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Abstract

This work addresses the problem of computing a certiéfiagproximation of
all real roots of a square-free integer polynomial. We proof an uppand for
its bit complexity, by analyzing an algorithm that first computes isolating iaterv
for the roots, and subsequently refines them using Abbott’'s Quadragivédh Re-
finement method. We exploit the eventual quadratic convergence ohéitieod.
The threshold for an interval width with guaranteed quadratic conveegspeed
is bounded by relating it to well-known algebraic quantities.

1 Introduction

Computing the roots of a univariate polynomial is one of tteshprominent problems
in Computer Algebra. For the case that only real roots aratefest, several subdi-
vision approaches, based on Descartes’ rule of sign or am%tTheorem have been
introduced [6, 14]. Their output consists of a set of digjdiervals, each containing
exactly one root of the polynomial, and vice versa, eachisobntained in one of the
intervals; they are also callésiolating intervals These subdivision solvers constitute
a popular method for root finding, primarily as they returreatified output (no root
is lost, no interval contains several roots). Also, theyratatively easy to implement,
and have shown good practical performance. Real root gpigim cornerstone, for
instance, for the computation of Cylindrical Algebraic Dewosition [4], for related
problems such as topology computation [11, 8] and arrangeocoenputation [10], and
many more.

In this work, we will investigate the cost of computing isiihg intervals, and sub-
sequently refining them until their width falls belaw An equivalent description is to
approximate all roots to a precision fIt should not be surprising that this problem
frequently appears in concrete applications — for instawben comparing the roots of
two polynomials, or when evaluating the sign of an algebeajoression that depends
on a root of a polynomial.

While the (worst-case) complexity of the root isolation @ss has been studied
extensively for various isolation methods [9, 12, 16], simresults seem not to be
available yet for the subsequent refinement process. Ouk willrprovide a com-
plexity analysis with the following main result. Let := >°*_  a,z’ € Z[z] be a
polynomial of degree, with simple roots anda;| < 27 for each coefficient;. For
e > 0, computing isolating intervals of width at mosfor all roots requires in the
worst-case

O(p*o? + p*loge ™), @



bit operations, wher® means that logarithmic factors jnando are neglected.

We achieve our bound by analyzing Qeadratic Interval Refinement (gimethod
to refine isolating intervals, introduced by Abbott [1]. $imethod can be considered as
a hybrid of bisection and (an interval version of) the secagthod. We will discuss the
algorithm in detail in Section 3. As Abbott has already peihout, the method initially
behaves like naive bisection (linear convergence), buedhe interval falls below
a certain width, the number of newly obtained bits is doubieévery step (which
basically means quadratic convergence). In our analygssplit the sequence of qir
steps into an initial sequence where we assume bisectiodsa guadratic sequence
where the root is rapidly approximated. We will show that s of the cost of all
initial sequences is bounded by the first summand of (1) (waiso bounds the cost of
the root isolation), and that the second summand is caus#telpost of the quadratic
sequence. It is remarkable that our analysis profits fronsidening all (real) roots
of f; when restricting to a single root gf, we are able to decrease only the second
summand by a factor gf, even if the root is already given by an isolating interval.

The reader might wonder at this point why not using a more prent algorithm
like the famoudNewton iterationinstead of the qgir method. A problem in Newton'’s
method lies in the choice of a starting value — an unfortuonateleads to a diverging
sequence. A solution is to perform bisections initially t@guce an interval where
convergence of Newton’s method is guaranteed, and thenitchste Newton iteration
manually. However, this manual switch depends on the@tdetiorst-case bounds for
valid starting values of Newton’s method, thus more biggtithan actually necessary
are performed in the average case. The gir method, in consweisches adaptively as
soon as possible, independently of the worst-case bouatisiuth introduced only for
the analysis.

Dekker [7] presented a method which, similarly to the gimbtines bisections and
the secant method. Brent [3] combines Dekker's method witkrse quadratic inter-
polation. Superlinear convergence can also be guaranteedi$ method. However,
a problem in Dekker’s approach is the growth in the bitsizéhefiteration values — it
appears unclear to the author how to choose a suitable vgppkatision in each sub-
step to avoid a too big coefficient swell-up while still guateeing fast convergence.
The same holds true for Brent's method, and additionallgraadysis seems to be even
more involved as it even adds more ingredients to Dekkerthate The qir method
guarantees a minimal growth in the bitsizes, since all atisrare of the fornj;, “2—31}
(with a, £ € Z), thus the bitsize of the boundaries is proportional to therival width,
what is the best one can hope for.

The simpleness of the gir method also make this approacictte for concrete
implementation. It is used both in tle@ocoA library* [1] and the (experimental) al-
gebraic kernel of theGAL library? (used, for instance, in [11, 10]). Its application is
also attested in [8]. In this work, however, we focus on thaplexity analysis, and do
not address its practical performance.

This paper is structured as follows: In Section 2, we givewghooverview about
real root isolation algorithms, and their complexity. $@tt3 revises the gir method.
Our complexity bound (1) is proved in Section 4. We conclud8éction 5.

Ihttp://http://cocoa.dima.unige.it/
2http://www.cgal.org



Notation

It will be convenient to fix some notation. Throughout thide, let f = >>7_, a;a"
be a square-free polynomial (i.e., without multiple roat§)degreep, with integer
coefficientsa; of bitsizeos, that meansia;| < 29. The complex roots of are denoted
by o, ..., ap, and we assume exactly the figstootsay, . . . , o5 to be real.

Also, let0 < e < 1 be fixed, and set := log L. We write M (n) for the cost of
multiplying two integers of bitsize,, and assume thad/ (n) = O(nlognloglogn),
according to the fast multiplication algorithm by $cthage and Strassen [15]. To keep
the complexity bound handleable, we will often neglect hithanic factors inp ando
and denote such complexity bounds®y:). As an example)M (n) = O(n). Finally,
for I = (¢, d), we denote byu(I) := d — c its width.

2 Root Isolation

Several approaches have been investigated for the roatimolproblem. They all
accept the square-free polynomfaas input, and produce a list efisolating intervals

for aq,...,as. A considerable body of literature has appeared about toisigm (a

small subset is [5, 6, 14, 16]); it is not the scope of this wiorkliscuss them in detail
— still, their worst-case bound is of importance.

Theorem 2.1. Computing isolating intervals for the real roots pfrequires at most
O(n*c?) bit operations in the worst-case (using fast arithmetichrédver, each iso-

lating interval is of the form{ %, %1 ) with a, ¢ € Z andlog | % | = O(o0).

The complexity bounds have been proved for root isolatioseeonSturm se-
guence$9], and based obescartes’ rule of signgl2]. The special form of the isolat-
ing intervals is a consequence of the subdivision that teihj started with an interval
[—20(2) 20(7)] that covers all real roots gf (compare [2§10.1]).

We remark that th€ontinued fraction algorithnfintroduced in [5]) usually per-
form best in practice among the available modern root sehathough the best known
bound in the literature seems to Bén°72) [16]. See [13] for a recent experimental
comparison on various modern root solvers.

3 Abbott’s Quadratic Interval Refinement

Everybody knows about the most naive method for refiningatsug intervals — thebi-
section methadGiven an isolating intervdk, d), evaluatef at the midpointn = C;‘i.

If f(m) =0, the root is found exactly. Otherwise, eitHerm) or (m, d) is chosen as
refined isolating interval, depending on where the sign ghdakes place. Clearly, the
isolating interval is halved in every step which means tme bit of precision is added
per bisection.

The analysis of the complexity for the bisection is alsoigliaforward. The crucial
operation is to evaluatg at m, the number of arithmetic operations is linear. 7If
denotes the bitsize efandd, then the bisection has to deal with bitsizes upi{o +
p7) during the evaluation, and thus the number of bit operati®bhsunded by

O(pM (o + p1)).



Algorithm 1 Quadratic interval refinement
1: procedure QIR(f, I = (¢,d), N) > Returns a paifJ, N, ), with J the refined

interval

2: if N =2, return (BISECTION(f,I),4).

3 w %

4: m’<—c+round(N%)w >m=c+ %(d—c)

s s sgu(f(m)

6: if s=0,return ([m’,m’],o0)

7: if s = sgn(f(c)) and sgn(f(m' + w)) = sgn(f(d)), return ((m',m’ +
w), N?)

8: if s = segn(f(d)) and sgn(f(m’ — w)) = sgn(f(c)), return ((m’ —
w,m’), N?)

9:  Otherwise, returfl,v/N).
10: end procedure

What if we did bisection until the interval gets smaller thénWe would have to
perform up tos + L bisection steps (the initiat bisections to make its width smaller
than one), and the interval boundaries would grow to bitsize L. Thus, one would
arrive at a total complexity o (p(c + L)M (p(c + L))) = O(p?(c + L)?), with an
additional factor op when doing this for each root. Not surprisingly, this is inde to
(1) sinceL appears quadratically.

A more efficient way of refining the isolating interval has bgeesented with Ab-
bott’'s Quadratic Interval Refinement meth@H; we call it gir from now. Consider
an isolating interval = (¢, d) for a roota, and let/ be the secant through the points
(¢, f(e)) and(d, f(d)) € R2. If I is small enoughf should almost look like the liné
over I, and thus, the intersection poimt of ¢ with the z-axis should be close to.

This idea leads to the following algorithm:
Having an additional intege¥ as input, subdivide
I (conceptually) byV + 1 equidistant grid points .
(with distancew := %). Then, computen/, B Lo
the closest grid point ten, and evaluatef (m’). |_ o
Depending on its sign, evaluate the sign of either ’
the left or right neighboring grid point. If the signy~"~
changes fromn’ to m’ &+ w, choose it as new iso- -
lating interval (this refines by a factor of) and Successful qir instance fov = 4
setN to N2 for the next gir call. Otherwise, keep
I as isolating interval and se¥ to /N for the next call. IfN = 2, perform one
bisection step. See also Algorithm 1 for a pseudo-code iidisar.

We assume thaV is initially set to4 for an isolating interval returned by a root
isolation algorithm, and that the methQeR is always called with the paramet&rthat
has been returned in the previous call for the given interval

Different from Abbott’s original formulation, a call of QIRoes not necessarily
refine the isolating interval. However, in this cadgéjs decreased as a side effect, and
at the latest whetv = 2, the method will refine the interval eventually.

Definition 3.1. A qgir call (J, N2) «QIR(f,I,N1) succeedsif J C I, and itfails, if
J = I. Equivalently, the gir calls succeeds, if and onl\f > N;.

For one qir call (successful or not), one has to perform @{y) arithmetic op-



Algorithm 2 Root isolation with refinement
1: procedure ISOLATE_AND _REFINE(f, €)

2: I, ..., Is < |SOLATE(f) > see Section 2
3 for k€ {1,...,s} do

4: N —4

5: while width(Z;) > edo (I;, N) < QIR(f, I;, N)

6 end for

7 return I,...,1I;

8: end procedure

erations to evaluat¢ at m’ andm’ 4= w, and perform another constant number of
arithmetic operations. The bitsize of’ andm’ + w is bounded byO(log N + 7)
wherer is the maximal bitsize of andd.

It is easy to see thdbg N € O(r), assuming that the gir is initially started with
N = 4: if a qgir call with N > 4 subintervals is started, there must have been a
successful qir call fon/N. Thus, the width of the interval is at mo%, and the

bitsize of either or d must be at leadbg v N = % log N.
After all, the cost of one qir call is thus bounded by

O(pM (o + pT)),

which is equal to the cost of one bisection step. We rematiaiha successful gir step
yields exactly the same resultlag /V bisections, so that the isolating interval remains

of the form (&, 1) if the initial interval was of this type.

4 Analysis of Root Refinement

We prove the bound given in (1). For that, we analyze the cekilyl of this straight-
forward algorithm: ApplyQIR to each isolating interval until its width falls belowv
(Algorithm 2).

Definition 4.1. Let « be a root off for which Step 2 of Algorithm 2 returned the
isolating intervally. Theqir sequencésy, ..., s,) for a, is defined as

Sg 1= (10,4) S; 1= (Il Ni) = QlR(f, Ii—laNi—l) for 2 Z 1

wherel, is the first index such that(I,,) < e. We say thak;_; QR s; succeeds#
QIR(f, I;—1, N;_1) succeeds, and that_; Q—'>R s, fails otherwise.

The qir sequence far is split into two subsequences, according to the vallje
defined in the next lemmal/,, will turn out to be an upper bound for the width of

the isolating interval ofx that ensures quadratic convergence. We will prove this in
Section 4.2, but we already show two simple propertiek/gf

Lemma 4.2. Leta € C be arootx of f. We define

!
e @)
2ep32° max{|al|, 1}P~1

with e =~ 2.718. It holds that



1L.0< My <3
2. Letu € C be such thafe — i1 < M,,. Then

o < /@)

2" ()l

Proof. We bound| f’(«)| from above by the following

P p—1
[f(@)] =1 iaia’ ™ < p2° Y max{|al, 1}’ < p27pmax{|al, 1}*~"
1=1 =0

which proves the first claim. For the second, we bolfitd )| from above:

p p—2 p—2
()] =1 i(i=Dag' 2| < p*27 Y max{|ul, 1} <p*27 Y " ((1+ Ma) max{|al, 1})’
=2 =0 =0

1
< p*27(1 + M, )P~ ? max{|al, 1}P72 < p27 (1 + ;)p max{|al,1}P7!

N——
<e
This shows that
|f ()] |f ()] _ 0
2[f"(w)| = 2e-p329 max{|al, 1}P~1 ¢
Definition 4.3. Let (s, ..., s,) be the gir sequence for. Letk be the minimal index

such thats;, = (I, Ni) QR sg+1 succeeds, and(I;) < M,. We call the sequence
(so,- .-, sx) theinitial sequenceand(sy, . . ., s,,) thequadratic sequence

In other words, the quadratic sequence is the maximal giresaze that only con-
tains intervals of size at most/,,, and starts with a successful gir step. In the next two
subsections, we will bound the cost of the initial sequemzkthe quadratic sequence
separately.

4.1 Cost of the initial sequence

Lemma 4.4. Let I be an isolating interval fotr. The cost of the initial sequence of
is bounded by

~ 1

2 2
1 P

O(*(o +log 37-)°)
Proof. Let n, be the number of qir calls unti is refined such that(I) < M,.
Likewise, letn; be the number of bisections that would be needed to rdfitmesize
M,. Note thatn, = O(c + log ﬁw)-

A successful gir call for som&/ = 22' yields the same accuracy 2isbisections,
and can only cause up ot 1 subsequent failing gir calls before the next successful
gir call. With that argument, it follows that, < 2n;, so the number of gir calls is in
O(o + log 31-)-

To bound the bitsizes, IV, be the value ofV in the last successful gir call of
the initial sequence. It holds thaig N, < 2n,;, since otherwise, the preceding qir



call would have yielded as much accuracyi@as\/N. > ny; bisections, and the initial
sequence would have stopped earlier. Hence, the width dfrtakinterval is at least
L=, and the interval boundaries have bit complexity

N, 1 1
log —& < 9 log — = log ——
og 7~ < 2mp + o8 31 O(o + OgMa)

[

Therefore, the bitsizes of the qir calls are bounde®lgy(c + log M%])), which proves
the claim. n

It remains to bound the quantitgg ~1- - We do this simultaneously for all real
roots of the polynomial, according to the followmg theorem

Theorem 4.5. Letay, . .., a4 be the real roots of. Then,

ZlogM = O(p(o + logp)).

Proof. Recall that) < M, < 1 for each (complex) roat, SOlog s >0 and we can
bound:

P 2e - p*2° max{|a;|,1}P71

[T ()]

:Og

P P
= plog(2e) + 3plogp + po + (p — 1) log | [ max{|eil, 1} = log| [ ] £/(cws)]
i=1 i=1

For both occurring products, we can apply well-known bouindisy Algebra. For the
first one, note that

Mea(f) = |ay| [ [max{loil. 1}

is theMahler measuref f, and it holds that ([17, Lemma 4.14], [2, Prop.10.9])
Mea(f) < [[fl2 < VP+1-fllo <v/p+1-2°.

So,log [T_, max{|;|,1} = log (Ia ‘Mea(f)> <logMea(f) = O(logp + o)
The second product is related to the resultanf @nd f’ by the following iden-
tity [2, Thm.4.16], [17, Thm.6.15]

P

res(f, f') = ah " [ £/ (cw).

i=1

In particular, the right hand side yields an integer. Itdols

p
—log | [] f/(cw)| =loglal™| —log|res(f, f') | < (p — 1)log |a,| = O(po).
N——

=1

[\

1

Finally, we can estimate

< O(p(o +logp)) + (p— 1) log | [ max{|as|, 1} —log | T] f'(cs)]

i=1 =1

=0O(log p+o) =0(po)
O(p(o + logp)). O



Corollary 4.6. The total computation cost for all initial sequence®i@*c?).

Proof. Combining Lemma 4.4 and Theorem 4.5, we get total costs of

O(>_p*(o +log

i=1

1
Ma,,

Corollary 4.6 shows that refining all isolating intervalswiath A, does not in-
crease the complexity bound to the initial root isolation.

4.2 Cost of the quadratic sequence

In the initial sequence, we have assumed that the gir sequmitaves roughly as the
bisection method. As soon as the isolating interval becasnedler thanV/,,, we can
prove thatN is squared in (almost) every step, which leads to quadratiwargence
of the interval width. We start with a simple criterion thatagantees a successful gir
call.

Lemma4.7. Let I = (¢, d) be an isolating interval o, with w(I) = §, and consider
the qir callQIrR(f,I,N) for someN. Letm := ¢+ %(d — ¢) be defined as in

the qgir method (Algorithm 1). Ifm — o < % the qir call succeeds.

Proof. Recall thatl is conceptually subdivided int®" subintervals of same width, and
thatm’ is chosen as the grid point closestto Let J be the subinterval that contains
a, andJ’ be the subinterval that contains. If J = J’, then one of the endpoints of
J' is chosen as’, so the qir call succeeds. Jf # .J/, they must be adjacent, since
otherwise |m — a| > % W.L.o.g., assume that < «, thenm must be in the right
half of .J, because otherwigen — a| > % Thus,m’ is chosen as the right endpoint
of J’ which is the left endpoint of. Therefore, the qir call succeeds. O

We need to investigate the distance between the interpolptintm and the root
«. The next theorem shows that this distance depends quaadhatin the width of the
isolating interval, once it is smaller thad,,. This is basically analogous to Newton’s
iteration, for which a similar theorem is shown.

Theorem 4.8. Let (¢, d) be an isolating interval fot of width & < M,,. Then|m —
52

Proof. We consider the Taylor expansion pfat«a. For a givere € [c, d], we have
1 -
f(@) = fl(e)(@—a)+ 5 f"(@)(@ - )’
with somed € [z, o] or [a, z]. Thus, we can simplify

fld)(c —a) = f(e)(d = &)

lm—a| =

7d) = 1)
U@ = ) (e = a) — £ (@) (e — a)*(d = o)
7d) = f(e)
Lt alle— af. (@)1~ 0) £ 1" (@) (o =)
=2 7@ = ()



(d—a)+ (a—c)
| f(d) = f(c)]

IN

%52 max{|f"(a1)], |f"(a2)[}
0% max{| f" (1)l | (G2)[}
2 @)

for somev € (¢, d). The Taylor expansion of’ yields f'(v) = f'(a) + f"(7) (v — @)
with 7 € (¢,d). Sinced < M, it follows with Lemma 4.2

_ /0~ Lo
(@) —a)l < [f"(2)[Ma < 5| f'(a)]-
Therefore f'(v)| > 1| f'()], and it follows again with Lemma 4.2 that

82 max{|f" (a1)], | f"(a2)|} _ 6 < o O
; = 7 (@)l oM.,
£/ ()] 2 ([P GO LT @)Y

We apply this theorem on the quadratic sequence.

Im —al <

Corollary 4.9. Let I; be an isolating interval for of width §; < N%Ma Then, each

call of the gir sequencél;, V;) QR (Ij+1,Nj+1) AR succeeds.
Proof. We do induction ori. Assume (fori > 0) that the first calls succeeded. Then,
it is easily shown that;; := w(l;y;) = xj? < ]é‘fz (by another induction, and
exploiting thathﬂ- = Nj4i+1). Using Theorem 4.8, we have that

1 M, 1 16
_al <52 R P " — - it
m = ol < 0pigg < 0+ Nji2M, 2Ny

By Proposition 4.7, this is enough to guarantee successéagit method. O

Corollary 4.10. In the quadratic sequence, there is at most one failing tjir ca

Proof. Let (I;, N;) QIR (I;+1, Ni+1) be the first failing gir call in the quadratic se-

guence. Since the quadratic sequence starts with a sudlcgissfall, the predecessor

(Li—1,Ni—1) QIR (I;, N;) is also part of quadratic sequence, and succeeds. Thus we

have the sequence

Sucess Fail

IR IR IR
Uiy, Nic) 28 @ Ny LR (L, Nipr) EF L

One observes that(I;11) = w(l;) = % < ]{,”le andN;;, = /N; =

i—1

N? | = N;_;. By Corollary 4.9, all further qir calls succeed. O

If the quadratic sequence starts with a bisection (Ve 2 initially), no failing
gir call occurs. Otherwise, the single failing step is du¢h® fact that the quadratic
sequence might start with a too big value®f just because the algorithm was “too
lucky” during the initial sequence.

Let (I;—1,N;—1) QIR (I;, N;) be the failing qir call in the quadratic sequence.

Sincew(I;1x) = NNLS() by the proof of Corollary 4.10, it follows that

w I1 . 2
W(liyrt1) = m

9



for any £ > 0. That means, the interval width decreases quadraticalBaoh step
(up to the constandy, - w(I)) which ultimately justifies the term “quadratic” in the
Quadratic Interval Refinement method (the idea of our exjposivas already sketched
in Abbott’s original work [1]).

Lemma 4.11. The number of bit operations in the quadratic sequence obturds
bounded by

~ 1
O(p*log L(o + log ﬁ) +p?L).

Proof. By Corollary 4.10, the quadratic sequence consists of at ng4.+ 1 qir calls,
sinceN is doubled in each step, except the possible failing step.bitsize in the first
gir call of the sequence 9(p(c + log ﬁ)), and increases by at maxtafter thei-th
iteration. Therefore, the complexity of the quadratic sswe is given by

log L+1 1 log L+1 1
| A2 i
O< Z p-M(p(0+log%+2))>—O<p Z 0+log%+2>

i=1 i=1

log L+1
- 1 ) ~ 1
_ 2 2 i _ 2 2
—O(p logL(U-i-log—a)—i—p g 2)>—O(p 1ogL(U—Hog—a)+p L)

i=1

Corollary 4.12. The total cost of all quadratic sequences for the real r@gts. . , a,
of f is bounded by ~
O(pPclog L + p°L).

Proof. We combine Lemma 4.11 and Theorem 4.5 to obtain

S N 1 5 s 1
2 27\ — A3 2 3
;O(p logL(a—Hogm)—&—p L)=0(p°clog L +p-log L Z;logﬁ(l +p°L)
) —_————
=O(p(s+logp))

Combining the cost for root isolation (Theorem 2.1) with ttwst of the initial
sequences (Corollary 4.6) and the cost of the quadraticesegg (Corollary 4.12)
proves the main result:

Theorem 4.13. Isolating the real roots of, and computing an isolating interval of
width at moste for each root using Algorithm 2 requires

O(p'a® +p*(L+olog L)) = O(p*o® +p’L)
bit operations.

Proof. We only have to argue why the summapith log L can never dominate the
other two. Ifp*s? was dominated by3o log L, log L would dominatedpo, and in
particularL would dominate2®. If alsop® L was dominated by3c log L, then@ is

dominated by, soL is dominated by '+ for any~ > 0. Contradiction. O

10



If only one isolating interval is refined, our method showsmplexity of O (p*o2+
p?L), and thus only a partial improvement (even without considethe initial root
isolation step). The reason is that we are not aware of arowegrbound for the initial
sequence of a singke compared to what we prove in Theorem 4.5.

From a theoretical point of view, we do not expect signifidamgrovements when
using any other quadratic convergent method than gir: teediimmmangb®o? of The-
orem 4.13 appears due to root isolation, and the summahdeems to be unavoidable
as well, since for each root, one has to perform at least calea&ion of f for a ratio-
nal number of bitsiz& (L), which leads ta@(n) arithmetic operations with integer of
bitsize up toO(nL).

5 Conclusions and Further Work

Theorem 4.13 shows that refining all real roots of a polynbtoieidth € is as complex
as just isolating the roots, provided thage ' = O(po—2). We believe this result to
be of general interest for algorithm dealing with real alggbnumbers. For instance,
the usage of gir instead of naive bisection removes the asyfiofottleneck in the
topology computation algorithm presented in [11]; thisusrently work in progress.

On the practical side, we have argued that gir has a moreiaed@havior than
a combination of bisection and Newton’s method, since thiéchwfrom linear to
guadratic convergence happens without a “manual” contavhfoutside. Abbott's
work [1] has already shown that gir is competitive to Newsomiethod in a different
context. However, a comparison to other hybrid approadke®rent’s method is still
missing.

Acknowledgements: The author would like to thank Tobiasé@ner, Kurt Mehlhorn,
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