §5.4.3]
for details. The information about the unbounded arcs is
stored in the event graph, introducing nodes with symbolic
coordinates for points at infinity.

7. IMPLEMENTATION, EXPERIMENTS
We have implemented our method as the C++ library

AlciX as part of the EXACUS project1 [5]. AlciX consists of
about 8 000 lines of code, not counting the supporting code
from other EXACUS libraries. We implemented Ducos’ al-
gorithm [10] to compute Sturm-Habicht sequences. Gcds of
univariate integer polynomials are computed with Shoup’s
NTL2. For exact integer arithmetic, we use the GMP li-
brary3. We report on experiments performed on a machine
1http://www.mpi-inf.mpg.de/projects/EXACUS/
2http://www.shoup.net/ntl/
3http://www.swox.com/gmp/



with a Pentium 4 CPU clocked at 2.80 GHz and 1 GB of
RAM.

7.1 Comparison with a topology algorithm
We have compared AlciX with an algorithm that com-

putes the topology of algebraic curves: the algorithm top

from Gonzalez-Vega and Necula [15], implemented in MAPLE.
As input, we used the 16 curves from [15], subsequently de-
noted by gn1 to gn16. We remark that top can be supplied
with an initial precision for floating point calculations. To
achieve best performance of top, we selected sufficient preci-
sions based on [15, Tbl. 1]. We ran the program on MAPLE
Version 10.

Table 1: Comparison of AlciX and top. All timings
are given in seconds, the numerical precision of top

is given in parentheses.

AlciX top AlciX top
gn1 0.220 0.987 (20) gn9 0.194 0.333 (15)
gn2 0.012 0.097 (15) gn10 0.177 0.150 (10)
gn3 0.011 0.102 (15) gn11 0.086 0.591 (15)
gn4 0.072 0.079 (10) gn12 0.326 19.207 (40)
gn5 0.043 0.068 (10) gn13 0.008 0.069 (10)
gn6 0.217 0.386 (20) gn14 0.338 0.811 (30)
gn7 0.036 0.083 (10) gn15 0.006 0.024 (10)
gn8 0.028 0.181 (20) gn16 0.104 0.125 (10)

We see in Table 1 that AlciX is considerably faster than
top in almost all cases. In particular, notice the improve-
ment by factor 59 for the curve gn12. It must be taken into
account that AlciX is implemented in a more performance-
optimized programming language, but the fact that AlciX

computes more than the topology might compensate this
partially.

7.2 Comparison with a CAD algorithm
In this section, we compare the running time of AlciX with

Brown’s cad2d, an optimized version of QEPCAD-B4 (Version
1.46) for computing CADs in the plane. Its advantage over
the more general QEPCAD-B is that it uses floating point
methods in the lifting step to simplify calculations in fa-
vorable situations. Brown describes such optimizations in
[6]. cad2d is able to produce CADs for an arbitrary number
of curves, but we restrict to one curve for the comparison
with our method.

By default, cad2d does not compute the adjacencies of the
computed CAD. This computation however can be forced by
a subsequent call of the closure2d command that computes
adjacencies as a first step.5

We tried cad2d also for the polynomials gn1 − gn16 from
the previous section. The running times of cad2d and AlciX

were about the same in most cases, but sometimes cad2d was
considerably faster (factor 6 for gn14), or slower (> 3 seconds
for gn8) compared to AlciX. We perform more systematic
tests, using a similar setup as in [6].

We begin by comparing the running times for polynomials
with random coefficients and 50 percent term density. For
each degree, we created five test polynomials. See Table 2

4http://www.cs.usna.edu/~qepcad/B/QEPCAD.html
5We thank Christopher Brown for this advice.

for running times. We called cad2d with option +N10000000

since it runs out of memory with the default settings for
some instances.

Table 2: Timings for random curves
10 bit coefficients 50 bit coefficients

deg AlciX cad2d AlciX cad2d
a 0.162 0.134 0.285 0.408
b ∗0.577 0.099 0.216 0.651

9 c 0.078 0.103 ∗1.005 0.274
d 0.083 0.112 0.426 0.659
e 0.126 0.171 0.232 0.309
a ∗3.577 0.429 1.603 3.036
b 0.272 0.670 1.736 1.610

12 c 0.609 0.450 ∗7.337 1.331
d ∗2.351 0.486 ∗7.494 1Fl. point
e 0.779 0.410 ∗7.722 Fl. point
a 2.653 1.195 7.894 4.095
b 1.840 2.064 9.149 6.430

15 c 1.775 1.410 8.580 5.665
d ∗15.554 2.489 ∗40.090 4.200
e 1.609 1.905 7.649 3.431

∗A shear has been applied in AlciX.
1cad2d reported a floating point exception.

Two weaknesses of AlciX become visible here: First, a co-
ordinate change results in additional calculations (e.g. one
needs three resultants instead of one), and moreover causes
longer coefficients for the transformed polynomial. Second,
AlciX always computes the full Sturm-Habicht sequence (ac-
counting for more than two thirds of the time in the 50 bits
/ degree 15 examples). In contrast cad2d only needs the
resultant and computes it with a fast modular method.

However, the simplifications of cad2d fail for the more in-
teresting case of curves with singular points, and AlciX also
makes use of numerical simplifications in those situations.
We construct plane curves as resultants from randomly gen-
erated trivariate polynomials p, q with 50 percent term den-
sity and 8 bit coefficients. Usually, the resultant is a dense
polynomial with degree degz(p) · degz(q) and the curve it
defines contains singularities [22]. The running times in Ta-
ble 3 show that AlciX computes the cad of such singular
curves much faster than cad2d in general.

8. CONCLUSION
We have presented an algorithm for the geometric anal-

ysis of algebraic plane curves. Its design was guided by
the goal of reducing symbolic computations, for the sake
of efficiency, without compromising exactness of the result.
The only symbolic operations performed during the execu-
tion of our algorithm are: (1) computing principal Sturm-
Habicht coefficients and resultants of integer polynomials,
(2) isolating multiple real roots of resultants, and (3) gcd
computation for the zero test (during sign determination)
of sthai(f)(x), evaluated at multiple real roots of the resul-
tant. The other operations with algebraic numbers are done
numerically with sufficient precision. In particular, we use
the newly introduced m-k-Descartes method for the lifting
phase and remove the need for exact arithmetic as in the
Bitstream Descartes method [12]. This works for all inputs,
exact arithmetic as a fall-back is not necessary. The m-k-



Table 3: Running times for resultants of random
trivariate polynomials.

degrees AlciX cad2d
a 2.358 0.235
b 0.183 1.241

(3,3) c 0.209 1.874
; 9 d 0.190 0.263

e 0.092 0.243
a 1.228 49.960
b 1.510 66.938

(3,4) c ∗6.462 78.434
; 12 d 1.728 90.945

e 0.798 7.780

a 12.042 2Prime list
b 12.871 Prime list

(4,4) c 6.972 795.376
; 16 d 12.296 Fl. point

e 13.121 Prime list

2The prime list of cad2d has been exhausted during the
computation.

Descartes method combines an initial exact count of distinct
real roots with the less precise but efficient counting done
by Descartes’ rule during the interval subdivision. With the
m-k-Descartes method, we detect problematic non-generic
situations along the way, so no separate expensive genericity
check is necessary. Since roots are counted with multiplicity,
the method also identifies a unique interval (the candidate)
in which a multiple root may be contained.

We also circumvent certain symbolic computations in the
transformation phase by searching only for sheared event
points, which are more efficiently detectable than sheared
critical points in general.

Our method does not need any global precision control:
the Bitstream Descartes method chooses an appropriate pre-
cision internally; other non-symbolic computations with al-
gebraic numbers are performed in interval arithmetic, refin-
ing the initial intervals until the result is sufficiently closely
approximated.

The experiments (Section 7) show that our cutback of
symbolic operations is successful. AlciX outperforms cad2d

for curves with singular points, presumably because AlciX

uses numerical lifting consistently whereas the optimizations
of cad2d apply only in simple cases. AlciX also outperforms
top for the large majority of tested examples.

Our approach can be extended to the analysis of two
curves, leading to an optimized CAD algorithm in the plane
for an arbitrary number of polynomials.

Acknowledgements. The authors thank Kurt Mehlhorn,
Susanne Schmitt and Raimund Seidel for useful discussions,
and Eric Berberich and Michael Hemmer for their help on
the implementation of AlciX. We thank Laureano Gonzalez-
Vega and Ioana Necula for making top available for our ex-
periments. We also thank the anonymous referees for valu-
able comments.

9. REFERENCES
[1] J. Abbott: “Quadratic Interval Refinement for Real Roots”.

URL http://www.dima.unige.it/~abbott/. Poster presented at
the 2006 Int. Symp. on Symb. and Alg. Comp. (ISSAC 2006).

[2] D. Arnon, G. Collins, S. McCallum: “Cylindrical Algebraic
Decomposition I: the Basic Algorithm”. SIAM J. Comp. 13

(1984) 865–877.

[3] D. Arnon, G. Collins, S. McCallum: “Cylindrical Algebraic
Decomposition II: an Adjacency Algorithm for the Plane”.
SIAM J. Comp. 13 (1984) 878–889.

[4] S. Basu, R. Pollack, M.-F. Roy: Algorithms in Real Algebraic
Geometry. Springer, 2nd edn., 2006.

[5] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, L. Kettner,
K. Mehlhorn, J. Reichel, S. Schmitt, E. Schömer, N. Wolpert:
“EXACUS: Efficient and exact algorithms for curves and
surfaces”. In: Proc. of the 13th Ann. European Symp. on Alg.
(ESA 2005), LNCS, vol. 3669. Springer, 2005 155–166.

[6] C. W. Brown: “Constructing Cylindrical Algebraic
Decompositions of the Plane Quickly”, 2002. URL
http://www.cs.usna.edu/~wcbrown/. Unpublished.

[7] G. Collins: “Quantifier Elimination For Real Closed Fields By
Cylindrical Algebraic Decomposition”. In: Proc. 2nd GI Conf.
on Automata Theory and Formal Languages, LNCS, vol. 33.
Springer, 1975 134–183. Reprinted with corrections in:
B. F. Caviness, J. R. Johnson (eds.), Quantifier Elimination and

Cylindrical Algebraic Decomposition, pp. 85–121, Springer, 1998.

[8] G. Collins, A. Akritas: “Polynomial Real Root Isolation Using
Descartes’ Rule of Signs”. In: R. Jenks (ed.) Proc. of the third
ACM symp. on Symb. and Alg. Comp. ACM, 1976 272–275.

[9] G. Collins, J. Johnson, W. Krandick: “Interval Arithmetic in
Cylindrical Algebraic Decomposition”. J. Symb. Comp. 34

(2002) 143–155.

[10] L. Ducos: “Optimizations of the Subresultant Algorithm”. J.
Pure Appl. Alg. 145 (2000) 149–163.

[11] A. Eigenwillig: “On Multiple Roots in Descartes’ Rule and
Their Distance to Roots of Higher Derivatives”’. J. Comp.
Appl. Math. 200 (2007) 226–230.

[12] A. Eigenwillig, L. Kettner, W. Krandick, K. Mehlhorn,
S. Schmitt, N. Wolpert: “A Descartes Algorithm for
Polynomials with Bit-Stream Coefficients”. In: 8th Int.
Workshop on Comp. Alg. in Scient. Comp. (CASC 2005),
LNCS, vol. 3718, 2005 138–149.

[13] A. Eigenwillig, V. Sharma, C. Yap: “Almost Tight Recursion
Tree Bounds for the Descartes Method”. In: Proc. of the 2006
Int. Symp. on Symb. and Alg. Comp. (ISSAC 2006). ACM,
2006 71–78.

[14] L. Gonzalez-Vega, M. El Kahoui: “An Improved Upper
Complexity Bound for the Topology Computation of a Real
Algebraic Plane Curve”. J. Compl. 12 (1996) 527–544.

[15] L. Gonzalez-Vega, I. Necula: “Efficient Topology
Determination of Implicitly Defined Algebraic Plane Curves”.
Comp. Aided Geom. Design 19 (2002) 719–743.

[16] L. Gonzalez-Vega, T. Recio, H. Lombardi, M.-F. Roy:
“Sturm-Habicht Sequences, Determinants and Real Roots of
Univariate Polynomials”. In: B. Caviness, J. Johnson (eds.)
Quantifier Elimination and Cylindrical Algebraic
Decomposition, 300–316. Springer, 1998.

[17] H. Hong: “An Efficient Method for Analyzing the Topology of
Plane Real Algebraic Curves”. Math. and Comp. Sim. 42

(1996) 571–582.

[18] J. R. Johnson: “Algorithms for polynomial real root isolation”.
In: B. F. Caviness, J. R. Johnson (eds.) Quantifier
Elimination and Cylindrical Algebraic Decomposition,
269–299. Springer, 1998.

[19] J. R. Johnson, W. Krandick, K. Lynch, D. G. Richardson,
A. D. Ruslanov: “High-Performance Implementations of the
Descartes Method”. In: Proc. of the 2006 Int. Symp. on
Symb. and Alg. Comp. (ISSAC 2006). ACM, 2006 154–161.

[20] M. Kerber: Analysis of Real Algebraic Plane Curves.
Master’s thesis, Universität des Saarlandes, Saarbrücken,
Germany, 2006.

[21] W. Krandick, K. Mehlhorn: “New Bounds for the Descartes
Method”. J. Symb. Comp. 41 (2006) 49–66.

[22] S. McCallum: “Factors of Iterated Resultants and
Discriminants”. J. Symb. Comp. 27 (1999) 367–385.

[23] F. Rouillier, P. Zimmermann: “Efficient isolation of [a]
polynomial’s real roots”. J. Comp. and Appl. Math. 162

(2004) 33–50.

[24] R. Seidel, N. Wolpert: “On the Exact Computation of the
Topology of Real Algebraic Curves”. In: Proc. of the 21st
Ann. ACM Symp. on Comp. Geom. (SCG 2005). ACM, 2005
107–115.

[25] A. Strzebonski: “Cylindrical Algebraic Decomposition using
validated numerics”. J. Symb. Comp. 41 (2006) 1021–1038.


