
A Note on the Complexity of Real Algebraic Hypersurfaces

Michael Kerber1, Michael Sagraloff2

1 IST (Institute of Science and Technology) Austria, 3400 Klosterneuburg, Austria
2 Max-Planck-Institute for Informatics, 66123 Saarbrücken, Germany

Abstract. Given an algebraic hypersurfaceO in Rd, how many simplices are necessary for a simplicial
complex isotopic toO? We address this problem and the variant where all vertices of the complexmust lie
on O. We give asymptotically tight worst-case bounds for algebraic plane curves. Our results gradually
improve known bounds in higher dimensions; however, the question for tight bounds remains unsolved
for d ≥ 3.
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1. Introduction

A standard technique to process non-linear curves and surfaces in geometric systems is to ap-
proximate them in terms of a piecewise linear object (a simplicial complex). A main goal is to
preserve the topological properties of the input. Furthermore, geometric properties, such as the
position of singular or “extremal” points of the object are often of interest. For algebraic curves
and surfaces as inputs, the former problem is usually calledtopology computation, the latter
topological-geometric analysisof the object.1

We consider the following question:How many simplices are needed to embed a simpli-
cial complex inRd that is isotopic to a real algebraic hypersurface inRd of degree n?Our
main contribution is to provide sharp bounds for the planar case (d = 2): for a topologically
correct representation,Ω(n2) line segments are needed in the worst case, and we give an al-
gorithm producingO(n2) line segments for all cases. Although the idea is simple, it seemingly
does not appear in the literature yet. For geometric-topological representations, we construct a
class of curves such thatΩ(n3) line segments are necessary. This proves that thecylindrical
algebraic decomposition[8] (“Find the criticalx-coordinates of the curve; compute the fiber at
these coordinates and at separating points in between; connect the fiber points by straight-line
segments.” – compare Fig. 2) is asymptotically optimal. This is surprising because the vertical
decomposition strategy seems to introduce much more line segments than actually necessary.

Our results can be partially generalized in higher dimensions. This allows a gradual im-
provement of lower and upper bounds that can be derived easily from cylindrical algebraic
decomposition. Nevertheless, our bounds fail to be tight already for algebraic surfaces: For
the topological approximation, we get a lower bound ofΩ(n3) and an upper bound ofO(n5)

1 all terms will be formally defined in Section 2
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triangles. For the geometric-topological approximation,the bounds areΩ(n4) andO(n7), re-
spectively. These gaps increase in higher dimensions because the lower bounds grow single
exponentially in the dimension, whereas the upper bounds grow double exponentially.

Related work: Efficient techniques for topology computation of algebraiccurves (e.g, see [9,
12], and references therein) and surfaces [4,1] have been presented in case where the defining
polynomial f has integer coefficients. For the planar case, the complexity of the problem has
been upper bounded byO(N12) [11,14], whereN is defined as the maximum of the degree of
f and the bitsize of its coefficients. However, our question ofhow many segment/triangles are
needed in principal to capture the topology of the object seems to be untreated in this context.

We remark that similar problems have been extensively studied for 2-manifolds. For in-
stance, Nakamoto and Ota [16] show that any closed compact 2-manifold of genusg can be
triangulated usingΘ(g) vertices. An often discussed concept in this context is anirreducible
triangulation of a 2-manifold, that is, a triangulation where no edge can becontracted with-
out changing the topology. It has been shown that only finitely many irreducible triangulations
exist [2], and they have been enumerated explicitly for the torus [15]. Although these results
aim in a somewhat similar direction, algebraic surfaces arein general not 2-manifolds and need
different techniques to be analyzed.

2. Basic notation and definitions

A homeomorphismbetween two setsX,Y ⊂ Rd is a bijective, continuous maph : X →Y whose
inverse is continuous as well.X andY areisotopicif they are “connected by homeomorphism”,
that is, there exists a continuous mapψ : [0,1]×X → Rd such thatψ(0, ·) = idx, ψ(1,X) = Y,
and ψ(t0,x) : X → ψ(t0,X) is a homeomorphism for anyt0 ∈ [0,1]. ψ is called anisotopy
betweenX andY; see also [7,6] for more details. We assume that the reader isfamiliar with
the definition of a simplicial complex. We only considerd-dimensional complexes that are
embedded inRd by fixing their vertices, and we identify the complex and the induced point set.

A (real) algebraic hypersurfaceO in Rd is the (real) solution set of an equationf = 0 with
f ∈ R[x1, . . . ,xd]. We also denote the realvanishing setof a polynomial f by V( f ) := {x ∈
Rd : f (x) = 0}. Hypersurfaces in dimensions 2 and 3 are calledalgebraic curvesandalgebraic
surfaces, respectively. Thedegreeof O is defined by the degree off . An isolated point p∈ Rd

is a point onO such that an open neighborhood ofp in Rd does not contain any further point
of O.

For a compact hypersurfaceO ⊂ Rd, we call anisocomplexof O to be a simplicial complex
S⊂ Rd that is isotopic toO. We call astable isocomplexto be an isocomplex that is stable at
vertices, that is, there exists an isotopyψ betweenO andS such that for each vertexv of S,
ψ(t,v) = v for any t ∈ [0,1]. Computing the topology ofO means to compute an isocomplex,
computing a geometric-topological analysis means to compute a stable isocomplex.

For unbounded hypersurfaces, one can define a (stable) isocomplex with respect to a compact
regionC to be a complex isotopic toO ∩C. For simplicity, we restrict to the case of compact
hypersurfaces in this work; however, the obtained bounds also hold for hypersurfaces restricted
to any axis-aligned bounding box inRd.
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3. Bounds for algebraic plane curves

3.1. Stable isocomplexes

Our main idea for deriving lower bounds is to construct algebraic hypersurfaces with many
isolated points. We can even fix the location of each isolatedpoint to a ball of arbitrary small
radius.

Theorem 1.For d,n ∈ N, set c:=
(⌊n/2⌋+d

d

)

− d. Then, for anyε > 0, and any set of points
p1, . . . , pc ∈ Q

d, there exists a hypersurface C⊂ Rd of degree n such that for any pi, C contains
an isolated point p′i ∈ R

d with ‖pi − p′i‖2 < ε.

Proof. The idea is to constructd polynomialsf1, . . . , fd of degree⌊n/2⌋ that all interpolate the
points p1, . . . , pc, and to consider the hypersurface defined byf := f 2

1 + . . . + f 2
d . Obviously,

degf ≤ n, andV( f ) = V( f1)∩ . . .∩V( fd). If V( f ) is zero-dimensional (that means, contains
only finitely many isolated points), the theorem is proven. However, for certainp1, . . . , pc, V( f )
is not zero-dimensional for any choice of interpolation polynomials f1, . . . , fn; the remainder of
the proof argues that we can always use the described construction after a small perturbation of
the initial points.

Firstly, almost all choices ofd hypersurfacesg1, . . . ,gd in Rd (of degree⌊n/2⌋) yield a zero-
dimensional intersection: consider the coefficients of thepolynomials as indeterminates, then
the (multivariate) resultantRg [10] with respect to any variable, sayx1, is a polynomial inx1 that
does not vanish identically (we writeRg because the resultant is parameterized ing1, . . . ,gd).

We next considerc pointsq1, . . . ,qc in Cd with indeterminate coordinates. We forced hy-
persurfaces, each of degree⌊n/2⌋, with indeterminate coefficients to pass through them. As a
consequence, each coefficient can be re-expressed in dependency of the coordinates of theqi ,
plus additional degrees of freedom. The same also holds truefor the coefficient of the resultant
polynomialRq of these hyperplanes (we writeRq because the resultant is parametrized in the
pointsq1, . . . ,qc). We will show next thatRq does not vanish identically by showing that it does
not vanish for at least one concrete choice ofq1, . . . ,qc.

The degree ofRg is ⌊n/2⌋d. Choosed hypersurfacesg1, . . . ,gd such that the leading term
of Rg does not vanish. Then, there exist (cf. [13] for a refined version of Bézout’s Theorem)
⌊n/2⌋d intersection points in the projective spaceP(Cd) (counted with multiplicities), and we
can w.l.o.g. assume that all these points are distinct and lie in the affine spaceCd. It is a simple
proof that⌊n/2⌋d ≥ c =

(⌊n/2⌋+d
d

)

for all n,d ∈ N (by induction ond). So, we can pickc of
the common intersection points to take the role of the pointsq1, . . . ,qc from above, and set the
other degrees of freedom such that we obtaing1, . . . ,gd. With this choice,Rq = Rg 6= 0, thus,
Rq defines a lower-dimensional variety inCd. It follows thatRq does not vanish for almost any
choice of base pointsq1, . . . ,qc.

Thus, for given pointsp1, . . . , pc ∈ Q
d, we find pointsp′1, . . . , p′c in an ε-ball around them

such that there are hypersurfacesf1, . . . , fd interpolating them and such that the resultant of
f1, . . . , fd does not vanish identically. It remains to argue thatp′1, . . . , p′c can be chosen with real
coordinates, but this follows immediately, since otherwise, the resultant variety would contain
an open ball ofRd, and consequently, it would contain the wholeRd, which is impossible.

For constantd, the theorem says that we can chooseΘ(nd) arbitrary rational points and
construct an algebraic hypersurface of degreen with isolated points close to them.

Theorem 2.There exists an algebraic curveO ⊂R2 of degree n such that any stable isocomplex
for O hasΩ(n3) vertices.
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Fig. 1. Illustration of the construction in the proof of Theorem 2

Proof. We prove the claim by constructing a suitable curveO. Assume first that the unit circle
is a component ofO. Any isocomplex ofO must contain a sequence of points on the unit
circle which forms a cycle in the complex. We cut outc′ :=

(⌊n/4⌋+2
2

)

−2 disjoint regions of
the unit disc by intersecting the disc withc′ different lines. We place a disc of sizeε in each of
the regions and force an isolated point of the curveO to lie inside each disc (Fig. 1 left). By
Theorem 1, this is possible ifO is of degree at leastn/2.

The isotopic cycle for the unit circle component contains a vertex in each of the regions: If
there is no such vertex, the cycle misses the region completely, so the isolated point is outside
the cycle, contradicting the properties of a stable isocomplex (Fig. 1 middle). Hence, at least
c′ = Ω(n2) vertices are placed on the unit circle.

Finally, we take a collection ofn/4 concentric circles to be part ofO (instead of just the unit
circle) such that the lines chosen as above still cut outc′ disjoint regions for any of the circles
(Fig. 1 right). This is clearly possible if all concentric circles have radius close enough to 1. The
argument from above now works separately for each of the circles, thus, each one is divided
into Ω(n2) line segments under the isotopy.

To summarize, the final curve consists of two components: onecurve of degreen/2 that
forces the isolated singularities in the regions and a collection of n/4 circles (of total degree
n/2). The union is of degreen, and any stable isocomplex requiresΩ(n2) vertices per circle, so
Ω(n3) vertices are required in total.

The upper bound ofO(n3) vertices follows immediately from standard theory of algebraic
curves and cylindrical algebraic decomposition [8].

Lemma 1.For any algebraic curveO ⊂ R2 of degree n, there exists a stable isocomplex with
O(n3) cells.

Proof. An algebraic curveO of degreen has up ton(n−1) x-critical pointsp, that is, f (p) =
fy(p) = 0 by Bezout’s Theorem [13]. The projections of these points decompose thex-axes into
O(n2) delineable sets. This means that the fiber above each cell in the decomposition consists
of finitely many (at mostn) function graphs. Inserting points in between two consecutive pro-
jections and lifting each of the points in one dimension leads to a stable isocomplex ofO with
O(n3) points. See also Figure 2.

3.2. General Isocomplexes

We next remove the stability requirement on the isocomplex.Considering an arrangement of
n lines in generic position, we observe that each pair intersect in a point. The union ofn lines
defines an algebraic curve of degreen with

(n
2

)

singularities. It follows:
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Fig. 2. Illustration of the construction in Lemma 1.

Proposition 1.For any n∈N, there exists an algebraic curveO ⊂ R2 of degree n such that any
isocomplex forO hasΩ(n2) vertices.

In order to establish the upper bound ofO(n2) for isocomplexes of algebraic curves, we
show first that an algebraic curve decomposes into up toO(n2) points and smooth,x-monotone
segments.

Definition 1. Let O ⊂ R2 be an algebraic curve without vertical segments. For a point p∈ R2,
the branch numbersof p are a pair of integers(ℓp, rp) denoting the number of paths of the
curve entering from the left hand side and from the right handside, respectively. A point is
calledevent pointif its branch numbers do not equal(1,1).

Lemma 2.For an event point p, we set bp the sum of its branch numbers. Then, the sum of the
bp’s for all event points is bounded by2n(n−1).

Proof. For a pointp = (x0,y0) on an algebraic plane curveO = V( f ), we consider the Taylor
expansion

f (x,y) =
n

∑
i=0

(ai0(x−x0)
i +ai1(x−x0)

i−1(y−y0)+ . . .+aii (y−y0)
i)

of f at p. The smallesti such that at least one of the coefficientsai j , 0≤ j ≤ i, differs from zero
is denoted themultiplicity mO(p) of O at p. From this definition, it follows thatO ′ :=V( fy) has
multiplicity mO ′(p) ≥ mO(p)−1 at p. Furthermore, theintersection multiplicityint(O1,O2, p)
of two algebraic curvesO1 = V( f ) andO2 = V(g) at a pointp∈ C2 is defined as the dimen-
sion of the vector spaceC[x,y]p/( f ,g) whereC[x,y]p is the localization of the polynomial ring
C[x,y] at p [3]. It holds thatmO1(p) ·mO2(p) ≤ int(O1,O2, p) with equality occurring iff f
andg have no tangent line in common atp. Furthermore, due to B́ezout’s Theorem, the sum
∑p∈O1∩O2

int(O1,O2, p) of all intersection multiplicities is bounded by deg( f ) ·deg(g).
If p= (x0,y0) is not an intersection point ofO andO ′ :=V( fy), thenp is adjacent to exactly

two arcs ofO which are orthogonal to the gradient∇ f (p) = ( fx(p), fy(p)) at p. Thus, the
branch numbers forp are(1,1). An event pointp = (x0,y0) is an intersection point ofO and
O ′ and, hence, int(O,O ′, p) ≥ 1 for each event point. The arithmetic mean(ℓp + rp)/2 of the
two branch numbersℓp and rp at p constitutes a lower bound on the multiplicity ofO at p;
this follows from the fact that, for arbitrary smallε, there exists linesLx = V(x− x0 + εx) and
Ly =V(y−y0+εy), |εx|, |εy|< ε, that both intersectO in at least(ℓp+ rp)/2 points. This shows
that the first

⌈

(ℓp + rp)/2
⌉

−order terms of the Taylor expansion off at p vanish and, thus,

∑
p event point

(ℓp + rp) ≤ 2· ∑
p event point

mO(p) ≤ 2· ∑
p event point

mO(p) ·mO ′(p)

≤ 2· ∑
p∈O

int(O,O ′, p) ≤ 2n(n−1)
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Fig. 3.Starting with the stable isocomplex of sizeO(n3) we straighten edges which connect two non criti-
cal points. Finally adjacent straight line connections are removed. The size of the so obtained isocomplex
reduces to the number of arcs ofO connecting two critical points, that is,O(n2).

Theorem 3.For any algebraic curveO ⊂ R2 of degree n, there exists an isocomplex with O(n2)
simplices.

Proof. We consider the isocomplex returned by a cylindrical algebraic decomposition algo-
rithm. It returnsO(n2) many fibers of the curves (with respect to some projection direction)
and connects the fiber points by straight-line segments. Since any fiber has at mostn points, the
complexity isO(n3). We can assume that no segment is vertical and consider the complex as a
directed graph from left to right, with the fiber points as vertices. In particular, it makes sense
to talk about thein-degreeof a vertex as the number of edges that enter from the left handside.
We re-embed the graph into the plane with the following rules. (1) Each vertex remains at the
samex-coordinate, and the vertical ordering of the vertices at the samex-coordinate remains
unchanged. (2) Each edge from a vertex of in-degree 1 to another vertex of in-degree 1 must be
horizontal.

Properties (1) ensures that the result is isotopic to the original complex. A complex with
properties (1) and (2) can be computed by a simple plane sweepalgorithm (Fig. 3). Vertices
adjacent to exactly two horizontal edges are removed afterwards, and the edges are merged. Let
Ch denote this new complex. By construction, any maximal smoothx-monotone segment of the
curve is represented by a polyline inCh with two bends, running horizontally between the two
bends. The number of edges is thus at most three times the number of segments of the curve
that leave a critical point. Their number is be bounded byO(n2) according to Lemma 2 and,
thus, the complexity ofCh is alsoO(n2).

4. Higher dimensions

We show to what extent our results for curves can be generalized to higher dimensions. Through-
out this section, we considerd ≥ 2 to be a fixed constant – this yields bounds of the form
Ω /O(nh(d)) for some functionh in d. However, one should keep in mind that the constants
hidden in theO-notation depend ond. Furthermore, we still assume for simplicity that the
considered hypersurface is bounded in each coordinate.

Stable isocomplexes:The construction of Theorem 2 can be immediately transferedto arbi-
trary dimensions:

Theorem 4.For any n∈ N and d≥ 2, there exists an algebraic hypersurfaceO ⊂ Rd of degree
n such that any stable isocomplex forO hasΩ(nd+1) vertices.

Proof. We cut outΘ(nd) disjoint sections of the unitd-sphere and place an isolated point in
each region, using Theorem 1. A vertex on the unit sphere mustbe placed in each region to
ensure an isotopy. The bound follows by repeating the same argument onn/2 concentricd-
spheres of radius close to 1.
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Fig. 4. Illustration of Theorem 6 for a torus: The silhouetteOR is a plane curve consisting of 2 circles
(in red).OR and the fibers at critical points and points in between decompose the projected bounding box
BR into quadrilaterals. Inserting points at the boundary and the interior of each of these quadrilaterals
leads to a triangulationTR of BR. A subsetSR (in black, right figure) ofTR constitutes a stable isocomplex
for OR.

Also the upper bound construction can be generalized; however, the exponent increases ex-
ponentially withd. A similar construction idea has also been used in [3, Thm 5.43]. A detailed
description for the special case of 3 dimensions can be foundin [4].

Theorem 5.For a hypersurfaceO ⊂ Rd of degree n, there exists a stable isocomplex with
O(n2d−1) simplices.

We will prove the theorem by proving a stronger statement.

Theorem 6.Given an algebraic hypersurfaceO ⊂ Rd of degree n with axis-aligned bounding
box B. Then, there exist simplical complexes T and S⊂ T such that

– S is a stable isocomplex ofO

– T triangulates B
– T has O(n2d−1) simplices (and so has S)

Proof. We do induction on the dimensiond. In every dimension, we will first construct a stable
isocomplexS and extend it to a triangulationT of B in a second step without increasing the
complexity.

For d = 2, we construct a stable isocomplex as explained in Lemma 1. It consists ofO(n3)
simplices. Recall that in the construction, we have introducedO(n2) fibers, one for each critical
x-coordinate, and one in between two consecutive coordinates. On each fiber, we add a point
between two consecutive points on the fiber, and connect the point with its neighbors by a
vertical segment. This decomposes the bounding box into trapezoids which are bounded on top
and bottom by exactly one edge, and, on the left and right, by vertical segments (cf. Figure 3
and Figure 4). Summing up the number of vertical segments forall trapezoids in between two
consecutive fibers, we have at mostO(n) segments since, on each fiber, we introducedO(n)
points. We pick a pointp in the middle of a face and triangulate the face by connectingp with
every vertex on the boundary and adding triangles accordingly. Then, at mostO(n) triangles are
added for all trapezoids within two consecutive fibers, thusthe bound ofO(n3) holds forT. We
have skipped the description of how to triangulate the boundary of the bounding box, but this
is straight-forward by adding a fiber at the left and right boundary, considering the corners as
fiber points. We skip further details.

For arbitraryd > 2, we consider the silhouette hypersurfaceOR := resxd( f , ∂ f
∂xd

), where f
is the defining equation forO. Let BR be the projection ofB to the firstd− 1 variables. By
the induction hypothesis, there exists a triangulationTR of BR containing a stable isocomplex
SR of OR as a subset (cf. Figure 4). Moreover,TR hasO(n2d−2) simplices becauseOR is of
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Fig. 5. Illustration of Theorem 6 for a torus ctd.: We consider the ”lift” of one of thetriangles in the
triangulationSR. The triangle∆c0c1c2 lifts to two trianglesℓ1 andℓ2 in 3-space (cf. left figure). We insert
points at the boundary and in the interior of the 3-cylinder betweenℓ1 andℓ2 (cf. right figure) to obtain
a triangulation in 3-space.

degreeO(n2). We first construct an isotopy fromO to a stable isocomplexS. We proceed in two
steps. For the first one, letφR be the isotopy betweenOR andSR. We can easily extendφR to an
isotopyφ ′

R from BR to itself such that the vertices ofTR remain fixed during the transformation
(the extension is not unique, but the choice does not matter for the argument). Note thatO is
delineable over any cell ofOR, that is, the lift of each cell consists of disjoint functiongraphs.
We can letφ ′

R act onO as follows: For a pointp = (p1, . . . , pd) ∈ O, we defineφ ′
R(p, t) =

(φ ′
R((p1, . . . , pd−1), t), pd), that is, we leave thed-th coordinate fixed. This transformsO into

someO ′ (which is not an algebraic set anymore). By construction,O ′ is delineable with respect
to TR, that is, the lift of each cell ofTR with respect toO ′ consists of (up ton) disjoint function
graphs. We consider ak-simplex∆ of TR with verticesc0, . . . ,ck, and one of its lifts, calledc.
c is uniquely defined by its “corners”c′0, . . . ,c

′
k wherec′i is some lift ofci (cf. Figure 5). In the

second phase of the isotopy, we transformc to the simplex defined byc′0, . . . ,c
′
k. We can do

so simultaneously for every lift without changing the vertical order, and without moving any
vertex. We can also rule out the case that two lifts are mappedto the same simplex since by the
way we constructOR, the lifts of any cell ofTR differ in at least one vertex. This implies that the
transformation indeed is an isotopy betweenO ′ andS. We letSdenote the isocomplex obtained
by the described two-step transformation.

Finally, we completeSto a triangulationT of B. For ak-simplex∆ of TR and two consecutive
lifts ℓ1, ℓ2, we define the(k+1)-cylinderC betweenℓ1 andℓ2 to be the(k+1)-dimensional area
betweenℓ1 andℓ2. Notice that the boundary ofC might also contain lifts of vertices, edges, etc.
By induction, we can assume that, above each of the(k−1)−simplices on the boundary of∆ ,
there exists a triangulation of the corresponding fiber withO(n) manyk-simplices (notice that
k≤ d can be treated as a constant!). Thus, the boundary of all(k+1)-cylinders above∆ admits
a triangulation withO(n) many elements.

We now traverse the simplices ofTR in increasing dimension, and triangulate the cylinders
above each simplex. Let∆ be ak-simplex as above and denoteC1, . . . ,Cm, m≤ n, the cylinders
above∆ . Then, from the above consideration, there exists a triangulation of the boundary of
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eachCi and the total number ofk-simplices for allCi is bounded byO(n). We place a point
pi in the interior of each of the cylindersCi, and construct simplices connectingpi with all
its boundary simplices (in other word, we construct a simplicial complex whose link is the
boundary of the cylinder). By handling the boundary of the bounding boxB in a similar fashion,
this strategy yields a complexT that triangulatesB.

Regarding the complexity ofT, the number of simplices created above onek-simplex is at
mostO(n) since each ofk-simplices on the boundary of a cylinder yields at most a constant
number of(k+1)−simplices. Hence, our bound follows from the induction hypothesis thatTR

hasO(n2d−2) simplices.

General isocomplexes:Again, the simple lower bound from Proposition 1 transfers directly
into higher dimensions by consideringn hyperplanes in generic position: Each set ofd such
hyperplanes intersects in a common point. The union of the hyperplanes yields an algebraic
hyperplane of degreen with

(n
d

)

singularities. It follows:

Proposition 2.For any n∈ N and d≥ 2, there exists an algebraic hypersurfaceO ⊂ Rd of
degree n such that any isocomplex forO hasΩ(nd) vertices.

Using Theorem 3 as a base case, we can improve the upper bound from Theorem 5 slightly
for general isocomplexes:

Theorem 7.Given a (compact) hypersurfaceO with axis-aligned bounding box B. Then, there
exists simplical complexes T , S⊂ T such that

– S is an isocomplex ofO
– T triangulates B
– T has O(n3/4·2d−1) simplices

In particular, there exists an isocomplex forO with O(n3/4·2d−1) cells.

Proof. We prove the claim by induction ond. For d = 2, Theorem 3 yields an isocomplexS
with O(n2) simplices. To complete it to a triangulation ofB, we first consider a trapezoidal
decompostion [5] ofB with respect toS, that means, from every vertex, we draw vertical rays
upwards and downwards until we intersect another cell ofS, or the boundary ofB. This in-
troduces 2 vertical segments, and up to 2 new vertices and does not increase the complexity.
We barycentrically subdivide the trapezoidal decomposition, that means, we decompose each
edge into two sub edges and a point in its interior (we need this for technical reasons in the
induction because otherwise, it can happen that two lifts over an edge are transformed into the
same 1-simplex inR3). Finally, we need to triangulate each trapezoid, which works in analogy
to Theorem 6. For higher dimensions, we use exactly the same construction as in Theorem 6,
and the same proof applies (note that in particular, the triangulationSthat we construct is stable
in the coordinatesx1,x3,x4, . . . ,xd, only thex2 coordinate changes).

We remark that, in [4], it was shown that there exists a stratification of an algebraic surface
O in R3 with O(n5) many simply connected components. More precisely, these components are
lifts of the O(n4) simply connected components of the arrangement induced by the projected
silhouette curveO ′ ⊂ R2. Our ”straightening idea” as presented in Theorem 3 shows that each
of these components can be triangulated by a constant numberof triangles.
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5. Conclusion

Our main contribution is to establish tight bounds for the size of stable or general isocomplexes
for algebraic curves of degreen. OurO(n2)-bound for a general isocomplex also improves the
complexity bound for an isocomplex in higher dimensions, but due to the projection strategy
used in the construction, the bound remains double exponential in d. We believe that this upper
bound is not tight – it might be possible to improve it by a triangulation method not based
on projection. However, already for algebraic surfaces, itseems difficult to come up with a
simplification algorithm which provably reduces the complexity and preserves the topology at
the same time.

Another interesting variant of the problem is to further constrain the hypersurface, for in-
stance, considering algebraic curves of degreen with a bounded bitsize, with a bounded num-
ber of singularities, or similar. We remark that, although our constructions yield reducible
curves, the same bounds can be achieved with little extra effort when restricting to irreducible
curves [14].
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