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Introduction A standard technique to process non-linear curves and surfaces in geometric systems is to approxi-
mate them in terms of a piecewise linear object (a simplicialcomplex). A main goal is to preserve the topological
properties of the input objects. Furthermore, geometric properties, such as the position of “critical” points of the
object, are often of interest. For algebraic curves and surfaces as inputs, the former problem is usually calledtopology
computation, the lattertopological-geometric analysisof the object. Efficient techniques for curves (e.g, see [4][5],
and references therein) and surfaces [2, 1] have been presented.

In few words, we consider the following question:How many line segments/triangles are needed to approximate
a real algebraic curve/surface of degree n?For curves, we are able to give sharp bounds: for a topological correct
representation,Ω(n2) line segments are needed in the worst case, and we give an algorithm producingO(n2) line
segments for all cases. Although the idea is simple, it seemingly does not appear in the literature yet. For geometric-
topological representations, we construct a class of curves such thatΩ(n3) line segments are necessary. This proves
that thecylindrical algebraic decomposition[3] (“Find the critical x-coordinates of the curve; compute the fiber at
these coordinates and at separating points in between; connect the fiber points by straight-line segments.” – compare
the pictures on the next page) is asymptotically optimal. This is surprising, because the vertical decomposition
strategy seems to introduce much more line segments than actually necessary.

For surfaces, we still have gaps between lower and upper bounds. For the topological approximation, we get a
lower bound ofΩ(n3), and an upper bound ofO(n5) triangles. For the geometric-topological approximation,the
bounds areΩ(n4) andO(n7).

A detailed version of this extended abstract will appear in the phd thesis of the first author [6].

Basics A homeomorphismbetween two setsX,Y ⊂ Rd is a bijective, continuous maph : X → Y whose inverse is
continuous as well.X andY are isotopic, if they are “connected by homeomorphism”, that means, there exists a
continuous mapψ : [0,1]×X → Rd such thatψ(0,x) = idX, ψ(1,X) = Y, andψ(t0,x) is a homeomorphism for any
t0 ∈ [0,1]. ψ is called theisotopybetweenX andY. We assume that the reader is familiar with the definition of
a simplicial complex. We assume that the complex is embeddedinto Rd by fixing its vertices, and we identify the
complex and the induced point set.

An algebraic hypersurfaceO (over Q) in Rd is the solution set of an equationf = 0 with f ∈ Q[x1, . . . ,xd].
Hypersurfaces in dimensions 2 and 3 are calledalgebraic curvesandalgebraic surface, respectively. Thedegreeof
O is defined by the total degree off . An isolated point p∈ Rd is a point onO, such that an open neighborhood of
p in Rd does not contain any further point ofO. An isocomplexof O is a simplicial complexS that is isotopic toO.
A stable isocomplexis an isocomplex that is stable at vertices, that means, there exists an isotopyψ betweenO and
Ssuch that for each vertexv of S, ψ(t0,v) = v for anyt ∈ [0,1]. Computing the topology ofO means to compute an
isocomplex, computing a geometric-topological analysis means to compute a stable isocomplex.

Our main idea for deriving lower bounds is to construct algebraic hypersurfaces with many isolated points. We
can even fix the position of each isolated point, up to a ball ofarbitrary small radius.

Theorem 1. For d,n∈N, set c:=
(⌊n/2⌋+d

d

)

−d. Then, for anyε > 0, and any set of points p1, . . . , pc ∈Qd, there exists
a hypersurfaceO ⊂Rd of degree n, such that for any pi , O contains a (rational) isolated point p′i with ‖pi − p′i‖2 < ε.

Proof. Choose the pointsp′1, . . . , p′c in generic position,p′i in an ε-ball aroundpi , such that the hypersurfaces of
degree⌊n/2⌋ through these points define a variety of dimensiond−1 or larger. Pickd hypersurfaces with equations
f1, . . . , fd that form a complete intersection, and defineO by the equationf 2

1 + . . .+ f 2
d = 0.

We will considerd as a constant (d = 2 or d = 3). Then the theorem states that we can chooseΘ(nd) arbitrary
rational points and construct an algebraic curve/surface of degreen with isolated points close to them.
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Bounds on stable isocomplexes Best upper bounds we are aware of are given
by cylindrical algebraic decomposition:O(n3) cells for curves,O(n7) cells for sur-
faces [2]. We construct lower bounds based on Theorem 1. In 2D, we consider a set of
Θ(n) distinct circles around the origin, all of radius close to one. We fixΘ(n2) many
isolated points close to the boundary of the circle, as illustrated in the right figure. The
curve is defined by the union of the circles and the isolated points. In the isocomplex,
the polyline of the circles have to perform a “slalom” aroundthe vertices in order to
ensure topological correctness. Thus, each of the circles must be subdivided in at least
Ω(n2) many line segments, which proves the lower bound ofΩ(n3). In 3D, the idea is
similar, consideringΘ(n) many “almost-unit” spheres andΘ(n3) isolated points close
to the boundary of these spheres. Each sphere is divided in atleastΩ(n3) triangles. This proves a lower bound
Ω(n4). Irreducible worst-case curve and surfaces can be obtainedby constructing two coprime objects as above, and
summing up their equations.
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cad of the curve

simplification

induced isocomplex

Bounds on general isocomplexes Without stability requirement, the lower bounds of
Ω(nd) are immediate with Theorem 1 (or also by intersectingn hyperplanes in generic
position).

For the upper bound in 2D, we consider the isocomplex returned by a cad algorithm.
It returnsO(n2) many fibers of the curves (with respect to some projection direction), and
connects the fiber points by straight-line segments. Since any fiber has at mostn points,
the complexity isO(n3). We can assume that no segment is vertical, and consider the
complex as a directed graph from left to right. We re-embed the graph into the plane
with the following rules. (1) Each vertex remains the samex-coordinate, and the vertical
ordering of the vertices at the samex-coordinate remains unchanged. (2) Each edge from
a vertex of in-degree 1 to another vertex of in-degree 1 must be horizontal.

Properties (1) ensures that the result is isotopic to the original complex. A complex
with properties (1) and (2) can be computed by a simple plane sweep algorithm. Ver-
tices adjacent to exactly two horizontal edges are removed afterwards, and the edges
are merged. LetCh denote this new complex. By construction, any maximal smooth
x-monotone segment of the curve is represented by a polyline in Ch with two bends, run-
ning horizontal between the two bends. The number of edges isthus at most three times
the number of segments of the curve that leave a critical point. Their number can be
bounded byO(n2), thus the complexity ofCh is alsoO(n2).

For the 3D case, we consider a cad of the surface, and apply the just described algo-
rithm on the projected silhouette of the surface, which is a planar curve of degreeO(n2).
This yields an isocomplex withO(n4) cells in the projection plane.Ch is then extended to
a triangulation ofR2 with O(n4) triangles, using a trapezoidal map. Each triangle is lifted
according to the adjacency relations of the surface, producing at mostn lifts per triangle
in the plane. This yields a triangulation withO(n5) cells.

Open problems We believe that the just describedO(n5) triangulation is not optimal. It
might be possible to improve it by a method not based on projection. In general, closing
the gaps in 3D would be interesting as well as a generalization into higherdimensions.
Moreover, the bitsize of the defining polynomials should be taken into account in the bounds.
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