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Abstract. We design a probabilistic trajectory synthesis algorithm for
generating time-varying sequences of geometric configuration data. The
algorithm takes a set of observed samples (each may come from a differ-
ent trajectory) and simulates the dynamic evolution of the patterns in
O(n2 logn) time. To synthesize geometric configurations with indistinct
identities, we use the pair correlation function to summarize point dis-
tribution, and α-shapes to maintain topological shape features based on
a fast persistence matching approach. We apply our method to build a
computational model for the geometric transformation of the cone mo-
saic in retinitis pigmentosa — an inherited and currently untreatable
retinal degeneration.

Keywords: trajectory, pair correlation function, alpha shapes, persis-
tent homology, retinitis pigmentosa

1 Introduction

The work presented in this paper is motivated from the investigation of a retinal
disease called retinitis pigmentosa [17]. In this disease, a mutation kills the rod
photoreceptors in the retina. A consequence of this death is that the geometry
of the mosaic of cone photoreceptors deforms in an interesting way. Normally,
cones form a relatively homogeneous distribution. But after the death of rods,
the cones migrate to form an exquisitely regular array of holes.

Our central goal is to build a dynamic evolution model for the point distri-
butions that arise from the cone mosaic in retinitis pigmentosa. In physics, the
most classical method for modeling cell motions is to solve a system of differ-
ential equations from Newton’s laws of motion with some predefined force field
which specifies cell-to-cell interactions. However, in many cases it is difficult to
understand how different types of cells (for example cones and rods) interact
with each other. There are also mathematical models that do not presume much
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prior biological knowledge, such as flocking which has been widely used to sim-
ulate coordinated animal motions [15]. But as with all model-based approaches,
the method is limited by the model chosen in the first place.

Instead of fitting a predefined model, we propose an alternative approach
which relies only on geometric and topological multi-scale summaries. The input
is a set of geometric configurations, each of which may come from a different
trajectory of a cone migration. We design a probabilistic algorithm to synthesize
trajectories from observed data. In short, we let the points move randomly and
check whether the transformation brings them “closer” to our next observation.
To define closeness, we combine two high-level distance measures: firstly, we
employ the pair correlation function (PCF) which extracts pairwise correlations
in the point cloud data by measuring how density varies as a function of distance
from a reference point. The PCF is widely accepted as an informative statistical
measure for point set analysis, and has been used for trajectory synthesis in
previous work [13]. As major novelty, we propose to combine the PCF with a
topological distance measure: we compare persistence diagrams of alpha-shape
filtrations which capture the evolution of holes that arise when the points are
thickened to disks with increasing radius. Persistence diagrams are currently a
popular research topic with many theoretical and practical contributions; we
refer to the surveys [1, 6] for contemporary overviews. We demonstrate that
the combination of PCF and persistence diagrams results in trajectories with
a much cleaner hole structure than for trajectories obtained only by PCF (see
Figure 6). We believe the problem of trajectory synthesis for very sparse data to
be of more general importance in biological and medical contexts, and hope that
our model-free methodology can be applied to other contexts. Moreover, our
approach provides evidence that topological methods are useful in the analysis
of point distributions which have been extensively studied in computer graphics
and point processes [7, 14, 16].

2 Biological Background: Retinitis Pigmentosa

The retina is a light-sensitive layer of tissue that lines the inner surface of the
eye. It contains photoreceptor cells that capture light rays and convert them
into electrical impulses. These impulses travel along the optic nerve to the brain
where they are turned into images of the visual world.

There are two types of photoreceptors in the retina: cones and rods. In adult
humans, the entire retina contains about 6 million cones and 120 million rods.
Cones are contained in the macula, the portion of the retina responsible for
central vision. They are most densely packed within the fovea, the very center
portion of the macula. Cones function best in bright light and support color
perception. In contrast, rods are spread throughout the peripheral retina and
function best in dim light. They are responsible for peripheral and night vision.

Retinitis pigmentosa is one of the most common forms of inherited retinal
degeneration. This disorder is characterized by the progressive loss of photore-
ceptor cells and may lead to night blindness or tunnel vision. Typically, rods
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Fig. 1. Cone mosaic rearrangement in retinitis pigmentosa. The confocal micrographs
in the top row show middle (red) and short (green) wavelength sensitive cones in whole
mount retinas. Enlarged micrographs of marked regions are shown in the bottom row.
This figure is taken from [8].

are affected earlier in the course of the disease, and cone deterioration occurs
later. In the progressive degeneration of the retina, the peripheral vision slowly
constricts and the central vision is usually retained until late in the disease. At
present, there is no cure for retinitis pigmentosa. Researchers around the world
are constantly working on development of treatments for this condition.

There have been some recent studies on the spatial rearrangement of the
cone mosaic in retinitis pigmentosa [8, 12]. These experiments are performed on
a rat model in which a mutation in the retina triggers the cell death of rods,
similar to those causing symptoms in humans. Figure 1 shows an example for
the morphology and distribution of cones at postnatal days 15, 30, 180, and 600.
In healthy retinas, the mosaic of cones exhibits a spatially homogeneous distri-
bution. However, the death of rods causes cones to rearrange themselves into a
mosaic comprising an orderly array of holes. These holes first begin to appear
at random regions of the retina at day 15 and become ubiquitous throughout
the entire tissue at day 30. Holes start to lose their form at day 180 and mostly
disappear at day 600, at which time the cones are almost all dead.

Furthermore, it has been observed that both cones and rods follow the same
retinal distribution. But the mechanisms of formations of holes of cones are
different from those of rods. In fact, retinitis pigmentosa is caused by the initial
loss of rods in the center of these holes, and then the death of rods tends to
propagate as circular waves from the center of the holes outward. In contrast,
the number of cones in normal and retinitis pigmentosa conditions do not show
significant differences at stages as late as day 180. Therefore, holes of cones do
not form by cell death at their centers, but by cell migration.
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Fig. 2. Distribution of cones in normal (7523 cells in 1mm2) and retinitis pigmentosa
(6509 cells in 1mm2) retinas at day 25.

Since cones take a long time to die out, understanding whether and how
these hole structures improve the survival of cones would provide scientific and
clinical communities with better knowledge of how to preserve day and high
acuity vision in retinitis pigmentosa. This motivated us to build a model for the
geometric transformation of the cone mosaic in the retinal degeneration. The
challenge in building such a model is that we only have access to one snapshot
per rat, because the animals are killed before their retinas can be dissected.
Therefore, we have very limited data and there is no correspondence between
the cells in different snapshots.

3 Synthesis Algorithm

Suppose we are given a point set X = {x1, x2, . . . , xn} at time t and we want
to simulate the time evolution from t to t + ∆t. Since we do not presume any
biological knowledge about the system, in each step we simply move a point xi to
some random location x′i within its neighborhood. We then compare both the old
configuration {x1, . . . , xi, . . . , xn} and the new configuration {x1, . . . , x′i, . . . , xn}
after this point update to the real data at time t+∆t. If the new configuration
is closer to the data than the old configuration, we accept this movement for xi,
otherwise we accept it with some probability which depends on their difference.
We iteratively repeat this process for each point in X until the result converges.

The details of the trajectory synthesis algorithm are shown in Algorithm 1.
It can be seen as a variant of the simulated annealing algorithm [9], in which the
acceptance probability also depends on a temperature parameter to avoid local
minima in optimization. There are two questions we have not addressed:

– how do we compare synthetic configurations to the real data at time t+∆t?
– what happens if we do not have observation at time t+∆t?

In fact, we have reduced the problem of motion modeling to quantifying some
kind of distances between point sets in the synthetic and real data. Note that the
number of points n in the synthesis algorithm is kept constant during simulation,
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but the point sets in the observed data may have different cardinalities (see
Figure 2). Furthermore, since we only have access to one snapshot per animal,
there is no correspondence between point sets in different snapshots. In the next
two sections, we will describe how to define distances on configurations with
indistinct identities and use them to interpolate missing data.

4 Geometry: Pair Correlation Function

Given a point set X = {x1, x2, . . . , xn} in Rd with number density ρ, the pair
correlation function is defined as

gX(r) =
1

Sd−1(r)ρn

n∑
i=1

n∑
j=1

G(||xi − xj || − r), ∀r ≥ 0 (1)

where Sd−1(r) is the surface area of a ball of radius r in Rd, and G is a 1D

Gaussian kernel G(x) = 1√
2πσ

exp(− x2

2σ2 ).

The PCF provides a compact representation for the characteristics of point
distribution. Note that in (1) there are two normalization factors ρ and Sd−1(r).
The number density ρ is an intensive quantity to describe the degree of concen-
tration of points in the space, and is typically defined as ρ = n/V where V is
the volume of the observation region. Since it is more likely to find two points
with a given distance in a more dense system, this factor is used for comparing
point sets with different cardinalities. The other inverse weighting factor Sd−1(r)
is the surface area of a ball of radius r in Rd (for example S1(r) = 2πr). This
accounts for the fact that as r gets larger, there will be naturally more points
with the given distance from a reference point. After these normalizations, it
can be shown that lim

r→∞
gX(r) = 1 for any infinite point set X, and hence most

information about the point set is contained in gX(r) for the lower values of r.
For a finite point set, we can apply periodic boundary conditions to remove the
window edge effects.

Figure 3 shows the PCF for the photoreceptor point sets in Figure 2 with σ =

0.1rmax, where rmax =
√

1
2
√
3n

is the maximum possible radius for n identical

circles that can be packed into a unit square [11]. For the normal point set, we see
that the density is almost 1 everywhere except for r < 0.005mm, which is about
the diameter of cone cell bodies — such a pattern is called blue-noise where
points are distributed randomly with a minimum distance between each pair.
For healthy primate retinas, it is well-known that photoreceptor distributions
may follow a blue-noise-like arrangement to yield good visual resolution [18].
In contrast, for the retinitis pigmentosa point set, the high densities at small
distances show the clustering of cones in the sick retina, implying the cells become
closer by migration. After we have computed the PCFs, it is natural to define
their distance as

d(gX , gY ) = (

∫
r

(gX(r)− gY (r))2 dr)1/2 (2)
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Algorithm 1 Trajectory synthesis

Input: sample point sets {Xt0 , Xt1 , . . . , XtM | t0 = 0 < t1 < . . . < tM−1 < tM = 1},
number of frames N .

Output: synthesis point sets {Y t | t = 0, 1/N, . . . , (N − 1)/N, 1}.
Procedure:

1: set time t = 0, point set Y 0 = X0.
2: while t < 1 do
3: set t = t+ 1/N , initialize Y t = Y t−1/N .
4: find time interval ti < t ≤ ti+1.
5: interpolate target pair correlation function gXt between gXti and g

X
ti+1 .

6: interpolate target persistence diagram PXt between PXti and P
X

ti+1 .
7: pick three random directions for persistence matching.
8: set iteration k = 0, select initial temperature T0.
9: repeat

10: set k = k + 1, T = T0/k.
11: for each point y in Y t do
12: replace y by a random neighbor y′ to form a new point set Y ′.
13: compute distance d1 between pair correlation functions gXt and gY t .
14: compute distance d2 between persistence diagrams PXt and PY t based on

their three 1D projections.
15: define distance between Xt and Y t as d = d1 + λd2.
16: repeat lines 13–15 to compute distance d′ between Xt and Y ′.
17: if d′ < d then
18: accept new point set Y t = Y ′.
19: else
20: accept Y ′ with probability exp( d−d′

T
).

21: end if
22: end for
23: until Y t converges.
24: end while

It is obvious that computing the PCF for a point set X = {x1, x2, . . . , xn}
takes O(n2) time in (1). However, when we move a point xi to x′i in the synthesis
algorithm, it only takes O(n) time to update the PCF for the new point set X ′:

gX′(r) = gX(r) +
2

Sd−1(r)ρn

∑
j 6=i

(G(||x′i − xj || − r)−G(||xi − xj || − r))

Of course since we compute the densities at different distances, the running
time may also depend on the range and discretization of the distance r. But
for Gaussian kernels we can set a cutoff threshold δ, so that for each pairwise
distance ||xi − xj || we only need to update gX(r) at distance ||xi − xj || − δ <
r < ||xi − xj ||+ δ, which contains O(1) discretized values of r.

Data Interpolation Now we answer the two questions proposed at the end
of Section 3. Consider we have a set of observed samples {Xt0 , Xt1 , . . . , XtM }.
Without loss of generality, we can assume the observation time t0 = 0 < t1 <
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Fig. 3. Pair correlation function.

. . . < tM−1 < tM = 1. We start with Y 0 = X0 as the initial point set, and run
the synthesis algorithm to simulate its time evolution. By matching the PCFs of
{Xt1 , Xt2 , . . . , XtM }, we can obtain a sequence of point sets {Y t1 , Y t2 , . . . , Y tM }
at all observation time. For each sample Xti , the goal is to minimize the distance
between gXti and gY ti defined in (2). Furthermore, if there is more than one
sample observed at time ti, we can extend the objective function in standard
ways, by taking the minimum or average distance from the synthetic point set
to all samples at that time.

Note that in the above approach we can only synthesize point sets at the ob-
servation time {t0, t1, . . . , tM}. But how do we simulate during the time intervals
between successive observations? Suppose we want to generate a point distribu-
tion at time ti < t < ti+1. Although there is no real data Xt, it is possible to
approximate the PCF gXt by linear interpolation

gXt =
ti+1 − t
ti+1 − ti

gXti +
t− ti

ti+1 − ti
gXti+1

It has been shown that such a simple linear interpolation can generate valid
PCFs from which distributions can be synthesized [13]. Thus, we can use the
synthesis algorithm to generate data at any time t0 ≤ t ≤ tM .

5 Topology: Distance of Persistence Diagrams

In Section 4, we have seen that the PCF can be used to characterize the distribu-
tions of photoreceptor point sets. However, this function only considers pairwise
correlations and misses higher-order information in the data. As we will show in
Section 6, there are point sets with almost same PCF but very different shape
features. In this section, we present another way to summarize point distribution
without correspondence from a topological perspective.
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Fig. 4. Alpha shapes.

Alpha Shapes Suppose we are given a point set and we want to understand the
shape formed by these points. Of course there are many possible interpretations
for the notion of shape, the α-shape being one of them [4]. In geometry, α-shapes
are widely used for shape reconstruction, as they give linear approximations of
the original shape.

The concept of α-shapes is generally applicable to point sets in any Euclidean
space Rd, but for our application we will illustrate in the 2D case. Given a point
set S in R2, the α-shape of S is a straight line graph whose vertices are points in
S and whose edges connect pairs of points that can be touched by the boundary
of an open disk of radius α containing no points in S. The parameter α controls
the desired level of detail in shape reconstruction. For any value of α, the α-
shape is a subgraph of the Delaunay triangulation, and thus it can be computed
in O(n log n) time.

Figure 4 shows the α-shapes for the photoreceptor point sets in Figure 2
with different values of α. As α increases, we see that edges appear in the graph
and some of them form cycles. For the normal point set, these edges and cycles
disappear very quickly since there is no space for empty disks of large radius α.
In contrast, for the retinitis pigmentosa point set, some cycles can stay for long
time in the large empty regions. Therefore, α-shapes can successfully capture
the hole structures formed by cone migration.

In Figure 4, we see that α = 0.02mm gives a nice example to distinguish be-
tween the two photoreceptor point sets. However, in general how do we choose
the right value of α? Indeed, what we are more interested in is to summarize
information of α-shapes at different scale levels. So, we next turn to its topo-
logical definition — the α-complex. Given a point set in Rd, the α-complex is
a simplicial subcomplex of its Delaunay triangulation. For each simplex in the
Delaunay triangulation, it appears in the α-complex K(α) if its circumsphere is
empty and has a radius less than α, or it is a face of another simplex in K(α).

Although we can choose infinite numbers for α, there are only finite many α-
complexes for a point set S. They are totally ordered by inclusion giving rise to
filtration of the Delaunay triangulation K0 = φ ⊂ K1 = S ⊂ ... ⊂ Km = Del(S).
For a point set in R2, α-complexes consist of vertices, edges, and triangles.
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Fig. 5. Persistence diagram.

The first non-empty complex K1 is the point set S itself. As α increases, edges
and triangles are added into K(α) until we eventually arrive at the Delaunay
triangulation. The relation between α-shape and α-complex is that the edges in
the α-shape make up the boundary of the α-complex.

Persistence In Figure 4, we have seen that cycles appear and disappear in the
α-complexes during the filtration. The cycles that stay for a while are important
ones since they characterize major shape features of the data set. In algebraic
topology, the cycles are defined based on homology groups: there is one group of
cycles Hd per dimension d, and the rank of Hd is called the d-th Betti number βd
which can be considered as the number of d-dimensional holes in the space [5].
For example in the 2D case, β0 is the number of connected components and β1
is the number of holes in the plane. In the evolution from K0 to Km, adding
an edge will create a new hole (except for n− 1 edges in a spanning tree which
change β0 by merging connected components), while adding a triangle will fill a
hole. The persistence of a hole is the difference between its birth time and death
time which are paired by following the elder rule.

Given a point set S, the information about persistence of holes can be encoded
into a two-dimensional persistence diagram PS . As depicted in Figure 5, each
point in the diagram represents a hole (or a class of cycles) during the filtration,
where the x and y coordinates are the birth time and death time respectively. In
the normal case all cycles have short persistence, while in the retinitis pigmentosa
case some cycles have very long persistence and they capture the large hole
features in the point set. Note that there are also some cycles with large birth
time and very short persistence (the points near the diagonal). This is because
the holes in the point set may not be perfectly round (such as ellipses), and thus
some cycles can be split by adding long edges at large α. These cycles of short
persistence can be considered as noise and ignored in the analysis of the data.

For a Delaunay triangulation with m simplicies, the persistence diagram can
be computed using a matrix reduction in O(m3) time. In the 2D case, m = O(n)
and the running time can be reduced to O(nα(n)) using the union-find data
structure [5], where α(n) is the inverse of Ackermann function which grows very
slowly with n. We also apply periodic boundary conditions by computing the
periodic Delaunay triangulation of a point set [2].
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There are two distances often used to measure the similarity between persis-
tence diagrams: the bottleneck and Wasserstein distances [5]. Computing both
distances reduces to the problem of finding the optimal matching in a bipartite
graph. With the optimal matching, we can also interpolate between two persis-
tence diagrams by linearly interpolating between the matched pairs of points.
However, solving a minimum cost perfect matching problem in non-Euclidean
spaces takes O(n3) time [10], so we should avoid recomputing this matching
distance after each point update in the synthesis algorithm.

Matching In this section, we present a faster algorithm to measure the similar-
ity between persistence diagrams from their 1D projections. Instead of computing
the optimal matching between 2D persistence diagrams, we take several direc-
tions and match their 1D projections in each direction independently. Given
two persistence diagrams X,Y and k directions w1, w2, . . . , wk, we define the
distance between X and Y as the sum of their 1D matching costs

d(X,Y ) =

k∑
i=1

( min
fi:Xwi

→Ywi

∑
x∈Xwi

|x− fi(x)|) (3)

where Xwi is the projection of X onto direction wi, and fi is a bijection between
Xwi and Ywi (for simplicity we first assume that X and Y have same cardinality).
It is easy to verify that the minimal matching cost over all bijections between
Xwi

and Ywi
can be computed in O(n log n) time by sorting Xwi

and Ywi
, and

matching pairs in ascending order. Furthermore, by randomly choosing three
directions, we can uniquely reconstruct a point set from its three 1D projections
with high probability.

Theorem 1. Given a 2D multiset of points P = {(x1, y1), (x2, y2), . . . , (xn, yn)}
in general position1, the set of directions x+ cy such that P cannot be uniquely
reconstructed from its 1D projections Px, Py, and Px+cy has measure zero.

Proof. Assuming there is another multiset of points P ′ 6= P with the same three
1D projections. We take a point p ∈ P ′−P which consists of points that appear
more times in P ′ than P . We first claim that p /∈ P , otherwise since P is in
general position there is no point other than p in P with the same y-coordinate,
and thus the y-coordinate of p will appear more times in P ′y than Py.

Let p be reconstructed from projection lines x = xi, y = yj , and x + cy =
xk+cyk where (xi, yi), (xj , yj), and (xk, yk) are all in P . So xi+cyj = xk+cyk. If
yj = yk, then xi = xk. Thus p = (xi, yj) = (xk, yk) is also in P — a contradiction.
So yj 6= yk and c = (xk−xi)/(yj−yk). Therefore, there are at most O(n3) values
of c without a unique reconstruction. ut
1 We define a 2D multiset of points P = {(x1, y1), (x2, y2), . . . , (xn, yn)} to be in

general position if two points in P cannot have same y-coordinate unless they are
coincident (yi = yj ⇒ xi = xj). If a multiset of points is not in general position,
we can always rotate the point set by some angle ω clockwise to make it in general
position. This is equivalent to reconstruct the original point set if we rotate directions
x, y, and x+ cy by angle ω counter-clockwise.
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To focus on major shape features of point sets, we choose the projections
as follows: we randomly select three directions x + cy, where c = tan θ and the
angle θ is uniformly chosen from (0, π/2) ∪ (π/2, 3π/4). For each direction, we
project all points (x, y) to fn(x, y) = ((x cos θ+y sin θ)n−(x cos θ+x sin θ)n)1/n,
where n is a large positive number. It is easy to verify that lim

y→x
fn(x, y) =

0 and lim
n→∞

fn(x, y) =

{
x cos θ + y sin θ , if x < y

0 , if x = y
. As n → ∞, the function

fn(x, y) captures the projection of persistence diagram onto direction x + cy,
while it ignores noise near the diagonal. In practice, we find that n = 8 is usually
good enough to serve as ∞. Finally, when comparing persistence diagrams with
different cardinalities, we may assume that there exist infinitely many extra
points on the diagonal — which all map to zero after projection.

6 Experimental Results: Cone Mosaic Rearrangement

We first test the performance of the synthesis algorithm using PCF only [13]. In
this case, the distance between two point sets measures the difference between
their pairwise correlations in (2). For point update, in each step we move a point
to a random location within its neighborhood of radius rmax (as defined in Sec-
tion 4). We generate N = 16 frames to simulate the cone mosaic rearrangement
in retinitis pigmentosa. In Figure 6(a), we have labeled some points in red color
to show their correspondences in different snapshots. By matching PCFs, we
see that the algorithm creates several sparse regions in the point set. However,
the synthetic point set (t = 1) looks very different from the real data shown in
Figure 2 — there are many outliers inside the sparse regions by the synthesis
algorithm, while the holes of cones in retinitis pigmentosa seem to be very clean.
If we compare the shape features for these two point sets, their PCFs are almost
well-matched (see Figure 3). On the other hand, there is a big difference between
their persistence diagrams because these outliers would significantly shorten the
persistence of cycles in the α-complex (see Figure 5).

So, we next incorporate α-shapes to maintain the topological features. In this
case, the distance function involves two parts: let d1 be the distance between
PCFs of two point sets in (2), and d2 be the distance between their persistence
diagrams in (3). We define the new distance as d = d1 + λd2, where λ > 0
is a weight parameter and in our implementation we set the two parts to be
equally weighted. The synthesis result using both PCF and α-shapes is shown in
Figure 6(b). We see that holes appear in random positions and grow gradually
in size as time increases. At the end of simulation, the points labeled in red color
move close to the boundaries of holes. In Figures 3 and 5 we can see that the
shape features for the synthetic point set match the targets very well. There are
only some small differences between persistence diagrams near the diagonal, but
they are considered as noise.

Figure 6(c) shows the simulation result in the reverse direction where we
start with a retinitis pigmentosa distribution and move points towards a normal
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(a) Pair correlation function only

(b) Pair correlation function + α-shapes

(c) Reverse direction

Fig. 6. Simulation results.

distribution. Actually the synthesis in this direction is much easier because we
already know the hole positions. After filling the holes we end up with a blue-
noise pattern. By reversing the sequence of snapshots in Figure 6(c), it gives
another example on retinal cell motions in retinitis pigmentosa. Furthermore,
we can start with a point set at any time t and run bidirectional simulations to
synthesize trajectories for the time evolution of this sample.

Running Time There are four main components of the trajectory synthesis
algorithm (see Table 1). For PCF, we only need to compute it for the initial and
target point sets, which takes O(n2) time. After that, it takes O(n) time per
point update. For α-shapes, it takes O(n log n) time for Delaunay triangulation
and persistence matching, as well as O(nα(n)) time for persistence diagram.
Therefore, the running time for all these four parts is almost linear per point
update, and hence the algorithm runs in O(n2 log n) time per iteration.

We have also tested the real running time for each part of the synthesis
algorithm on the photoreceptors data set. The experiment is performed on a
computer with Intel R© CoreTM 2 Quad Processor Q6600 and 4GB Memory. In
the current implementation, the periodic Delaunay triangulation is the slowest
part which takes about half of the computation time. However, for each point
update there is no need to recompute the whole Delaunay triangulation, and
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Table 1. Running time of trajectory synthesis algorithm.

Algorithm Computation Update Real time

Pair correlation function O(n2) O(n) 8 %
Delaunay triangulation (periodic) O(n logn) [O(logn)] 46 %

Persistence diagram O(nα(n)) — 27 %
Persistence matching O(n logn) — 18 %

indeed it can be maintained in O(log n) expected time per point update [3]. So,
by using dynamic Delaunay triangulation we can improve the real running time
by almost a factor of 2, but theoretically the algorithm still takes O(n log n)
time per point update — for persistence matching the input is the persistence
diagram and it is not clear how to bound its change after we move a point.

Note that in the initialization part, we may need to interpolate the target
persistence diagram at time t if we do not have the real data at that time. As
mentioned in Section 5, this would take O(n3) time. Therefore, if we synthesize
N frames and run L iterations per frame, the total running time is bounded by
O(N(n3 + Ln2 log n)). Although the initialization part has a larger theoretical
cost O(n3), in practice the main synthesis part O(Ln2 log n) may take longer
time because its unit cost O(1) is more expensive. For the simulation results
shown in Figure 6(b–c), they take about 3450 seconds for initialization and
290 seconds per iteration, with L = 20 iterations for each frame. Furthermore,
since the synthesis algorithm is probabilistic, we can use it to generate multiple
trajectories from a data set, while the initialization can be considered as a pre-
processing step and only needs to be computed once.
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