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Introduction A standard technique to process non-linear curves andcasrfa geometric systems is to approxi-
mate them in terms of a piecewise linear object (a simpliciahplex). A main goal is to preserve the topological
properties of the input objects. Furthermore, geometriperties, such as the position of “critical” points of the
object, are often of interest. For algebraic curves andsed as inputs, the former problem is usually caibgmblogy
computationthe lattertopological-geometric analysisf the object. Efficient techniques for curves (e.g, see4][
and references therein) and surfaces [2, 1] have been pedsen

In few words, we consider the following questiddow many line segments/triangles are needed to approximate
a real algebraic curve/surface of degree ¥dr curves, we are able to give sharp bounds: for a topolbgaraect
representation2(n?) line segments are needed in the worst case, and we give anittaiggroducingO(n?) line
segments for all cases. Although the idea is simple, it segiyntdoes not appear in the literature yet. For geometric-
topological representations, we construct a class of susueh thaf)(n®) line segments are necessary. This proves
that thecylindrical algebraic decompositiof8] (“Find the critical x-coordinates of the curve; compute the fiber at
these coordinates and at separating points in betweengecbtire fiber points by straight-line segments.” — compare
the pictures on the next page) is asymptotically optimal.isTé surprising, because the vertical decomposition
strategy seems to introduce much more line segments thaallgatecessary.

For surfaces, we still have gaps between lower and upperdsouror the topological approximation, we get a
lower bound ofQ(n%), and an upper bound @(n°) triangles. For the geometric-topological approximatitig
bounds ar&(n*) andO(n’).

A detailed version of this extended abstract will appeahéghd thesis of the first author [6].

Basics A homeomorphisrbetween two setX,Y ¢ RY is a bijective, continuous map: X — Y whose inverse is
continuous as wellX andY areisotopig if they are “connected by homeomorphism”, that means getlegists a
continuous mag : [0,1] x X — RY such thatp(0,x) = idx, ¢(1,X) =Y, andy(to,x) is a homeomorphism for any
to € [0,1]. ¢ is called theisotopybetweenX andY. We assume that the reader is familiar with the definition of
a simplicial complex. We assume that the complex is embeiddedR? by fixing its vertices, and we identify the
complex and the induced point set.

An algebraic hypersurface (over Q) in RY is the solution set of an equatidn= 0 with f € Q[xy,...,Xg].
Hypersurfaces in dimensions 2 and 3 are cadliggbbraic curvesandalgebraic surfacerespectively. Thelegreeof
0 is defined by the total degree 6f An isolated point p RY is a point on¢, such that an open neighborhood of
pin RY does not contain any further point 6f. An isocompleof ¢ is a simplicial complexSthat is isotopic ta7.
A stable isocompleis an isocomplex that is stable at vertices, that meansg #isdsts an isotopy betweens’ and
Ssuch that for each vertexof S, (to,v) = v for anyt € [0, 1]. Computing the topology of’ means to compute an
isocomplex, computing a geometric-topological analyséans to compute a stable isocomplex.

Our main idea for deriving lower bounds is to construct atgebhypersurfaces with many isolated points. We
can even fix the position of each isolated point, up to a badrbitrary small radius.

Theorem 1. Ford,n€ N, setc= (WﬁJ*d) —d. Then, for ang > 0, and any set of pointsyp.. ., pc € Q9, there exists
a hypersurface&’ c RY of degree n, such that for any, @ contains a (rational) isolated point vith || pi — pi|l2 < €.

Proof. Choose the pointg},..., p; in generic positionp/ in an e-ball aroundp;, such that the hypersurfaces of
degree|n/2| through these points define a variety of dimensionl or larger. Picld hypersurfaces with equations
fa,..., fq that form a complete intersection, and defifidy the equatiorf? + ...+ f2 = 0. O

We will considerd as a constanid(= 2 ord = 3). Then the theorem states that we can cha@®g¥) arbitrary
rational points and construct an algebraic curve/surfadegreen with isolated points close to them.



Bounds on stable isocomplexes Best upper bounds we are aware of are given )

by cylindrical algebraic decompositio®(n®) cells for curvesO(n’) cells for sur-

faces [2]. We construct lower bounds based on Theorem 1ID)m2 consider a set of

O(n) distinct circles around the origin, all of radius close t@okVe fix®(n?) many

isolated points close to the boundary of the circle, astifisd in the right figure. The

curve is defined by the union of the circles and the isolatédtpoln the isocomplex,

the polyline of the circles have to perform a “slalom” arouhd vertices in order to

ensure topological correctness. Thus, each of the circles be subdivided in at least

Q(n?) many line segments, which proves the lower boun@@f®). In 3D, the idea is

similar, considering®(n) many “almost-unit” spheres ar@(n®) isolated points close

to the boundary of these spheres. Each sphere is dividedl@astQ(n®) triangles. This proves a lower bound
Q(n*). Irreducible worst-case curve and surfaces can be obtaipednstructing two coprime objects as above, and
summing up their equations.

Bounds on general isocomplexes Without stability requirement, the lower bounds of [ | || | | [ || []]
Q(nd) are immediate with Theorem 1 (or also by intersectinigyperplanes in generic | |
position). |

For the upper bound inl2, we consider the isocomplex returned by a cad algorithy
It returnsO(n?) many fibers of the curves (with respect to some projecticection), and
connects the fiber points by straight-line segments. Singdiber has at mogt points, |
the complexity isO(n®). We can assume that no segment is vertical, and consider,th i
complex as a directed graph from left to right. We re-embedgfaph into the plane = = .
with the following rules. (1) Each vertex remains the saamoordinate, and the vertical 5 of the curve
ordering of the vertices at the sameoordinate remains unchanged. (2) Each edge frﬁ)rﬂ IR
a vertex of in-degree 1 to another vertex of in-degree 1 maistdnizontal.

Properties (1) ensures that the result is isotopic to thgirai complex. A complex ! I
with properties (1) and (2) can be computed by a simple plaveep algorithm. Ver- |
tices adjacent to exactly two horizontal edges are remo¥eivwards, and the edge
are merged. Le%, denote this new complex. By construction, any maximal shnocr
x-monotone segment of the curve is represented by a polyli#g with two bends, run-
ning horizontal between the two bends. The number of edgisissat most three times! | | I
the number of segments of the curve that leave a criticaltpolimeir number can be 't 11 1 1+ 111101
bounded byO(n?), thus the complexity 0%, is alsoO(n?). induced isocomplex

For the D case, we consider a cad of the surface, and apply the justldedalgo- 1|1 | | || ] ||
rithm on the projected silhouette of the surface, which isaagr curve of degre®(n?). T T T 17111
This yields an isocomplex wit®(n*) cells in the projection plane, is then extended to
a triangulation ofR? with O(n*) triangles, using a trapezoidal map. Each triangle is lift 81‘ | m A\

according to the adjacency relations of the surface, pioduat mostn lifts per triangle 1/1 | I 1
in the plane. This yields a triangulation wi®(n°) cells. I i/l

Open problems We believe that the just describ@{n®) triangulation is not optimal. It | H—+———++++t|
might be possible to improve it by a method not based on ptiojecln general, closing 111 11 1 1
the gaps in B would be interesting as well as a generalization into higtierensions. simplification
Moreover, the bitsize of the defining polynomials shoulddiesh into account in the bounds.
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