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Abstract
This work addresses the problem of computing a certifiedǫ-approximation of

all real roots of a square-free integer polynomial. We proof an upperbound for
its bit complexity, by analyzing an algorithm that first computes isolating intervals
for the roots, and subsequently refines them using Abbott’s Quadratic Interval Re-
finement method. We exploit the eventual quadratic convergence of themethod.
The threshold for an interval width with guaranteed quadratic convergence speed
is bounded by relating it to well-known algebraic quantities.

1 Introduction

Computing the roots of a univariate polynomial is one of the most prominent problems
in Computer Algebra. For the case that only real roots are of interest, several subdi-
vision approaches, based on Descartes’ rule of sign or on Sturm’s Theorem have been
introduced [6, 14]. Their output consists of a set of disjoint intervals, each containing
exactly one root of the polynomial, and vice versa, each rootis contained in one of the
intervals; they are also calledisolating intervals. These subdivision solvers constitute
a popular method for root finding, primarily as they return a certified output (no root
is lost, no interval contains several roots). Also, they arerelatively easy to implement,
and have shown good practical performance. Real root solving is a cornerstone, for
instance, for the computation of Cylindrical Algebraic Decomposition [4], for related
problems such as topology computation [11, 8] and arrangement computation [10], and
many more.

In this work, we will investigate the cost of computing isolating intervals, and sub-
sequently refining them until their width falls belowǫ. An equivalent description is to
approximate all roots to a precision ofǫ. It should not be surprising that this problem
frequently appears in concrete applications – for instance, when comparing the roots of
two polynomials, or when evaluating the sign of an algebraicexpression that depends
on a root of a polynomial.

While the (worst-case) complexity of the root isolation process has been studied
extensively for various isolation methods [9, 12, 16], similar results seem not to be
available yet for the subsequent refinement process. Our work will provide a com-
plexity analysis with the following main result. Letf :=

∑p
i=0 aix

i ∈ Z[x] be a
polynomial of degreep, with simple roots and|ai| < 2σ for each coefficientai. For
ǫ > 0, computing isolating intervals of width at mostǫ for all roots requires in the
worst-case

Õ(p4σ2 + p3 log ǫ−1), (1)
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bit operations, wherẽO means that logarithmic factors inp andσ are neglected.
We achieve our bound by analyzing theQuadratic Interval Refinement (qir)method

to refine isolating intervals, introduced by Abbott [1]. This method can be considered as
a hybrid of bisection and (an interval version of) the secantmethod. We will discuss the
algorithm in detail in Section 3. As Abbott has already pointed out, the method initially
behaves like naive bisection (linear convergence), but once the interval falls below
a certain width, the number of newly obtained bits is doubledin every step (which
basically means quadratic convergence). In our analysis, we split the sequence of qir
steps into an initial sequence where we assume bisections, and a quadratic sequence
where the root is rapidly approximated. We will show that thesum of the cost of all
initial sequences is bounded by the first summand of (1) (which also bounds the cost of
the root isolation), and that the second summand is caused bythe cost of the quadratic
sequence. It is remarkable that our analysis profits from considering all (real) roots
of f ; when restricting to a single root off , we are able to decrease only the second
summand by a factor ofp, even if the root is already given by an isolating interval.

The reader might wonder at this point why not using a more prominent algorithm
like the famousNewton iterationinstead of the qir method. A problem in Newton’s
method lies in the choice of a starting value – an unfortunateone leads to a diverging
sequence. A solution is to perform bisections initially to produce an interval where
convergence of Newton’s method is guaranteed, and then to switch to Newton iteration
manually. However, this manual switch depends on theoretical worst-case bounds for
valid starting values of Newton’s method, thus more bisections than actually necessary
are performed in the average case. The qir method, in contrast, switches adaptively as
soon as possible, independently of the worst-case bounds that are introduced only for
the analysis.

Dekker [7] presented a method which, similarly to the qir, combines bisections and
the secant method. Brent [3] combines Dekker’s method with inverse quadratic inter-
polation. Superlinear convergence can also be guaranteed for this method. However,
a problem in Dekker’s approach is the growth in the bitsize ofthe iteration values – it
appears unclear to the author how to choose a suitable working precision in each sub-
step to avoid a too big coefficient swell-up while still guaranteeing fast convergence.
The same holds true for Brent’s method, and additionally, ananalysis seems to be even
more involved as it even adds more ingredients to Dekker’s method. The qir method
guarantees a minimal growth in the bitsizes, since all intervals are of the form[ a

2ℓ , a+1
2ℓ ]

(with a, ℓ ∈ Z), thus the bitsize of the boundaries is proportional to the interval width,
what is the best one can hope for.

The simpleness of the qir method also make this approach attractive for concrete
implementation. It is used both in theCOCOA library1 [1] and the (experimental) al-
gebraic kernel of theCGAL library2 (used, for instance, in [11, 10]). Its application is
also attested in [8]. In this work, however, we focus on the complexity analysis, and do
not address its practical performance.

This paper is structured as follows: In Section 2, we give a rough overview about
real root isolation algorithms, and their complexity. Section 3 revises the qir method.
Our complexity bound (1) is proved in Section 4. We conclude in Section 5.

1http://http://cocoa.dima.unige.it/
2http://www.cgal.org
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Notation

It will be convenient to fix some notation. Throughout this article, letf =
∑p

i=0 aix
i

be a square-free polynomial (i.e., without multiple roots)of degreep, with integer
coefficientsai of bitsizeσ, that means,|ai| ≤ 2σ. The complex roots off are denoted
by α1, . . . , αp, and we assume exactly the firsts rootsα1, . . . , αs to be real.

Also, let 0 < ǫ < 1 be fixed, and setL := log 1
ǫ
. We writeM(n) for the cost of

multiplying two integers of bitsizen, and assume thatM(n) = O(n log n log log n),
according to the fast multiplication algorithm by Schönhage and Strassen [15]. To keep
the complexity bound handleable, we will often neglect logarithmic factors inp andσ

and denote such complexity bounds byÕ(·). As an example,M(n) = Õ(n). Finally,
for I = (c, d), we denote byw(I) := d− c its width.

2 Root Isolation

Several approaches have been investigated for the root isolation problem. They all
accept the square-free polynomialf as input, and produce a list ofs isolating intervals
for α1, . . . , αs. A considerable body of literature has appeared about this problem (a
small subset is [5, 6, 14, 16]); it is not the scope of this workto discuss them in detail
– still, their worst-case bound is of importance.

Theorem 2.1. Computing isolating intervals for the real roots off requires at most
Õ(n4σ2) bit operations in the worst-case (using fast arithmetic). Moreover, each iso-
lating interval is of the form( a

2ℓ , a+1
2ℓ ) with a, ℓ ∈ Z andlog

∣
∣ a
2ℓ

∣
∣ = O(σ).

The complexity bounds have been proved for root isolation based onSturm se-
quences[9], and based onDescartes’ rule of signs[12]. The special form of the isolat-
ing intervals is a consequence of the subdivision that is initially started with an interval
[−2O(σ), 2O(σ)] that covers all real roots off (compare [2,§10.1]).

We remark that theContinued fraction algorithm(introduced in [5]) usually per-
form best in practice among the available modern root solvers, although the best known
bound in the literature seems to bẽO(n5τ2) [16]. See [13] for a recent experimental
comparison on various modern root solvers.

3 Abbott’s Quadratic Interval Refinement

Everybody knows about the most naive method for refining isolating intervals – thebi-
section method. Given an isolating interval(c, d), evaluatef at the midpointm = c+d

2 .
If f(m) = 0, the root is found exactly. Otherwise, either(c,m) or (m, d) is chosen as
refined isolating interval, depending on where the sign change takes place. Clearly, the
isolating interval is halved in every step which means that one bit of precision is added
per bisection.

The analysis of the complexity for the bisection is also straight-forward. The crucial
operation is to evaluatef at m, the number of arithmetic operations is linear. Ifτ

denotes the bitsize ofc andd, then the bisection has to deal with bitsizes up toO(σ +
pτ) during the evaluation, and thus the number of bit operationsis bounded by

O(pM(σ + pτ)).
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Algorithm 1 Quadratic interval refinement
1: procedure QIR(f, I = (c, d), N ) ⊲ Returns a pair(J,Nnew), with J the refined

interval
2: if N = 2, return (BISECTION(f, I),4).
3: w ← d−c

N

4: m′ ← c + round(N f(c)
f(c)−f(d) )w ⊲ m = c + f(c)

f(c)−f(d) (d− c)

5: s← sgn(f(m′))
6: if s = 0, return ([m′,m′],∞)
7: if s = sgn(f(c)) and sgn(f(m′ + w)) = sgn(f(d)), return ((m′,m′ +

w), N2)
8: if s = sgn(f(d)) and sgn(f(m′ − w)) = sgn(f(c)), return ((m′ −

w,m′), N2)
9: Otherwise, return(I,

√
N).

10: end procedure

What if we did bisection until the interval gets smaller thenǫ? We would have to
perform up toσ + L bisection steps (the initialσ bisections to make its width smaller
than one), and the interval boundaries would grow to bitsizeσ + L. Thus, one would
arrive at a total complexity ofO(p(σ + L)M(p(σ + L))) = Õ(p2(σ + L)2), with an
additional factor ofp when doing this for each root. Not surprisingly, this is inferior to
(1) sinceL appears quadratically.

A more efficient way of refining the isolating interval has been presented with Ab-
bott’s Quadratic Interval Refinement method[1]; we call it qir from now. Consider
an isolating intervalI = (c, d) for a rootα, and letℓ be the secant through the points
(c, f(c)) and(d, f(d)) ∈ R2. If I is small enough,f should almost look like the lineℓ
overI, and thus, the intersection pointm of ℓ with thex-axis should be close toα.

m

m′

f

ℓ

m′ + w

α

Successful qir instance forN = 4

This idea leads to the following algorithm:
Having an additional integerN as input, subdivide
I (conceptually) byN + 1 equidistant grid points
(with distancew := w(I)

N
). Then, computem′,

the closest grid point tom, and evaluatef(m′).
Depending on its sign, evaluate the sign of either
the left or right neighboring grid point. If the sign
changes fromm′ to m′ ± w, choose it as new iso-
lating interval (this refines by a factor ofN ) and
setN to N2 for the next qir call. Otherwise, keep
I as isolating interval and setN to

√
N for the next call. IfN = 2, perform one

bisection step. See also Algorithm 1 for a pseudo-code description.
We assume thatN is initially set to4 for an isolating interval returned by a root

isolation algorithm, and that the methodQIR is always called with the parameterN that
has been returned in the previous call for the given interval.

Different from Abbott’s original formulation, a call of QIRdoes not necessarily
refine the isolating interval. However, in this case,N is decreased as a side effect, and
at the latest whenN = 2, the method will refine the interval eventually.

Definition 3.1. A qir call (J,N2) ←QIR(f ,I,N1) succeeds, if J ( I, and it fails, if
J = I. Equivalently, the qir calls succeeds, if and only ifN2 > N1.

For one qir call (successful or not), one has to perform onlyO(p) arithmetic op-
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Algorithm 2 Root isolation with refinement
1: procedure ISOLATE AND REFINE(f, ǫ)
2: I1, . . . , Is ← ISOLATE(f) ⊲ see Section 2
3: for k ∈ {1, . . . , s} do
4: N ← 4
5: while width(Ii) > ǫ do (Ii, N)← QIR(f, Ii, N)
6: end for
7: return I1, . . . , Is

8: end procedure

erations to evaluatef at m′ andm′ ± w, and perform another constant number of
arithmetic operations. The bitsize ofm′ andm′ ± w is bounded byO(log N + τ)
whereτ is the maximal bitsize ofc andd.

It is easy to see thatlog N ∈ O(τ), assuming that the qir is initially started with
N = 4: if a qir call with N > 4 subintervals is started, there must have been a
successful qir call for

√
N . Thus, the width of the interval is at most1√

N
, and the

bitsize of eitherc or d must be at leastlog
√

N = 1
2 log N .

After all, the cost of one qir call is thus bounded by

O(pM(σ + pτ)),

which is equal to the cost of one bisection step. We remark that one successful qir step
yields exactly the same result aslog N bisections, so that the isolating interval remains
of the form( a

2ℓ , a+1
2ℓ ) if the initial interval was of this type.

4 Analysis of Root Refinement

We prove the bound given in (1). For that, we analyze the complexity of this straight-
forward algorithm: ApplyQIR to each isolating interval until its width falls belowǫ
(Algorithm 2).

Definition 4.1. Let α be a root off for which Step 2 of Algorithm 2 returned the
isolating intervalI0. Theqir sequence(s0, . . . , sn) for α, is defined as

s0 := (I0, 4) si := (Ii, Ni) := QIR(f, Ii−1, Ni−1) for i ≥ 1

whereIn is the first index such thatw(In) ≤ ǫ. We say thatsi−1
QIR→ si succeedsif

QIR(f, Ii−1, Ni−1) succeeds, and thatsi−1
QIR→ si fails otherwise.

The qir sequence forα is split into two subsequences, according to the valueMα

defined in the next lemma.Mα will turn out to be an upper bound for the width of
the isolating interval ofα that ensures quadratic convergence. We will prove this in
Section 4.2, but we already show two simple properties ofMα.

Lemma 4.2. Let α ∈ C be a rootα of f . We define

Mα :=
|f ′(α)|

2ep32σ max{|α|, 1}p−1

with e ≈ 2.718. It holds that
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1. 0 < Mα < 1
p

2. Letµ ∈ C be such that|α− µ| < Mα. Then

Mα <
|f ′(α)|

2|f ′′(µ)| .

Proof. We bound|f ′(α)| from above by the following

|f ′(α)| = |
p
∑

i=1

iaiα
i−1| ≤ p2σ

p−1
∑

i=0

max{|α|, 1}i ≤ p2σpmax{|α|, 1}p−1

which proves the first claim. For the second, we bound|f ′′(µ)| from above:

|f ′′(µ)| = |
p
∑

i=2

i(i−1)aiµ
i−2| ≤ p22σ

p−2
∑

i=0

max{|µ|, 1}i ≤ p22σ

p−2
∑

i=0

((1 + Mα)max{|α|, 1})i

≤ p32σ(1 + Mα)p−2 max{|α|, 1}p−2 < p32σ (1 +
1

p
)p

︸ ︷︷ ︸

<e

max{|α|, 1}p−1

This shows that

|f ′(α)|
2|f ′′(µ)| >

|f ′(α)|
2e · p32σ max{|α|, 1}p−1

= Mα

Definition 4.3. Let (s0, . . . , sn) be the qir sequence forα. Let k be the minimal index

such thatsk = (Ik, Nk)
QIR→ sk+1 succeeds, andw(Ik) ≤ Mα. We call the sequence

(s0, . . . , sk) the initial sequence, and(sk, . . . , sn) thequadratic sequence.

In other words, the quadratic sequence is the maximal qir sequence that only con-
tains intervals of size at mostMα, and starts with a successful qir step. In the next two
subsections, we will bound the cost of the initial sequence and the quadratic sequence
separately.

4.1 Cost of the initial sequence

Lemma 4.4. Let I be an isolating interval forα. The cost of the initial sequence ofα

is bounded by

Õ(p2(σ + log
1

Mα

)2)

Proof. Let nq be the number of qir calls untilI is refined such thatw(I) < Mα.
Likewise, letnb be the number of bisections that would be needed to refineI to size
Mα. Note thatnb = O(σ + log 1

Mα
).

A successful qir call for someN = 22i

yields the same accuracy as2i bisections,
and can only cause up toi + 1 subsequent failing qir calls before the next successful
qir call. With that argument, it follows thatnq ≤ 2nb, so the number of qir calls is in
O(σ + log 1

Mα
).

To bound the bitsizes, letNe be the value ofN in the last successful qir call of
the initial sequence. It holds thatlog Ne ≤ 2nb, since otherwise, the preceding qir
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call would have yielded as much accuracy aslog
√

Ne > nb bisections, and the initial
sequence would have stopped earlier. Hence, the width of thefinal interval is at least
Mα

Ne
, and the interval boundaries have bit complexity

log
Ne

Mα

≤ 2nb + log
1

Mα

= O(σ + log
1

Mα

)

Therefore, the bitsizes of the qir calls are bounded byO(p(σ+log 1
Mα

)), which proves
the claim.

It remains to bound the quantitylog 1
Mα

. We do this simultaneously for all real
roots of the polynomial, according to the following theorem.

Theorem 4.5. Let α1, . . . , αs be the real roots off . Then,
s∑

i=1

log
1

Mαi

= O(p(σ + log p)).

Proof. Recall that0 < Mα < 1 for each (complex) rootα, solog 1
Mα

> 0, and we can
bound:

s∑

i=1

log
1

Mαi

≤
p
∑

i=1

log
1

Mαi

= log

∏p
i=1 2e · p32σ max{|αi|, 1}p−1

|
∏p

i=1 f ′(αi)|

= p log(2e) + 3p log p + pσ + (p− 1) log

p
∏

i=1

max{|αi|, 1} − log |
p
∏

i=1

f ′(αi)|

For both occurring products, we can apply well-known boundsfrom Algebra. For the
first one, note that

Mea(f) := |ap|
p
∏

i=1

max{|αi|, 1}

is theMahler measureof f , and it holds that ([17, Lemma 4.14], [2, Prop.10.9])

Mea(f) ≤ ‖f‖2 ≤
√

p + 1 · ‖f‖∞ ≤
√

p + 1 · 2σ.

So,log
∏p

i=1 max{|αi|, 1} = log
(

1
|ap|Mea(f)

)

≤ log Mea(f) = O(log p + σ)

The second product is related to the resultant off andf ′ by the following iden-
tity [2, Thm.4.16], [17, Thm.6.15]

res(f, f ′) = ap−1
p

p
∏

i=1

f ′(αi).

In particular, the right hand side yields an integer. It follows

− log |
p
∏

i=1

f ′(αi)| = log |ap−1
p | − log | res(f, f ′)

︸ ︷︷ ︸

≥1

| < (p− 1) log |ap| = O(pσ).

Finally, we can estimate
s∑

i=1

log
1

Mαi

≤ O(p(σ + log p)) + (p− 1) log

p
∏

i=1

max{|αi|, 1}
︸ ︷︷ ︸

=O(log p+σ)

− log |
p
∏

i=1

f ′(αi)|
︸ ︷︷ ︸

=O(pσ)

= O(p(σ + log p)).
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Corollary 4.6. The total computation cost for all initial sequences isÕ(p4σ2).

Proof. Combining Lemma 4.4 and Theorem 4.5, we get total costs of

Õ(

s∑

i=1

p2(σ + log
1

Mαi

)2) = Õ(p3σ2 + p2(

s∑

i=1

log
1

Mαi

)2) = Õ(p4σ2)

Corollary 4.6 shows that refining all isolating intervals towidth Mα does not in-
crease the complexity bound to the initial root isolation.

4.2 Cost of the quadratic sequence

In the initial sequence, we have assumed that the qir sequence behaves roughly as the
bisection method. As soon as the isolating interval becomessmaller thanMα, we can
prove thatN is squared in (almost) every step, which leads to quadratic convergence
of the interval width. We start with a simple criterion that guarantees a successful qir
call.

Lemma 4.7. Let I = (c, d) be an isolating interval ofα, with w(I) = δ, and consider
the qir callQIR(f ,I,N ) for someN . Let m := c + f(c)

f(c)−f(d) (d − c) be defined as in

the qir method (Algorithm 1). If|m− α| < δ
2N

, the qir call succeeds.

Proof. Recall thatI is conceptually subdivided intoN subintervals of same width, and
thatm′ is chosen as the grid point closest tom. Let J be the subinterval that contains
α, andJ ′ be the subinterval that containsm. If J = J ′, then one of the endpoints of
J ′ is chosen asm′, so the qir call succeeds. IfJ 6= J ′, they must be adjacent, since
otherwise,|m − α| > δ

N
. W.l.o.g., assume thatm < α, thenm must be in the right

half of J , because otherwise|m − α| > δ
2N

. Thus,m′ is chosen as the right endpoint
of J ′ which is the left endpoint ofJ . Therefore, the qir call succeeds.

We need to investigate the distance between the interpolation pointm and the root
α. The next theorem shows that this distance depends quadratically on the width of the
isolating interval, once it is smaller thanMα. This is basically analogous to Newton’s
iteration, for which a similar theorem is shown.

Theorem 4.8. Let (c, d) be an isolating interval forα of width δ < Mα. Then|m −
α| < δ2

2Mα
.

Proof. We consider the Taylor expansion off atα. For a givenx ∈ [c, d], we have

f(x) = f ′(α)(x− α) +
1

2
f ′′(α̃)(x− α)2

with someα̃ ∈ [x, α] or [α, x]. Thus, we can simplify

|m− α| =

∣
∣
∣
∣

f(d)(c− α)− f(c)(d− α)

f(d)− f(c)

∣
∣
∣
∣

=

∣
∣
∣
∣

1
2 (f ′′(α̃1)(d− α)2(c− α)− f ′′(α̃2)(c− α)2(d− α))

f(d)− f(c)

∣
∣
∣
∣

≤ 1

2
|d− α||c− α| · |f

′′(α̃1)|(d− α) + |f ′′(α̃2)|(α− c)

|f(d)− f(c)|
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≤ 1

2
δ2 max{|f ′′(α̃1)|, |f ′′(α̃2)|}

(d− α) + (α− c)

|f(d)− f(c)|

=
δ2 max{|f ′′(α̃1)|, |f ′′(α̃2)|}

2|f ′(ν)|

for someν ∈ (c, d). The Taylor expansion off ′ yieldsf ′(ν) = f ′(α) + f ′′(ν̃)(ν −α)
with ν̃ ∈ (c, d). Sinceδ ≤Mα, it follows with Lemma 4.2

|f ′′(ν̃)(ν − α)| ≤ |f ′′(ν̃)|Mα ≤
1

2
|f ′(α)|.

Therefore|f ′(ν)| > 1
2 |f ′(α)|, and it follows again with Lemma 4.2 that

|m− α| ≤ δ2 max{|f ′′(α̃1)|, |f ′′(α̃2)|}
|f ′(α)| =

δ2

2 |f ′(α)|
2 max{|f ′′(α̃1)|,|f ′′(α̃2)|}

<
δ2

2Mα

We apply this theorem on the quadratic sequence.

Corollary 4.9. Let Ij be an isolating interval forα of width δj ≤ 1
Nj

Mα. Then, each

call of the qir sequence(Ij , Nj)
QIR→ (Ij+1, Nj+1)

QIR→ . . . succeeds.

Proof. We do induction oni. Assume (fori ≥ 0) that the firsti calls succeeded. Then,
it is easily shown thatδj+i := w(Ij+i) =

Njδj

Nj+i
< Mα

Nj+i
(by another induction, and

exploiting thatN2
j+i = Nj+i+1). Using Theorem 4.8, we have that

|m− α| ≤ δ2
j+i

1

2Mα

≤ δj+i

Mα

Nj+i

1

2Mα

=
1

2

δj+i

Nj+i

By Proposition 4.7, this is enough to guarantee success for the qir method.

Corollary 4.10. In the quadratic sequence, there is at most one failing qir call.

Proof. Let (Ii, Ni)
QIR→ (Ii+1, Ni+1) be the first failing qir call in the quadratic se-

quence. Since the quadratic sequence starts with a successful qir call, the predecessor

(Ii−1, Ni−1)
QIR→ (Ii, Ni) is also part of quadratic sequence, and succeeds. Thus we

have the sequence

(Ii−1, Ni−1)

Sucess
QIR→ (Ii, Ni)

Fail
QIR→ (Ii+1, Ni+1)

QIR→ . . . .

One observes thatw(Ii+1) = w(Ii) = w(Ii−1)
Ni−1

≤ Mα

Ni−1
, and Ni+1 =

√
Ni =

√

N2
i−1 = Ni−1. By Corollary 4.9, all further qir calls succeed.

If the quadratic sequence starts with a bisection (i.e.,N = 2 initially), no failing
qir call occurs. Otherwise, the single failing step is due tothe fact that the quadratic
sequence might start with a too big value ofN , just because the algorithm was “too
lucky” during the initial sequence.

Let (Ii−1, Ni−1)
QIR→ (Ii, Ni) be the failing qir call in the quadratic sequence.

Sincew(Ii+k) = Niw(Ii)
Ni+k

by the proof of Corollary 4.10, it follows that

w(Ii+k+1) =
w(Ii+k)2

Nk · w(Ik)
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for any k ≥ 0. That means, the interval width decreases quadratically ineach step
(up to the constantNk · w(Ik)) which ultimately justifies the term “quadratic” in the
Quadratic Interval Refinement method (the idea of our exposition was already sketched
in Abbott’s original work [1]).

Lemma 4.11. The number of bit operations in the quadratic sequence of a root α is
bounded by

Õ(p2 log L(σ + log
1

Mα

) + p2L).

Proof. By Corollary 4.10, the quadratic sequence consists of at most log L+1 qir calls,
sinceN is doubled in each step, except the possible failing step. The bitsize in the first
qir call of the sequence isO(p(σ + log 1

Mα
)), and increases by at most2i after thei-th

iteration. Therefore, the complexity of the quadratic sequence is given by

O

(
log L+1
∑

i=1

p ·M(p(σ + log
1

Mα

+ 2i))

)

= Õ

(

p2

log L+1
∑

i=1

σ + log
1

Mα

+ 2i

)

= Õ

(

p2 log L(σ + log
1

Mα

) + p2

log L+1
∑

i=1

2i)

)

= Õ(p2 log L(σ + log
1

Mα

) + p2L)

Corollary 4.12. The total cost of all quadratic sequences for the real rootsα1, . . . , αs

of f is bounded by
Õ(p3σ log L + p3L).

Proof. We combine Lemma 4.11 and Theorem 4.5 to obtain

s∑

i=1

Õ(p2 log L(σ + log
1

Mα

) + p2L) = Õ(p3σ log L + p2 log L

s∑

i=1

log
1

Mα

︸ ︷︷ ︸

=O(p(σ+log p))

+p3L)

Combining the cost for root isolation (Theorem 2.1) with thecost of the initial
sequences (Corollary 4.6) and the cost of the quadratic sequences (Corollary 4.12)
proves the main result:

Theorem 4.13. Isolating the real roots off , and computing an isolating interval of
width at mostǫ for each root using Algorithm 2 requires

Õ(p4σ2 + p3(L + σ log L)) = Õ(p4σ2 + p3L)

bit operations.

Proof. We only have to argue why the summandp3σ log L can never dominate the
other two. Ifp4σ2 was dominated byp3σ log L, log L would dominatedpσ, and in
particularL would dominate2σ. If alsop3L was dominated byp3σ log L, then L

log L
is

dominated byσ, soL is dominated byσ1+γ for anyγ > 0. Contradiction.
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If only one isolating interval is refined, our method shows a complexity ofÕ(p4σ2+
p2L), and thus only a partial improvement (even without considering the initial root
isolation step). The reason is that we are not aware of an improved bound for the initial
sequence of a singleα compared to what we prove in Theorem 4.5.

From a theoretical point of view, we do not expect significantimprovements when
using any other quadratic convergent method than qir: the first summandp4σ2 of The-
orem 4.13 appears due to root isolation, and the summandp3L seems to be unavoidable
as well, since for each root, one has to perform at least one evaluation off for a ratio-
nal number of bitsizeO(L), which leads toO(n) arithmetic operations with integer of
bitsize up toÕ(nL).

5 Conclusions and Further Work

Theorem 4.13 shows that refining all real roots of a polynomial to width ǫ is as complex
as just isolating the roots, provided thatlog ǫ−1 = Õ(pσ2). We believe this result to
be of general interest for algorithm dealing with real algebraic numbers. For instance,
the usage of qir instead of naive bisection removes the asymptotic bottleneck in the
topology computation algorithm presented in [11]; this is currently work in progress.

On the practical side, we have argued that qir has a more adaptive behavior than
a combination of bisection and Newton’s method, since the switch from linear to
quadratic convergence happens without a “manual” control from outside. Abbott’s
work [1] has already shown that qir is competitive to Newton’s method in a different
context. However, a comparison to other hybrid approaches like Brent’s method is still
missing.

Acknowledgements:The author would like to thank Tobias Gärtner, Kurt Mehlhorn,
Michael Sagraloff and Vikram Sharma for valuable discussions,
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