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1 Motivation for multi-scale topology

A recurring task in mathematics, statistics, and computer science is understanding
the connectivity information, or equivalently, the topological properties of a given
object. For concreteness, we assume the object in question to be a geometric
shape, possibly embedded in a high-dimensional space, although that assumption
is not necessary for most of the theory. Algebraic topology offers a toolset for
quantifying and comparing topological features of such shapes. The strongest
notion of topological equivalence, the existence of an homeomorphism between
topological spaces, is out of reach in general in computational contexts.1 An
attractive compromise is offered by the theory of homology over a base field F.
In informal terms, the p-th homology group Hp(S) of a shape S (with p ≥ 0)
is a F-vector space whose rank counts the number of “p-dimensional holes” in
S . Concretely, for objects embedded in R3, rankH0,1,2(S) count the number of
connected components, tunnels, and voids, respectively, induced by the shape S .
Homology over fields reveals less topological information then the Z-homology,
but this partial information is sufficient for many purposes. The main advantage
of restricting to fields is the existence of efficient algorithms. More precisely, if
the input is given as a combinatorial cell complex, the homology groups in all
dimensions can be computed in cubic time with respect to the number of cells.

Multi-scale and noise. We discuss three basic exemplary scenarios in which
topological information reveals potentially valuable information. For each sce-
nario, other tools can be employed as well; the goal is rather to underline the
general applicability of topology as a tool for data analysis.

1The question whether two shapes are homeomorphic is undecidable for shapes of dimension
4 and higher [54].
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• Combustion is a highly complex dynamic process relevant for engineering
applications. Consider the goal of analyzing the temperature distribution
of a combustion for a fixed moment in time. One approach could be to fix
a temperature threshold and decompose the domain into “hot” and “cold”
areas. The connectivity of these areas allows an identification of hot or cold
pockets which might guide the analyst to areas of importance in the process.

• The task of shape retrieval is to find for a query point cloud (for instance
obtained by a 3D-scanner) the closest representation in some database of
shapes. A topology-based similarity measure provides a high-level sum-
mary which can be used to quickly rule out shapes with very different topol-
ogy.

• Clustering is one of the most fundamental problems in data analysis. As an
example, imagine an internet company collecting data about users in terms
of various real-valued parameters. The users form a high-dimensional point
cloud, and grouping them into clusters of similar users facilitates decision
making (e.g., personalized product offers) and predictions of the user’s be-
havior in the future. Understanding the topology of that “user space” can be
helpful to design a reasonable notion of similarity measures.

The combustion example above contains a scale parameter, identifying what parts
are considered hot and cold. A parameter is also intrinsic in the other applica-
tions: at first sight, the input is merely a discrete point cloud without interesting
topological features. It is required to build a model of the underlying space from
which the point cloud was drawn (i.e., the shape that has been scanned). The most
frequently employed technique is to replace the points by balls of a fixed radius,
and to take the union of these balls as an approximation of the underlying space
(cf. Figure 1). In this case, the ball radius constitutes the scale parameter. This
raises the question of which radius to choose: a small radius might give a too fine-
grained picture while a large radius might blur relevant information contained in
the data.
In many applications, there is no natural choice of what is the best scale to look
at. In such cases, one might want to consider various scales and to select the best
choice afterwards. However, this multi-scale approach is affected by the presence
of noise in the data. For instance, an inaccurate scanning of a shape might lead to
a large number of “bubbles” in the approximation, increasing the number of voids
in the shape and occluding the real topological features. Such noise can be present
at all scales, complicating the task of separating signal and noise in the data.

Persistent homology. The main idea of persistence is to connect the homolog-
ical information gathered across different scales. In this way, we can identify
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Figure 1: Representation of a point cloud on two different scales as a union of
balls. On the smaller scale, we count 5 holes in the shape, or equivalently, β1 = 5.
On the larger scale, β1 = 3. However, the persistent Betti number of the inclusion
map is 1, because 4 of the 5 small-scale holes disappear after the inclusion. This
is illustrated for the bottom hole by the blue cycle generating the corresponding
homology class, which becomes trivial in the larger union. Only the larger hole
“survives” the inclusion from small to large scale, making it the only persistent
feature that spans over this range of scales.

which topological features are present over a large range of scales as opposed to
those which are only spuriously present.
To describe the idea mathematically, consider two spaces X ⊆ Y , corresponding
to representations of data on different scales (think about two sublevel sets of a
function, or two unions of balls with different radius). The inclusion map X ↪→ Y
induces, for any p≥ 0, a linear map between the vector spaces

φ : Hp(X)→ Hp(Y ),

as a consequence of the functorial properties of homology [56]. We define the
persistent Betti number with respect to (X ,Y ) as

rank(Imφ),

which counts the number of homological features in Y which have already been
present in X (see Figure 1 for an example). Having a multi-scale representation of
a given data set, we obtain a persistent Betti number for each pair of scales. They
constitute a topological multi-scale summary of the data, which provides more
information than only the ranks of the individual homology groups. A catchy
one-liner for this idea is that “the homology of a sequence is worth more than a
sequence of homologies” [41].

17



2 Quivers and Barcodes

Under some mild assumptions, there are effective ways to visualize the persistent
homology of a sequence. They are called persistence diagrams or barcodes. We
describe the latter using notions from representation theory. The content of this
section is a shortened version of the recent exposition by Oudot [58].

Quivers and representations. A quiver is a directed multigraph with nodes and
arrows. A quiver is called finite if both the number of nodes and arrows is finite.
Here are two examples of quivers

• // • •oo •oo

•

��
•

66 GG

// • •oo

(1)

A finite quiver is called An-type if after removing all its arrowheads, it takes the
form:

• • · · · • • (2)

For a fixed quiver Q with node set V and arrow set A and a base field F, a represen-
tation V = ((Vi)i∈V ,( fi j)i j∈A) is an assignment of a F-vector space Vi to each node
i of Q and a linear map fi j : Vi→Vj to each arrow from i to j. There are no further
conditions on the resulting diagram of vector spaces and linear maps, in particular,
the maps do not have to commute. A representation is called finite-dimensional, if
dimVi < ∞ for all nodes i. The simplest example of a representation is the trivial
one, assigning the trivial vector space to every node.
Our motivating example originates from a sequence

S1 ↪→ S2 ↪→ . . . ↪→ Sn−1 ↪→ Sn

of growing shapes, for example representing a given data set for scales α1 < α2 <
.. . < αn. Applying F-homology for fixed dimension p yields a sequence of vector
spaces and linear maps

Hp(S1)
h1−→ Hp(S2)

h2−→ . . .
hn−1−→ Hp(Sn−1)

hn−→ Hp(Sn) (3)

which is a representation of an An-type quiver with all arrows directed to the right.
While we focus on finite quivers in this article, the theory can be extended to the
infinite case as explained in [58].
Having two representations V and W of the same quiver, we can form another
representation V ⊕W naturally by taking the direct sums of vector spaces and
linear maps over every node and arrow. Vice versa, we call a representation V
indecomposable, if V =W1⊕W2 implies that W1 or W2 is the trivial representation.
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Decompositions. Let us consider the simplest quiver •, consisting of one node
and no arrow. A finite-dimensional representation is simply a finite-dimensional
vector space, and thus isomorphic to Fk = F⊕ . . .⊕F for some k. Thus, every
representation decomposes into a unique direct sum of indecomposable elements
up to isomorphism, and the only indecomposable representation is F. For more
general quivers, it turns out that the former statement remains valid, while the
classification of indecomposable elements is more involved.
Before we can state the result, we have to define isomorphisms of representations
in general. A morphism φ between two representations V = (Vi, fi j) and W =
(Wi,gi j) of the same quiver Q is a collection of linear maps φi : Vi→Wi such that
for any arrow from i to j in Q , the diagram

Vi
fi j //

φi
��

Vj

φ j
��

Wi
gi j //Wj

(4)

commutes. A morphism is called isomorphism if each φi is an isomorphism of
vector spaces. The following theorem, attributed to Krull, Remak, and Schmidt,
settles the existence and uniqueness of a decomposition of finite representations.

Theorem 1. Let V be a non-trivial, finite-dimensional representation of a finite
quiver. Then, V =V1⊕ . . .⊕Vk, where each Vi is non-trivial and indecomposable.
This decomposition is unique up to permutations and isomorphism.

What are the indecomposable representations of a quiver? It turns out that for
An-type quivers, the situation is well-behaved. This result is due to Gabriel [39].

Theorem 2. Let V be an indecomposable, finite-dimensional representation of an
An-quiver. Then, V is isomorphic to the representation Ib,d , with 1 ≤ b ≤ d ≤ n,
which is

0 0 · · · 0 0︸ ︷︷ ︸
b−1

0 F id · · · id F︸ ︷︷ ︸
d−b+1

0 0 0 · · · 0 0︸ ︷︷ ︸
n−d

In particular, every representation satisfying the requirements of the theorem can
be characterized as a finite collection of intervals. We call this collection of inter-
vals the barcode of the representation.

Persistent barcodes. What do these results imply for the homology sequence
in (3)? A simple observation is that the barcode reveals the Betti number of
Hp(Si) for all i, just by counting the number of intervals that span over i. But
equally, the persistent Betti numbers are also encoded in the barcode: for i < j,
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let βi j = rankIm f , where f : Hp(Si)→ Hp(S j) is induced by the inclusion map
Si ↪→ S j. By functoriality, f = h j−1◦ . . .◦hi, and consequently, βi j equals the num-
ber of intervals in the barcode that span over the whole range [i, j]. Vice versa,
the persistent Betti numbers also uniquely determine the barcode: the number of
indecomposables of the form Ib,d is given by

βb,d−βb−1,d−βb,d+1 +βb−1,d+1 (5)

by the inclusion-exclusion principle.
The intervals in the barcode can also be interpreted in intuitive geometric terms:
it is instructive to imagine the sequence S1 ↪→ . . . ↪→ Sn as a sequence of growing
balls with a fixed set of centers. Setting p = 2, the barcode captures the forma-
tion of voids in this sequence of balls. An interval [b,d] means that a new void
comes into existence when the balls have reached the scale αb. This void persists
until scale αd where it is completely filled up, and disappears. Similar consider-
ations are true for tunnels (p = 1), and connected components (p = 0). Figure 2
illustrates this idea for an example in the plane.
While barcodes can be defined without the use of the rather heavy machinery of
quivers (for instance, using (5)), this abstract point of view has several advantages:
First of all, it underlines that the concept of persistence is rather independent of
homology and applies to sequences of vector spaces in general (with F-homology
being only one instance of it). More importantly, we obtain a non-trivial general-
ization for free. Consider the following example of a zigzag sequence of spaces

S1 ↪→ S2 ↪→ S3←↩ S4 ↪→ S5←↩ S6.

We can interpret this sequence again in the context of data analysis, allowing cases
where the approximation is allowed to expand or shrink when the scale parameter
increases. Functoriality of homology now yields a sequence of homology groups
and linear maps

Hp(S1)→ Hp(S2)→ Hp(S3)← Hp(S4)→ Hp(S5)← Hp(S6)

in the same way as before. Because the arrows point in different directions, the
concept of persistent Betti numbers does not carry over to this context. However,
the homology groups still form a representation of a An-type quiver. Therefore,
Theorem 2 applies also to this case and ensures the existence of a barcode!
Finally, the representation-theoretic point of view sheds some light on the theory
of multidimensional persistence, where one considers more than one scale pa-
rameter to analyze the data set. The complete version of Gabriel’s theorem [39]
shows that finding a compact description of persistent homology in more than one
dimension becomes a delicate issue. We will discuss this in some more detail in
Section 4.

20



Figure 2: The 4 images on the left show snapshots of a nested sequence of shapes
S1 ↪→ S2 ↪→ . . . ↪→ Sn−1 ↪→ Sn. Observe the formation and vanishing of holes in
this process. The barcode on the right summarizes this process. Each bar (i.e.,
indecomposable) corresponds to a hole in the process and spans over the range of
scales for which the hole is present in the data. The vertical alignment of the bars
is not important. This illustration already appeared in [45].

3 About the history of persistence

Although persistent homology only exists for about 15 years in the literature, the
substantial amount of work makes a comprehensive survey a difficult task. More-
over, any such attempt is doomed to be deprecated within short time due to the
rapid evolvement of the research field. We therefore do not even aim for complete-
ness, but rather focus on a few highlights in the theory, applications and algorith-
mic aspects of persistent homology. The interested reader can find more details in
one of the numerous surveys on the topic [40, 10, 32, 67, 35, 66, 27]. There are
also various textbooks available covering persistent homology [33, 31, 68, 41, 58].

Theory The term “persistent homology” was coined by Edelsbrunner, Letscher,
and Zomorodian [34], who introduced persistent Betti numbers, persistence di-
agrams (a different, but equivalent representation of barcodes) and an efficient
algorithm for filtrations of alpha shapes in the case F = Z2. Zomorodian and
Carlsson [69] extended this algorithm to arbitrary fields; moreover, they provided
an algebraic description of persistence as a graded F[t]-module, and argued that all
persistent Betti numbers are determined uniquely by the module decomposition.
The connection of persistence to quiver theory, as described earlier, was intro-
duced by Carlsson and de Silva [11] to develop the concept of zigzag persistence.
A cornerstone for the importance of persistence is its stability: it means that a
small perturbation of data leads only to a small change in its barcode summary;
to make the statement precise, a distance measure on barcodes has to be defined,
which we omit in this article. Cohen-Steiner, Edelsbrunner, and Harer [24] pro-
vided the first such stability result for the so-called bottleneck distance, and this
result was extended by Cohen-Steiner et al. [25] to a wider family of distance
measures. Once again abstracting from the geometric context, stability has been
rephrased in algebraic terms by the concept of interleavings by Chazal et al. [16].
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The survey by Carlsson [10] discusses many of these aspects and also popularized
the idea of using the theory of persistent homology as a general technique for data
analysis tasks. This has led to the shapening of topological data analysis (tda)
as a new research discipline in which persistent homology is a key concept. We
point out that tda is a wider area, covering aspects that are not discussed in this ar-
ticle, including size theory [38], Morse-Smale complexes [44], sheaf theory [26],
and Reeb graphs [5]. We remark that an extension of Reeb graphs, the Mapper
algorithm [63] forms the basis of the startup company Ayasdi2, underlining the
relevance of topological tools in industrial applications of data analysis.

Applications There is a large bandwidth of application scenarios on which per-
sistent homology has been proved to be useful. A comprehensive list goes beyond
the scope of this article, but we mention applications in coverage problems in sen-
sor networks [28], measuring the dimension of fractal shapes [53], robust length
measuring of tube-like shapes [36], the analysis of growth of rice plant roots [4],
the effect of mixture of genome material in evolution [15], the effects of drug
influence on brain networks [59], and the visualization of cyclical behavior of
memory assignments in the execution of machine programs [23]. The recent book
by Oudot [58, p.8] contains a longer (and mostly disjoint) list. We point out that
the last three mentioned applications deal with data of non-geometric nature, but
the data still has “shape” for which topology reveals meaningful information.
Among the numerous applications, we illustrate two major templates of how topo-
logical information is used by describing two applications in slightly more detail:
Chazal et al. [20] consider the problem of clustering point clouds. Among the
many approaches for this problem, mode-seeking methods [50] construct a den-
sity function f based on the point cloud, create one cluster center per local min-
imum, and cluster the point set using the basins of attraction for each minimum
(with respect to the gradient flow). A problem with this method is the instabil-
ity of the clustering under small perturbation of f , and the authors use persistent
homology to tackle this problem: using the persistent barcode defined by the func-
tion f , they classify the clusters into important ones and noisy ones, based on the
range of scales in which a cluster is active. Then, they employ a robust variant
of mode-seeking clustering where the basins of noisy clusters are charged to im-
portant ones; see [20] for more details. This is an example of a denoising: the
topological internals of a particular data set are analyzed, allowing a simplified
and more robust outcome for the given task (this was also the original motivation
of introducing persistent homology from [34]).
The second template of applications uses topological information as a proxy in or-
der to compare and classify data sets. The majority of contemporary applications
falls in this category. An instructive example is given by Adcock, Rubin, and

2www.ayasdi.com
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Carlsson [1], who study the task of classifying images of liver lesions into pre-
defined categories, for the purpose of computer-assisted diagnosis. For that, they
compute a barcode on an image, and compute the pairwise distances of that bar-
code to the barcode of a set of reference images. This defines a high-dimensional
feature vector, where each coordinate is based on a topological distance. Hav-
ing represented an image as a high-dimensional point, the authors use standard
techniques from machine learning, such as support vector machines, for the clas-
sification task, and report on satisfying results. While this result approaches the
classification task solely on topological descriptors, topology can also be used to
complement other (e.g., geometric) descriptors [42, 64].

Algorithms A major reason for the success of persistent homology as a disci-
pline is the existence of fast algorithms to compute the topological summary. For
computations, the multi-scale representation of the data is usually written as an in-
clusion of combinatorial cell complexes, and is represented by the ordered bound-
ary matrix of that cell complex. Persistence is computed by a simple reduction
procedure that resembles Gaussian elimination. While its theoretical worst-case
complexity is cubic in the size of the matrix, the algorithm shows a significantly
better behavior in practice, thanks to the initial sparseness of the boundary matrix.
Because of the demand for practically efficient implementations, there is a sub-
stantial body of literature describing speed-ups of the original matrix reduction.
One line of research attempts to identify shortcuts in the reduction process exploit-
ing the special structure of boundary matrices, and achieves remarkable speed-ups
with rather simple heuristics [2, 21]. These techniques have also lead to the first
practical distributed algorithm to compute persistent homology [3]. Also success-
ful has been the approach of computing persistent cohomology instead, relying on
a duality result for persistent homology and cohomology by de Silva et al. [29].
Boissonat et al. [6] provided several optimizations of the original algorithm under
the name of annotations [30]. Yet another way of improving is the combination
of Discrete Morse Theory and persistence [43, 55]: the idea is to reduce the size
of the initial simplicial complex through collapses guided by a Morse matching,
and to invoke the matrix reduction algorithm solely on a matrix representation
of the collapsed complex, which is often of significantly smaller size. All the
aforementioned techniques have been implemented in publicly available software
packages – we refer to [57] for a recent comparative survey.
The standard problem of comparing two barcodes can be reduced to a maximum-
cardinality matching problem in complete bipartite graphs [33, §VIII.4]. It has
been observed recently that the special (geometric) structure of barcodes can be
used to significantly speed-up these computations in practice [47].
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4 Current developments

Persistent homology has shown to be a useful tool to analyze data sets under a
topological lens. Nevertheless, many questions remain unanswered both in terms
of generalization and scalability. We end this article by highlighting three areas
of active research which have the potential to significantly extend the range of
applications of the theory.

Multidimensional persistence A limitation of standard persistent homology is
the restriction to a single scale parameter. In many applications, one would like
to filter the data along two or more axes: for instance, in the combustion example
from before, we would probably prefer to consider a time-varying sequence of
functions measuring temperature, and to track topological changes for progress in
time as well as for changes in the threshold.
The simplest formalization of this process is a diagram of spaces and maps

Sm1
� � // Sm2

� � // . . . �
� // Smn

...
?�

OO

...
?�

OO

...
?�

OO

S21
� � //

?�

OO

S22
� � //

?�

OO

. . . �
� // S2n

?�

OO

S11
� � //

?�

OO

S12 //

OO

. . . // S1n

OO

(6)

where all little squares commute (the time-varying example above would better be
modeled by a zigzag diagram, but we try to keep the exposition simple). Applying
homology yields a representation of the quiver whose shape is the integer grid.
How much of the theory for one dimension carries over? Theorem 1 from Sec-
tion 2 applies to the quiver, stating that the representation decomposes into finitely
many indecomposables. However, Theorem 2 only holds for An-type quivers (and
slight generalizations of it). The structure of indecomposables is way more com-
plicated in general: there is an infinite number of isomorphisms classes, already
for the case of a square-shaped quiver, which prevents a direct generalization of
barcodes to higher dimensions. These difficulties with the multidimensional case
have been observed first by Carlsson and Zomorodian [12] (without using quiver
theory).
Despite these negative results, multidimensional persistence has received growing
attention in the last years. While a complete topological invariant like the bar-
code in one dimension is out of reach, the primary question is which incomplete
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invariants can be useful for the data analysis applications. The first proposal was
the rank invariant [12] which generalizes the persistent Betti numbers: in two
dimensions, it is defined as

rank
(
Hp(Si j)→ Hp(Sk`)

)
for any i ≤ j,k ≤ `. Cerri et al. [13] have considered one-dimensional sections
of the multi-dimensional filtration. In the setting of (6), any monotone path from
S11 to Smn defines a one-dimensional barcode, and the collection of all these bar-
codes is equivalent to the rank invariant. Very recently, Lesnick and Wright [52]
developed a software to visualize this collection of barcodes, along with improved
algorithms to compute the rank invariant.
Another research front is the efficient comparison of multidimensional represen-
tations. Lesnick [51] extended the interleaving distance to the multidimensional
case. Chacholski et al. [14] proposed an formal algebraic definition of noise and
define the distance between two representation as the minimal noise in which they
differ. While both approaches are mathematically sound, no efficient algorithms
to compute or at least approximate these distances are known, and no hardness
results have been settled.
Because of the demand for analyzing data in multi-dimensional scale spaces, we
expect further research to define, compute, visualize, and compare meaningful
invariants for the case of multidimensional persistence.

Statistical tda A recent line of research is the combination of persistent homol-
ogy and statistical methods. A central question in this context is the definition of
an average of a collection of diagrams. Difficulties arise from the fact that the
space of persistent barcodes has a complicated structure; while so-called Fréchet
means of barcodes can be defined in this space, they are not unique and difficult
to compute [65]. An alternative idea is to embed the space of barcodes into a
larger and better behaved space, in which means are well-defined and simple to
compute.
We have already discussed an example of such a strategy for the diagnosis of liver
lesions [1] in Section 3. Recall that the barcode of an image was converted into
a point in Rd , constituting a transition into standard Euclidean space for which a
large toolset of statistical methods applies. Another concept is that of persistent
landscapes by Bubenik [8]. A persistence barcode is converted into a sequence
of functions `i : R → R. Having two or more landscapes, averaging is easily
achieved through a pointwise average of the i-th level functions. However, the
average landscape in general cannot be translated back to a persistence barcode.
Landscapes satisfy basic statistical properties such as a law of large numbers and a
central limit theorem, and standard statistical methods like bootstrapping [18, 19]
and subsampling [17] have been brought into the field of topological data analysis.
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Figure 3: Illustration of the Čech filtration as the intersection complex of a union
balls at various scales.

Yet another approach by Reininghaus et al. [60] defines a kernel for persistence
barcodes which induces a Hilbert space structure on barcodes and permits topo-
logical classifiers in machine learning applications, such as Support Vector Ma-
chines and Principle Component Analysis. Two recent software libraries provide
methods to apply statistical methods on persistence diagrams [9, 37].
We foresee further applications of statistical methods in the analysis of realis-
tic data sets. Besides a comparison of existing techniques to embed the barcode
space, plenty of algorithmic challenges need to be resolved: how can we effi-
ciently compute and represent such an embedding? What are meaningful statisti-
cal tests, and how can they be performed efficiently in the context of persistence?

Efficient creation of cell complexes The first step in the computational pipeline
of persistent homology is the generation of a sequence of shapes, representing the
input data on different scales. We remind the reader of the popular example of
point clouds, and their approximation by a union of balls, whose radius increases
throughout the sequence. For computational purposes, it is common to dualize the
construction, and to consider the nerve of the balls, which is a simplicial complex
that captures the intersection patterns of the balls, called the Čech complex (Fig-
ure 3). The major drawback is the sheer size of this complex: for n points in Rd , it
grows to a size of O(nd+1) simplices, too much for realistic applications already
when d is small.
For low dimensions, especially d = 2 and d = 3, the complex size can be reduced
by the use of alpha complexes [33], forming a subset of the Delaunay triangulation
of the point set. But this improvement does only slightly improve the asymptotic
bound for high dimensions (to O(ndd/2e)) and raises computational questions since
computing Delaunay triangulations in high dimensions is a non-trivial task.
A promising direction is to use geometric approximation techniques to approx-
imate cell complexes: instead of computing a homotopically equivalent repre-
sentation of desired shapes, the goal is to find approximate complexes which are
significantly smaller in size, but with a provable guarantee of closeness of the ex-
act and approximate persistent barcode. Sheehy [61] gave the first construction
for the related Vietoris-Rips complexes with a size of O(n ·2d2

) (the precise bound
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is more fine-grained, but we restrict to the worst-case estimate for brevity) for an
arbitrary fixed constant approximation quality ε. Similar results for Rips and Čech
complexes with the same asymptotics have been derived subsequently [7, 30, 49].
Because of the decoupling of n and d in the bound, these techniques have the po-
tential to broaden the range of data sets for which persistence can be applied. The
practical evaluation of these techniques is one of the major challenges of algorith-
mic topology within the next years.
There is also a line of research dealing with very high-dimensional input (i.e.,
if d is in the same order as n). In this case, the aforementioned approaches do
not improve the naive construction. Instead, dimension reduction techniques have
been considered. The celebrated Johnson-Lindenstrauss lemma [46] states that a
point cloud in high-dimensionsal Euclidean space can be embedded into O(logn)
dimensions with arbitrary small distortion. As shown by Sheehy [62] and by
Kerber and Raghvendra [48], this property extends in the following way: the Čech
complex of a point set in high dimensions yields a persistent barcode that is close
to the barcode of the same point set projected to O(logn) dimensions.
Very recently, Choudhary, Kerber, and Raghvendra [22] developed a new approx-
imation technique that yields an approximation complex with only O(n · 2d logd)
simplices, at the price of a weaker approximation guarantee. Combined with
dimension reduction techniques, their results yield an approximation complex
whose size is nO(1), independent of the dimensionality d of the point set.
“Big data” is one of the buzzwords of our time – how can we design algorithms
that are able to cope with the increasing volume of acquired data? Approxima-
tion techniques appear to be the most promising paradigm to process the immense
amounts of data in a reasonable time. The aforementioned efforts can be inter-
preted as an attempt of transferring these technique into the context of tda. The
question of how far this transfer will go has to be carried out by research in the
upcoming years.

Acknowledgments I thank Aruni Choudhary and Hannah Schreiber for their
helpful suggestions.
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