
Efficient Real Root Approximation

Michael Kerber
IST (Institute of Science and Technology) Austria

3400 Klosterneuburg, Austria

mkerber@ist.ac.at

Michael Sagraloff
Max-Planck-Institute for Informatics

66123 Saarbrücken, Germany
msagralo@mpi-inf.mpg.de

ABSTRACT

We consider the problem of approximating all real roots of a square-

free polynomial f . Given isolating intervals, our algorithm refines

each of them to a width at most 2−L, that is, each of the roots is

approximated to L bits after the binary point. Our method provides

a certified answer for arbitrary real polynomials, only requiring fi-

nite approximations of the polynomial coefficient and choosing a

suitable working precision adaptively. In this way, we get a correct

algorithm that is simple to implement and practically efficient. Our

algorithm uses the quadratic interval refinement method; we adapt

that method to be able to cope with inaccuracies when evaluating f ,

without sacrificing its quadratic convergence behavior. We prove a

bound on the bit complexity of our algorithm in terms of degree, co-

efficient size and discriminant. Our bound improves previous work

on integer polynomials by a factor of deg f and essentially matches

best known theoretical bounds on root approximation which are

obtained by very sophisticated algorithms.

Categories and Subject Descriptors

G.1.5 [Numerical Analysis]: Roots of Nonlinear Equations; F.2.1

[Analysis of Algorithms and Problem Complexity]: Numerical

Algorithms and Problems

General Terms

Algorithms, Reliability, Theory

Keywords

Root isolation, Root approximation, Quadratic Interval Refinement

1. INTRODUCTION
The problem of computing the real roots of a polynomial in one

variable is one of the best studied problems in mathematics. If

one asks for a certified method that finds all roots, it is common to

write the solutions as a set of disjoint isolating intervals, each con-

taining exactly one root; for that reason, the term real root isolation

is common in the literature. Simple, though efficient methods for

c©ACM, 2011. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribu-
tion. The definitive version was published in ISSAC’11: International
Symposium on Symbolic and Algebraic Computation Proceedings,
http://doi.acm.org/10.1145/nnnnnn.nnnnnnn

this problem have been presented, for instance, based on Descartes’

rule of signs [7], or on Sturm’s theorem [9]. Recently, the focus of

research shifted to polynomials with real coefficients which are ap-

proximated during the algorithm. It is worth remarking that this

approach does not just generalize the integer case but has also lead

to practical [11, 17] and theoretical [18] improvements of it.

We consider the related real root refinement problem: assuming

that isolating intervals of a polynomial are known, refine them to a

width of at most 2−L (where L≥ 0 is an additional input parameter).

Clearly, the combination of root isolation and root refinement, also

called strong root isolation, yields a certified approximation of all

roots of the polynomial to an absolute precision of 2−L or, in other

words, to L bits after the binary point in binary representation.

We present a solution to the root refinement problem for arbitrary

square-free polynomial with real coefficients. Most of the related

approaches are formulated in the REAL-RAM model where ex-

act operations on real numbers are assumed to be available at unit

costs. In contrast, our approach considers the coefficients as bit-

streams, that is, it only works with finite prefixes of its binary rep-

resentation, and we also quantify how many bits are needed in the

worst case. The refinement uses the quadratic interval refinement

method [1] (QIR for short), which is a quadratically converging hy-

brid of the bisection and secant method. We adapt the method to

work with a increasing working precisions and use interval arith-

metic to validate the correctness of the outcome. In this way, we ob-

tain an algorithm that always returns a correct root approximation,

is simple to implement on an actual computer (given that arbitrary

approximations of the coefficients are accessible), and is adaptive

in the sense that it might succeed with a much lower working pre-

cision than asserted by the worst-case bound.

We provide a bound on the bit complexity of our algorithm. Let

f (x) :=
d

∑
i=0

aix
i ∈ R[x] (1)

be a polynomial of degree d ≥ 2 with leading coefficient |ad | ≥ 1

and |ai|< 2τ for all i, where τ ≥ 1. Given initial isolating intervals,

our algorithm refines one interval to width 2−L using

Õ(d(dτ +R)2 +dL)

bit operations and refines all intervals using

Õ(d(dτ +R)2 +d2L)

bit operations, where R := log(|res(f , f ′)|)−1 and Õmeans that we

ignore logarithmic factors in d, τ , and L. To do so, our algorithm

requires the coefficients of f in a precision of at most

O(dτ +R+L)

bits after the binary point. We remark that the costs of obtaining

approximations for the coefficients are not included in this bound.

For the analysis, we divide the sequence of QIR steps in the refine-

ment process into a linear sequence where the method behaves like

bisection in the worst case, and a quadratic sequence where the in-

terval is converging quadratically towards the root, following the

approach in [12]. We do not require any conditions on the initial

intervals except that they are disjoint and cover all real roots of f ;

an initial normalization phase modifies the intervals to guarantee

the efficiency of our refinement strategy.

We remark that, using the recently presented root solver from [18],

obtaining initial isolating intervals can be done within Õ(d(d +
R)2) bit operations using coefficient approximations of O(dτ +R)
bits. Combined with that result, our complexity result also gives a

bound on the strong root isolation problem.

The case of integer coefficients is often of special interest, and

the problem has been investigated in previous work [12] for this

restricted case. In that work, the complexity of root refinement was

bounded by Õ(d4τ2 +d3L). We improve this bound to

Õ(d3τ2 +d2L)

because R as defined above becomes negative for integer polyno-

mials. The difference in the complexities is due to a different ap-

proach to evaluate the sign of f at rational points, which is the main

operation in the refinement procedure: for an interval of size 2−ℓ,

the evaluation has a complexity of Õ(d2(τ + ℓ)) when using exact

rational arithmetic because evaluated function values can consist of

up to d(τ +ℓ) bits. However, we show that we can still compute the

sign of the function value with certified numerical methods using

the substantially smaller working precision of O(dτ + ℓ).

Related work. The problem of accurate root approximation is

omnipresent in mathematical applications; certified methods are of

particular importance in the context of computations with algebraic

objects, e.g., when computing the topology of algebraic curves [10,

6] or when solving systems of multivariate equations [3].

The idea of combining bisection with a faster converging method

to find roots of continuous functions was first introduced inDekker’s

method and elaborated in Brent’s method; see [5] for a summary.

However, these approaches assume exact arithmetic for their con-

vergence results.

For polynomial equations, numerous algorithms are available,

for instance, the Jenkins-Traub algorithm or Durant-Kerner itera-

tion; although they usually approximate the real roots very fast in

practice, general worst-case bounds on their arithmetic complex-

ity are not available. In fact, for some variants, even termination

cannot be guaranteed in theory; we refer to the survey [16] for ex-

tensive references on these and further methods.

The theoretical complexity of root approximation has been in-

vestigated by Pan [15]. Assuming all roots to be in the unit disc,

he achieves a bit complexity of Õ(d3 +d2L) for approximating all

roots to an accuracy of 2−L, which matches our bound if L is the

dominant input parameter. His approach even works for polyno-

mials with multiple roots. However, as Pan admits in [16], the

algorithm is difficult to implement and so is the complexity analy-

sis when taking rounding errors in intermediate steps into account.

Moreover, it appears unclear whether his bound can be improved if

only a single root needs to be approximated.

We finally remark that a slightly simplified version of our ap-

proach (for integer coefficients) is included in the recently intro-

duced CGAL1-package on algebraic computations [4]. Experimen-

1Computational Geometry Algorithms Library, www.cgal.org

Algorithm 1 EQIR: Exact Quadratic Interval Refinement

INPUT: f ∈ R[x] square-free, I = (a,b) isolating, N = 22
i ∈N

OUTPUT: (J,N′) with J ⊆ I isolating for ξ and N′ ∈ N

1: procedure EQIR(f , I = (a,b),N)
2: if N = 2, return (BISECTION(f , I),4).

3: ω ← b−a
N

4: m′← a+ round(N
f (a)

f (a)− f (b)
)ω ⊲ m′ ≈ a+

f (a)
f (a)− f (b)

(b−a)

5: s← sign(f (m′))
6: if s = 0, return ([m′,m′],∞)
7: if s = sign(f (a)) and sign(f (m′+ ω)) = sign(f (b)), re-

turn ([m′,m′+ω],N2)
8: if s = sign(f (b)) and sign(f (m′−ω)) = sign(f (a)), re-

turn ([m′−ω,m′],N2)
9: Otherwise, return (I,

√
N).

tal comparisons in the context of [3] have shown that the approxi-

mate version of QIR gives significantly better running times than its

exact counterpart. These observations underline the practical rele-

vance of our approximate version and suggest a practical compari-

son with state-of-the-art solvers mentioned above as further work.

Notation. Additional to f , d, τ , ai, and R as above, we use

the following terminology: We denote the complex roots of f by

z1, . . . ,zd numbered so that z1, ...,zm are all the real roots. For each

zi, σi = σ(zi, f) := min j 6=i |zi− z j| denotes the separation of zi and

Σ f := ∑n
i=1 logσ−1i . An interval I = (a,b) is called isolating for a

root zi if I contains zi and no other root of f . We set mid(I) = a+b
2

for the center and w(I) := b−a for the width of I.

Outline. We summarize the (exact) QIR method in Section 2.

A variant using only approximate coefficients is described in Sec-

tion 3. Its precision demand is analyzed in Section 4. Based on that

analysis of a single refinement step, the complexity bound of root

refinement is derived in Section 5.

Some technical proofs are left out for brevity. An appendix con-

taining them is available from the authors’ homepages [13].

2. REVIEW OF EXACT QIR
Abbott’s QIR method [1, 12] is a hybrid of the simple (but in-

efficient) bisection method with a quadratically converging variant

of the secant method. We refer to this method as EQIR, where “E”

stands for “exact” in order to distinguish from the variant presented

in Section 3. Given an isolating interval I = (a,b) for a real root

ξ of f , we consider the secant through (a, f (a)) and (b, f (b)) (see
also Figure 1). This secant intersects the real axis in the interval

I, say at x-coordinate m. For I small enough, the secant should

approximate the graph of the function above I quite well and, so,

m≈ ξ should hold. An EQIR step tries to exploit this fact:

The isolating interval I is (conceptually) subdivided intoN subin-

tervals of same size, using N + 1 equidistant grid points. Each

subinterval has width ω :=
w(I)
N

. Then m′, the closest grid point

to m, is computed and the sign of f (m′) is evaluated. If that sign

equals the sign of f (a), the sign of f (m′+ω) is evaluated. Other-
wise, f (m′−ω) is evaluated. If the sign changes between the two

computed values, the interval (m′,m′ + ω) or the interval (m′ −
ω,m′), respectively, is set as new isolating interval for ξ . In this

case, the EQIR step is called successful. Otherwise, the isolating

interval remains unchanged, and the EQIR step is called failing.

See Algorithm 1 for a description in pseudo-code.

In [12], the root refinement problem is analyzed using the just

Figure 1: Illustration of an AQIR step for N = 4.

described EQIR method for the case of integer coefficients and ex-

act arithmetic with rational numbers. For that, a sequence of EQIR

steps is performed with N = 4 initially. After a successful EQIR

step, N is squared for the next step; after a failing step, N is set to√
N. If N drops to 2, a bisection step is performed, and N is set

to 4 for the next step. In [12], a bound on the size of the interval

is given, where every EQIR step will be successful proving that the

method converges quadratically from this point on.

3. APPROXIMATE QIR
The most important numeric operation in an EQIR step is the

computation of f (x0) for values x0 ∈ I. Note that f (x0) is needed
for determining the closest grid point m′ to the secant (Step 4 of

Algorithm 1), and its sign is required for checking for sign changes

in subintervals (Steps 6-8).

What are the problems if f is a bitstream polynomial, so that

f (x0) can only be evaluated up to a certain precision? First of all,
N f (a)

f (a)− f (b) can only be computed approximately, too, which might

lead to checking the wrong subinterval in the algorithm ifm is close

to the endpoint of a subinterval. Even more seriously, if f (x0) = 0,

its sign can, in general, not be evaluated using any precision, and

even if we exclude this case, the evaluation of f (x0) can become

costly if x0 is too close to a root of f . The challenge is to modify

QIR such that it can cope with the uncertainties in the evaluation of

f , requires as low a precision as possible in a refinement step and

still shows a quadratic convergence behavior eventually.

Bisection is a subroutine called in the QIR method if N = 2;

before we discuss the general case, we first describe our variant of

the bisection in the bitstream context. Note that we face the same

problem: Writing mid(I) for the center of I = (a,b), f (mid(I))
might be equal or almost equal to zero. We will overcome this

problem by evaluating f at several x-coordinates “in parallel”. For

that, we subdivide I into 4 equally wide parts using the subdivision

points m j := a+ j · b−a4 for 1≤ j≤ 3. We also assume that the sign

of f at a is already known. We choose a starting precision ρ and

compute f (m1), . . . , f (m3) using interval arithmetic in precision ρ
(cf. Section 4 for details). If fewer than 2 out of 3 signs have

been determined using precision ρ , we set ρ ← 2ρ and repeat the

calculation with increased precision. Once the sign at at least 2

subdivision points is determined, we can determine a subinterval

of at most half the size of I that contains ξ (Algorithm 2). We

will refer to this algorithm as “bisection”, although the resulting

interval can also be only a quarter of the original size. Note that

f can only become zero at one of the subdivision points which

guarantees termination also in the bitstream context. Moreover, at

least 2 of the 3 subdivision points have a distance of at least b−a
8 to

ξ . This asserts that the function value at these subdivision points

Algorithm 2 Approximate Bisection

INPUT: f ∈ R[x] square-free, I = (a,b) isolating, s = sign(f (a))
OUTPUT: J ⊆ I isolating with 2 ·w(J) ≤ w(I).

1: procedure APPROXIMATE_BISECTION(f , I= (a,b),s)

2: V ← [a+(i−1) · b−a4 , i = 1, . . . ,5]
3: S = [s,0,0,0,−s]
4: ρ ← 2

5: while S contains more than one zero do

6: for i=2,. . . ,4 do

7: If S[i] = 0, set S[i]← signB(f (V [i]),ρ)

8: ρ ← 2ρ

9: Find v,w, such that S[v] ·S[w] =−1∧ (v+1=w∨ (v+2=
w∧S[v+1] = 0))

10: return (V [v],V [w])

is reasonable large and leads to an upper bound of the required

precision (Lemma 5).

We next describe our bitstream variant of the QIR method that

we call approximate quadratic interval refinement, or AQIR for

short (see also Figure 1 for the illustration of an AQIR step for

N = 4). Compared to the exact variant, we replace two substeps. In

Step 4, we replace the computation of λ := N
f (a)

f (a)− f (b) as follows:

For a working precision ρ , we evaluate f (a) and f (b) via interval
arithmetic with precision ρ (blue vertical intervals in the above fig-

ure) and evaluate N
f (a)

f (a)− f (b) with interval arithmetic accordingly

(cf. Section 4). Let J = (c,d) denote the resulting interval (in Fig-

ure 1, I = a+ J · b−aN is the intersection of the stripe defined by

the interval evaluations of f (a) and f (b) with the real axis). If the

widthw(J) of J is more than 1
4 , we set ρ to 2ρ and retry. Otherwise,

let ℓ be the integer closest to mid(J) and set m∗ := a+ ℓ · b−aN . For

m = a+
f (a)

f (a)− f (b) (b−a) as before and m j := a+ j · b−a
N

(red dots)

for j = 0, . . . ,N, the following Lemma shows that the computed

m∗ = mℓ indeed approximates m on the m j-grid:

Lemma 1. Let m be inside the subinterval [m j,m j+1]. Then, m
∗ =

m j or m
∗ = m j+1. Moreover, let m′ ∈ {m j,m j+1} be the point that

is closer to m. If |m−m′|< b−a
4N , then m∗ = m′.

PROOF. Let λ := N
f (a)

f (a)− f (b)
and J the interval computed by

interval arithmetic as above, with width at most 1
4 . Since m =

f (a)+λ b−a
N
∈ [m j,m j+1], it follows that j ≤ λ ≤ j+1. By con-

struction, λ ∈ J. Therefore, |λ −mid(J)| ≤ 1
8 and, thus, it fol-

lows that mid(J) can only be rounded to j or j+ 1. Furthermore,

for m′ = m j, |m−m′| < b−a
4N implies that |λ − j| < 1

4 . It follows

that |mid(J)− j|< 3
8 by the triangle inequality, so mid(J) must be

rounded to j. The case m′ = m j+1 is analogous.

The second substep to replace in the QIR method is to check

for sign changes in subintervals in Steps 6-8. As before, we set

ω := w(I)/N. Instead of comparing the signs at m′ and m′±ω , we

choose the seven subdivision points (red crosses in Figure 1)

m∗−ω,m∗− 7ω

8
,m∗− ω

2
,m∗,m∗+

ω

2
,m∗− 7ω

8
,m∗+ω. (2)

In case that m∗ = a or m∗ = b, we only choose the 4 points of

(2) that lie in I. For a working precision ρ , we evaluate the sign

of f at all subdivision points using interval arithmetic. If the sign

remains unknown for more than one point, we set ρ to 2ρ and retry.

After the sign is determined for all except at most one of the points,

we look for a sign change in the sequence. If such a sign change

occurs, we set the corresponding interval I∗ as isolating and call the
AQIR step successful. Otherwise, we call the step failing and keep

the old isolating interval. As in the exact case, we square up N after

a successful step, and reduce it to its square root after a failing step.

See Algorithm 3 for a complete description.

Note that, in case of a successful step, the new isolating interval

I∗ satisfies 1
8Nw(I)≤w(I∗)≤ 1

Nw(I). Also, similar to the bisection

method, the function can only be zero at one of the chosen subdi-

vision points, and the function is guaranteed to be reasonably large

for all but one of them, which leads to a bound on the necessary pre-

cision (Lemma 7). The reader might wonder why we have chosen

a non-equidistant grid involving the subdivision points m∗± 7
8ω .

The reason is that these additional points allow us to give a success

guarantee of the method under certain assumptions in the follow-

ing lemma, which is the basis to prove quadratic convergence if the

interval is smaller than a certain threshold (Section 5.2).

Lemma 2. Let I = (a,b) be an isolating interval for some root ξ

of f , s = sign(f (a)) and m as before. If |m−ξ | < b−a
8N = ω

8 , then

AQIR(f , I,N,s) succeeds.

PROOF. Let m∗ be the subdivision point selected by the AQIR

method. We assume that m∗ /∈ {a,b}; otherwise, a similar (sim-

plified) argument applies. By Lemma 1 m ∈ [m∗− 3
4ω,m∗+ 3

4ω]

and, thus, ξ ∈ (m∗− 7
8ω,m∗+ 7

8ω). It follows that the leftmost two

points of (2) have a different sign than the rightmost two points of

(2). Since the sign of f is evaluated for at least one value on each

side, the algorithm detects a sign change and, thus, succeeds.

4. ANALYSIS OF AN AQIR STEP
The running time of an AQIR step depends on the maximal pre-

cision ρ needed in the two while loops (Step 5, Steps 11-14) of

Algorithm 3. The termination criterion of both loops is controlled

by evaluations of the form B(E,ρ), where E is some polynomial

expression and ρ is the current working precision.
We specify recursively what we understand by evaluating E in

precision ρ with interval arithmetic. For that, we define down(x,ρ)

for x ∈ R and ρ ∈ N to be the maximal x0 ≤ x such that x0 = k
2ρ

for some integer k. The same way up(x,ρ) is the minimal x0 ≥ x
with x0 of the same form. We extend this definition to arithmetic
expressions by the following rules (we leave out ρ for brevity):

down(E1 +E2) := down(E1)+down(E2)

up(E1 +E2) := up(E1)+up(E2)

down(E1 ·E2) := down(min{down(E1)down(E2),up(E1)up(E2),

up(E1)down(E2),down(E1)up(E2)})
up(E1 ·E2) := up(max{down(E1)down(E2),down(E1)up(E2),

up(E1)down(E2),up(E1)up(E2)})
down(1/E1) := down(1/up(E1))

up(1/E1) := up(1/down(E1))

Finally, we define the interval B(E,ρ) := [down(E,ρ),up(E,ρ)].
By definition, the exact value of E is guaranteed to be contained

in B(E,ρ). We assume that polynomials f ∈ R[x] are evaluated

according to the Horner scheme, and when evaluating f (c) with

precision ρ , we apply the above rules in each arithmetic step. The

next lemma provides a worst case bound on the size of the resulting

interval B(f (c),ρ) under certain conditions; see [13] for a proof

of Lemma 3. We also remark that, in an actual implementation,

B(E,ρ) is usually much smaller than the worst case bound derived

here. Nevertheless, our complexity analysis is based on it.

Algorithm 3 Approximate Quadratic interval refinement

INPUT: f ∈ R[x] square-free, I = (a,b) isolating, N = 22
i ∈ N,

s = sign(f (a))
OUTPUT: (J,N′) with J ⊆ I isolating and N′ ∈N

1: procedure AQIR(f , I = (a,b),N)
2: if N = 2, return (APPROXIMATE_BISECTION(f , I,s),4).

3: ω ← b−a
N

4: ρ ← 2

5: while J←B(N
f (a)

f (a)− f (b) ,ρ) has width > 1
4 , set ρ ← 2ρ

6: m∗← a+ round(mid(J)) ·ω
7: if m∗ = a, s ← 4,V ← [m∗,m∗ + 1

2ω,m∗ + 7
8ω,m∗ +

ω],S← [s,0,0,0]
8: if m∗ = b, s ← 4,V ← [m∗ − ω,m∗ − 7

8ω,m∗ −
1
2ω,m∗],S← [0,0,0,−s]

9: if a < m∗ < b, s ← 7,V ← [m∗ − ω,m∗ − 7
8ω,m∗ −

1
2ω,m∗,m∗+ 1

2ω,m∗+ 7
8ω,m∗+ω],S← [0,0,0,0,0,0,0]

10: ρ ← 2

11: while S contains more than one zero do

12: for i=1,. . . ,s do

13: If S[i] = 0, set S[i]← signB(f (V [i]),ρ)

14: ρ ← 2ρ

15: If ∃v,w : S[v] ·S[w] =−1∧ (v+1 = w∨ (v+2 = w∧S[v+
1] = 0)) return ((V [v],V [w]),N2)

16: Otherwise, return (I,
√
N)

Lemma 3. Let f be a polynomial as in (1), c ∈ R with |c| ≤ 2τ ,

and ρ ∈N. Then,

| f (c)−down(f (c),ρ)| ≤ 2−ρ+1(d+1)22τd (3)

| f (c)−up(f (c),ρ)| ≤ 2−ρ+1(d+1)22τd (4)

In particular, B(f (c),ρ) has a width of at most 2−ρ+2(d+1)22τd .

We remark that, for the sake of simplicity, we decided to as-

sume fixed-point arithmetic, that means, ρ determines the num-

ber of bits after the binary point. We refer the interested reader

to [14, Thm. 12], where a corresponding result for floating-point

arithmetic is given.

We analyze the required working precision of approximate bi-

section and of an AQIR step next. We exploit that, whenever we

evaluate f at t subdivision points, t−1 of them have a certain min-

imal distance to the root in the isolating interval. The following

lemma gives a lower bound on | f (x0)| for such a point x0, given

that it is sufficiently far away from any other root of f .

Lemma 4. Let f be as in (1), ξ = zi0 a real root of f and x0 a real

value with distance |x0− zi| ≥ σi

4 to all real roots zi 6= zi0 . Then,

| f (x0)|> |ξ −x0| ·2−(2d+τ+Σ f).

(recall the notations from Section 1 for the definitions of σi and Σ f)

PROOF. For each non-real root zi of f , there exists a complex

conjugate root z̄i and, thus, we have |x0− zi| ≥ Im(zi) ≥ σi

2 > σi

4
for all i = m+1, . . . ,d as well. It follows that

| f (x0)|= |ad
d

∏
i=1

(x0− zi)|= |ad | · |ξ −x0| · ∏
i=1,...,d:i6=i0

|x0− zi|

≥ |ξ −x0| ·
4

σi0

·
d

∏
i=1

σi

4
> |ξ −x0| ·2−2d−τ ·2−Σ f ,

where the last inequality uses that |zi| < 1 + max|ai|
|ad | < 2τ+1 by

Cauchy’s Bound [19] and, thus, σ(zi0)≤ 2τ+2.

We next analyze an approximate bisection step.

Lemma 5. Let f be a polynomial as in (1), I = (a,b) be an iso-

lating interval for a root ξ = zi0 of f and s = sign(f (a)). Then,

Algorithm 2 applied on (f , I,s) requires a maximal precision of

ρ0 := 2log(b−a)−1 +4log(d+1)+4d +10+2(d +1)τ +2Σ f

= O(log(b−a)−1 +dτ +Σ f),

and its bit complexity is bounded by Õ(d(log(b−a)−1+dτ +Σ f)).

PROOF. Consider the three subdivision points m j := a+ j · b−a4 ,

where 1 ≤ j ≤ 3, and an arbitrary real root zi 6= ξ of f . Note that

|m j − zi| > b−a
4 because the segment from m j to zi spans at least

over a quarter of (a,b). Moreover, |ξ −m j| ≤ 3
4 (b−a), and so

σi≤ |ξ−zi| ≤ |ξ−m j|+|m j−zi| ≤
3

4
(b−a)+|m j−zi| ≤ 4|m j−zi|.

It follows that m j has a distance to zi of at least
σi

4 . Hence, we can

apply Lemma 4 to each m j, that is, we have | f (m j)| > |ξ −m j| ·
2−(2d+τ+Σ f). Since the signs of f at the endpoints of I are known,

it suffices to compute the signs of f at two of the three subdivision

points. For at least two of these points, the distance of m j to ξ is

at least b−a
8 , thus, we have | f (m j)| > |b− a| · 2−(2d+3+τ+Σ f) for

at least two points. Then, due to Lemma 3, we can use interval

arithmetic with a precision ρ to compute these signs if ρ satisfies

2−ρ+2(d+1)22dτ ≤ (b−a) ·2−(2d+3+τ+Σ f),

which is equivalent to ρ ≥ ρ0

2 . Since we double the precision in

each step, we will eventually succeed with a precision smaller than

ρ0. The bit complexity for an arithmetic operation with fixed pre-

cision ρ is Õ(ρ + dτ). Namely, since the absolute value of each

subdivision point is bounded by O(τ), the results in the intermedi-

ate steps have magnitude O(dτ) and we consider ρ bits after the

binary point. At each subdivision point, we have to perform O(d)
arithmetic operations for the computation of f (m j), thus, the costs

for these evaluations are bounded by Õ(d(dτ +ρ)). Since we dou-
ble the precision in each iteration, the total costs are dominated

by the last successful evaluation and, thus, we have to perform

Õ(d(ρ0+dτ)) = Õ(d(log(b−a)−1+dτ +Σ f)) bit operations.

We proceed with the analysis of an AQIR step. In order to bound

the required precision, we need additional properties of the isolat-

ing interval.

Definition 6. Let f be as in (1) and let I := (a,b) be an isolating

interval of a root ξ of f . We call I normal if

• I ⊆ (−2τ+3,2τ+3),

• |p− zi|> σi

4 for every p ∈ I and zi 6= ξ , and

• min{| f (a)|, | f (b)|} ≥ 2−(32dτ+2Σ f−5log(b−a)).

In simple words, a normal isolating interval has a reasonable dis-

tance to any other root of f , and the function value at the endpoints

is reasonably large. We will later see that it is possible to get normal

intervals by a sequence of approximate bisection steps.

Lemma 7. Let f be a polynomial as in (1), I = (a,b) be a normal

isolating interval for a root ξ = zi0 of f with s = sign(f (a)), and

let N ≤ 22(τ+5log(b−a)). Then, the AQIR step for (f , I,N,s) requires

a precision of at most ρmax := 87dτ + 4Σ f − 14log(b− a) and,

therefore, its bit complexity is bounded by

Õ(d(dτ +Σ f − log(b−a))).

Moreover, the returned interval is again normal.

PROOF. We have to distinguish two cases. For N > 2, we con-

sider the two while-loops in Algorithm 3. In the first loop (Step 5),

we evaluate N
f (a)

f (a)− f (b) via interval arithmetic, doubling the preci-

sion ρ until the width of the resulting interval J is less than or equal

to 1/4. The following considerations show that we can achieve this

if ρ fulfills

2−ρ+1(d+1)22dτ ≤ min(| f (a)|, | f (b)|)
32N

. (5)

W.l.o.g., we assume f (a) > 0. If ρ fulfills the above condition,

then, due to Lemma 3, B(N · f (a),ρ) is contained in the interval

[N f (a)− | f (a)|
32

,N f (a)+
| f (a)|
32

] = N f (a) · [1− 1

32N
,1+

1

32N
]

and B(f (a)− f (b),ρ) is contained in (f (a)− f (b)) · [1− 1
32N ,1+

1
32N], where we used that f (a) and f (b) have different signs. It fol-

lows that B(N f (a)
f (a)− f (b)

,ρ) is contained in the interval
N f (a)

f (a)− f (b)
·

[(1− 1
32N)/(1+ 1

32N),(1+ 1
32N)/(1− 1

32N)], and a simple compu-

tation shows that N · [(1− 1
32N)/(1+ 1

32N),(1+ 1
32N)/(1− 1

32N)]

has width less than 1/4. Hence, since
f (a)

f (a)− f (b) has absolute value

less than 1, B(N
f (a)

f (a)− f (b) ,ρ) has width less than 1/4 as well. The

bound (5) on ρ also writes as

ρ ≥ 7+ log(d+1)+dτ + logN+ logmin(| f (a), f (b)|)−1,

and since we double ρ in each iteration, computing N
f (a)

f (a)− f (b) via

interval arithmetic up to an error of 1/4 is achieved with a precision

ρ < 14+2log(d+1)+2dτ +2logN+2logmin(| f (a), f (b)|)−1

< 11dτ +2logN+2logmin(| f (a), f (b)|)−1.
Because I is normal and because of the assumption on N we can

bound this by

ρ < 11dτ +4(τ +5− log(b−a))+2(32dτ +2Σ f −5log(b−a))

< 87dτ +4Σ f −14log(b−a) = ρmax.

We turn to the second while loop of Algorithm 3 (that is, Steps 11-

14) where f is evaluated at the subdivision points m∗ −ω,m∗ −
7ω
8 , . . . ,m∗+ ω as defined in (2). Since the interval is normal, we

can apply Lemma 4 to each of the seven subdivision points. At least

six of these points have distance ≥ b−a
16N to the root ξ and, thus, for

these points, | f | is larger than b−a
16N · 2−(2d+τ+Σ f). Then, according

to Lemma 5, it suffices to use a precision ρ that fulfills

2−ρ+1(d+1)22dτ ≤ b−a

16N
·2−(2d+τ+Σ f), or

ρ ≥ρ1 := 2log(d+1)+(d+1)τ +2d+5+Σ f +logN−log(b−a).
The same reasoning as above then shows that the point evaluation

will be performed with a maximal precision of less than

2ρ1 < 2(10dτ +Σ f + logN− log(b−a))

≤ 20dτ +2Σ f +4(τ +5− log(b−a))− log(b−a)

≤ 32dτ +2Σ f −5log(b−a)

Algorithm 4 Normalization

INPUT: f ∈ R[t] a polynomial as in (1), I1 = (a1,b1), . . . , Im =
(am,bm) disjoint isolating intervals in ascending order, s1, . . . ,sm
with sk = sign(f (min Ik))
OUTPUT: normal isolating intervals J1, . . . ,Jm with zk ∈ Ik ∩ Jk
1: procedure NORMALIZE(f , I1, . . . , Im)
2: for k=1,. . . ,m-1 do

3: whilemin Ik+1−max Ik < 3max{w(Ik),w(Ik+1)} do
4: if w(Ik) > w(Ik+1)
5: then APPROXIMATE_BISECTION(f , Ik,sk)
6: else APPROXIMATE_BISECTION(f , Ik+1,sk+1)

7: for k=1,. . . ,m-1 do

8: dk←min Ik+1−max Ik
9: Jk← [ak−dk−1/3,bk +dk/3] ⊲ enlarge Ik by more

than w(Ik) at both sides

10: return J1, . . . ,Jm

which is bounded by ρmax. Moreover, at the new endpoints a′ and
b′, | f | is at least

2−2ρ1 ≥ 2−(32dτ+2Σ f−5log(b−a)) ≥ 2−(32dτ+2Σ f−5log(b′−a′))

which proves that I′ = (a′,b′) is again normal.

It remains to treat the case N = 2, where a bisection step is per-

formed. It is straight-forward to see with Lemma 5 that the required

precision is bounded by ρmax, and in an analogous way as for the

point evaluations for N > 2, we can see that the resulting interval

is again normal. By the same argument as in Lemma 5, the overall

bit complexity of the AQIR step is bounded by Õ(dρmax).

5. ROOT REFINEMENT
We next analyze the complexity of our original problem: Given

a polynomial f as in (1) and isolating intervals for all its real roots,

refine the intervals to a size of at most 2−L. Our refinement method

consists of two steps. First, we turn the isolating intervals into nor-

mal intervals by applying bisections repeatedly. Second, we call

the AQIR method repeatedly on the intervals until each has a width

of at most 2−L. Algorithm 5 summarizes our method for root re-

finement. We remark that depending on the properties of the root

isolator used to get initial isolating intervals, the normalization can

be skipped; this is for instance the case when using the isolator

from [18]. We also emphasize that the normalization is unneces-

sary for the correctness of the algorithm; its purpose is to prevent

the working precision in a single AQIR step of growing too high.

5.1 Normalization
The normalization (Algorithm 4) consists of two steps: first, the

isolating intervals are refined using approximate bisection until the

distance between two consecutive intervals is at least three times

larger than the size of the larger of the two involved intervals. This

ensures that all points in an isolating interval are reasonably far

away from any other root of f . In the second step, each interval

is enlarged on both sides by an interval of at least the same size as

itself. This ensures that the endpoints are sufficiently far away from

any root of f to prove a lower bound of f at the endpoints. W.l.o.g.,

we assume that the input intervals are contained in (−2τ+1,2τ+1)
because by Cauchy’s bound [19], all roots are contained in that

interval, so the leftmost and rightmost intervals can just be cut if

necessary. Obviously, the resulting intervals are still isolating and

disjoint from each other. Moreover, they do not become too small

during the bisection process:

Algorithm 5 Root Refinement

INPUT: f = ∑aix
i ∈R[t] a polynomial as in (1), isolating intervals

I1, . . . , Im for all real roots of f in ascending order, L ∈ Z

OUTPUT: isolating intervals J1, . . . ,Jm with w(Jk)≤ 2−L

1: procedure ROOT_REFINEMENT(f ,L, I1, . . . , Im)
2: sk := sign(ad) · (−1)m−k+1 ⊲ sk = sign(f (min Ik))
3: J1, . . . ,Jm← NORMALIZE(f , I1, . . . , Im)
4: for k=1,. . . ,m do

5: N← 4

6: while w(Jk) > 2−L do (Jk,N)←AQIR(f ,Jk,N,sk)

7: return J1, . . . ,Jm

Lemma 8. For J1, . . . ,Jm as returned by Alg. 4, w(Jk)≥ 1
3σk.

PROOF. After the first for-loop, the distance dk between any two

consecutive intervals Ik and Ik+1 fulfills dk≥ 3max{w(Ik),w(Ik+1)},
thus σk < w(Ik)+w(Ik+1)+dk < 2dk. Hence, in the last step, each

Ik is enlarged by at least σk/6 on each side. This proves that the

corresponding enlarged intervals Jk have size σk/3 or more.

Lemma 9. Algorithm 4 is correct, i.e., returns normal intervals.

PROOF. Let J1, . . . ,Jm denote the returned intervals, and fix some

interval Jk containing the root zk of f . We have to prove the three

properties of Definition 6. The first property is clear because the

initial interval are assumed to lie in (−2τ+1,2τ+1). In the proof of

Lemma 8, we have already shown that Ik is eventually enlarged by

at least σk/6 on each side. More precisely, the right endpoint of Jk
has distance at least dk/3 > σk+1/6 to Jk+1, and the left endpoint

of Jk has distance at least dk−1/3 > σk−1/6 to Jk−1. It follows

that, for each x0 ∈ Jk, we have |x0− zk±1| ≤ σk±1/3, respectively.
Hence, the second property in Definition 6 is fulfilled.

For the third property of Definition 6, let e be one of the end-

points of Jk. We have just proved that the distance to every root

zi except zk is at least σi

3 and |e− zk| ≥ σk/6. With an estimation

similar as in the proof of Lemma 4, we obtain:

| f (e)| ≥ σk

6
∏
i6=k

σi

3
≥ 1

8
· 1

4d−1
2−Σ f = 2−(2d+Σ f +1),

and 2−(2d+Σ f +1) ≥ 2−(24dτ+2Σ f−5log(b−a)) because log(b− a) ≤
τ +3 ≤ 2dτ and −Σ f ≤ dτ +1 < 2dτ .

Lemma 10. Algorithm 4 has a complexity of Õ(d(τd+Σ f)
2)

PROOF. As a direct consequence of Lemma 8, each interval Ik is

only bisected O(τ + log(σk)
−1) many times because each starting

interval is assumed to be contained in (−2τ+1,2τ+1). So the total

number of bisections adds up to O(dτ + Σ f) considering all roots

of f . Also, the size of the isolating interval Ik is lower bounded by
1
3 ·σk = 2−O(Σ f +dτ), so that one approximate bisection step has a

complexity of Õ(d(dτ +Σ f)) due to Lemma 5.

5.2 The AQIR sequence
It remains to bound the cost of the calls of AQIR. We mostly

follow the reasoning from [12]. We introduce the following conve-

nient notation:

Definition 11. Let I0 := I be a normal isolating interval for some

real root ξ of f , N0 := 4 and s := sign(min I0). The AQIR sequence

(S0,S1, . . . ,Svξ
) is defined by

S0 :=(I0,N0)= (I,4) Si =(Ii,Ni) :=AQIR(f , Ii−1,Ni−1,s) for i≥ 1,

where vξ is the first index such that the interval Ivξ
has width at

most 2−L. We say that Si
AQIR→ Si+1 succeeds if AQIR(f , Ii,Ni,s)

succeeds, and that Si
AQIR→ Si+1 fails otherwise.

As in [12], we divide the AQIR sequence into two parts accord-

ing to the following definition.

Definition 12. Let ξ be a root of f . Define

Cξ :=
| f ′(ξ)|

8ed32τ max{|ξ |,1}d−1 ,

where e ≈ 2.71 . . . denotes the Eulerian number. For (S0, . . . ,Svξ
)

the AQIR sequence of ξ , define k the minimal index such that Sk =

(Ik,Nk)
AQIR→ Sk+1 succeeds and w(Ik) ≤ Cξ . We call (S0, . . . ,Sk)

linear sequence and (Sk, . . . ,Svξ
) quadratic sequence of ξ

Note that Cξ = 1
4Mξ as defined in [12], and that the linear se-

quence was called initial sequence therein. We renamed it to avoid

confusion with the initial normalization phase in our variant.

Quadratic convergence. We start by justifying the name “quadratic

sequence”. Indeed, it turns out that all but at most one AQIR step

in the quadratic sequence are successful, hence, N is squared in (al-

most) every step and therefore, the refinement factor of the interval

is doubled in (almost) every step. The proof is mostly analogous

to [12]. The following bound follows from considering the Taylor

expansion of f at ξ in the expression for m (see also [13]).

Lemma 13. [12, Thm. 4.8] Let (a,b) be isolating for ξ with width

δ <Cξ and m as in Lemma 2. Then, |m−ξ | ≤ δ 2

8Cξ
.

Corollary 14. Let I j be an isolating interval for ξ of width δ j≤
Cξ

N j
.

Then, each call of the AQIR sequence

(I j,N j)
AQIR→ (I j+1,N j+1)

AQIR→ . . .

succeeds.

PROOF. We use induction on i. Assume that the first i AQIR

calls succeed. Then, another simple induction shows that δ j+i :=

w(I j+i) ≤ N jδ j

N j+i
<

Cξ

N j+i
, where we use that N j+i = N2

j+i−1. Then,

according to Lemma 13, we have that

|m−ξ | ≤ δ 2
j+i

1

8Cξ
≤ δ j+i

Cξ

N j+i

1

8Cξ
=

1

8

δ j+i

N j+i
,

with m as above. By Lemma 2, the AQIR call succeeds.

Corollary 15. [12, Cor. 4.10] In the quadratic sequence, there is

at most one failing AQIR call. (see [13] for a proof)

Cost of the linear sequence. We bound the costs of refining the

isolating interval of ξ to sizeCξ with AQIR. We first show that, on

average, the AQIR sequence refines by a factor two in every second

step. This shows in particular that refining using AQIR is at most a

factor of two worse than refining using approximate bisection.

Lemma 16. Let (S0, . . . ,Sℓ) denote an arbitrary prefix of the AQIR

sequence for ξ , starting with the isolating interval I0 of width δ .

Then, the width of Iℓ is not larger than δ2−(ℓ−1)/2.

PROOF. Consider a subsequence (Si, . . . ,Si+ j) of (S0, . . . ,Sℓ) such

that Si
AQIR→ Si+1 is successful, but any other step in the subsequence

fails. Because there are j steps in total, and thus j−1 consecutive

failing steps, the successful step must have used aN withN≥ 22
j−1

.

Because 2 j−1 > j
2 , it holds that

w(Ii+ j)≤
w(Ii)

N
≤ w(Ii)2

−2 j−1
< w(Ii)2

− j/2.

Repeating the argument for maximal subsequences of this form,

we get that either w(Iℓ) ≤ w(I0)2
−ℓ/2 if the sequence starts with a

successful step, or w(Iℓ) ≤ w(I0)2
−(ℓ−1)/2 otherwise, because the

second step must be successful in this case.

We want to apply Lemma 7 to bound the bit complexity of a

single AQIR step. The following lemma shows that the condition

on N from Lemma 7 is always met in the AQIR sequence.

Lemma 17. Let (I j,N j)
AQIR→ (I j+1,N j+1) be a call in an AQIR

sequence and I j := (a,b). Then, N j ≤ 22(τ+5−log(b−a)).

PROOF. We do induction on j. Note that I0 ⊂ (−2τ+3,2τ+3) by

normality, hence b− a ≤ 2τ+4. It follows that 22(τ+5−log(b−a)) ≥
4 = N0. Assume that the statement is true for j−1. If the previous

step (I j−1,N j−1)
AQIR→ (I j,N j) is failing, then N j =

√

N j−1 and the

isolating interval remains unchanged, so the statement is trivially

correct. If the step is successful, then it holds that (b−a) ≤ 2τ+4√
N j

.

By rearranging terms, we get that N j ≤ 22(τ+4−log(b−a)).

It follows inductively that the conditions of Lemma 7 are met for

each call in the AQIR sequence because I0 is normal by construc-

tion. Therefore, the linear sequence for a root ξ of f is computed

with a bit complexity of

Õ((τ + log(Cξ)−1)d(log(C−1
ξ

)+dτ +Σ f)) (6)

because O(τ + log(C−1
ξ

)) steps are necessary to refine the interval

to a size smaller than Cξ by Lemma 16, and the bit complexity

is bounded by Õ(d(log(C−1
ξ

) + dτ + Σ f)) with Lemma 7. It re-

mains to bound log(Cξ)−1; we do so by bounding the sum of all

log(Cξ)−1 with the following lemma.

Lemma 18. ∑m
i=1 log(Czi)

−1 = O(d(τ + logd)+R))

PROOF. We can write the sum as

m

∑
i=1

log(Czi)
−1 ≤O(d(τ + logd))+d · logMea(f)− log |

n

∏
i=1

f ′(zi)|

where Mea(f) is the Mahler measure of f (see [12, Thm 4.5] for a

more detailed calculation). It is known that logMea(f) = O(τ +
logd). For the last summand, we use the relation res(f , f ′) =

ad−1
d ∏n

i=1 f
′(zi); see [2, Thm.4.16] [19, Thm.6.15]. It follows that

− log |
n

∏
i=1

f ′(zi)|= log |ad−1
d
|− log |res(f , f ′)| ≤ (d−1)τ +R.

When we apply Lemma 18 to (6), we obtain a bound that de-

pends on d, τ , Σ f , and R. The next result shows that Σ f is bounded

by Õ(dτ +R). The proof is only sketched for brevity; a complete

proof is given in [13].

Theorem 19. Σ f ∈ O(d(τ + logd)+R).

PROOF. The product of all σi’s is a product of root differences,

and corresponds to the nearest neighbor graph [8] of the roots of f .

We would like to apply the Davenport-Mahler bound [9] on this

product, but the preconditions of it are not satisfied. However, by

exploiting simple properties of the nearest neighbor graph, we can

define another root product P such that 2−Σ f ≥ 2−5d(τ+1)P6 and

such that the Davenport-Mahler bound is applicable to P. This

yields that log 1
P

= O(d(τ + logd)+R).

Lemma 20. The linear sequences for all real roots are computed

within a total bit complexity of Õ(d(dτ +R)2).

PROOF. The total cost of all linear sequences is bounded by

Õ(
d

∑
i=1

(τ + log(C−1zi
))d(log(C−1zi

)+dτ +Σ f)).

Using Theorem 19 and rearranging terms, we obtain

= Õ(d2τ(dτ +R)+d(dτ +R)∑ log(C−1zi
)+d(∑ log(C−1zi

))2)

which equals Õ(d(dτ +R)2) with Lemma 18.

Cost of the quadratic sequence. Let us fix some root ξ of f . Its

quadratic sequence consists of at most 1+ logL steps, because N is

squared in every step (except for at most one failing step) and the

sequence stops as soon as the interval is smaller than 2−L. Since

we ignore logarithmic factors, it is enough to bound the costs of one

QIR step in the sequence. Clearly, since the interval is not smaller

than 2−L in such a step, we have that log(b−a)−1 ≤ L. Therefore,

the required precision is bounded byO(L+dτ +Σ f). It follows that

an AQIR step performs up to Õ(d(L+dτ +Σ f)) bit operations.

Lemma 21. The quadratic sequences for one real root is computed

within a bit complexity of Õ(d(L+dτ +Σ f)).

Total cost. We have everything together to prove the main result

Theorem 22. Algorithm 5 performs root refinement within

Õ(d(dτ +R)2 +dL)

bit operations for a single real root 2 of f , and within

Õ(d(dτ +R)2 +d2L)

for all real roots. The coefficients of f need to be approximated to

O(L+dτ +Σ f) bits after the binary point.

PROOF. We concentrate on the bound on all real roots; the case

of a single root follows easily. By Lemma 10, the normalization

requires Õ(d(dτ +Σ f)
2) = Õ(d(dτ +R)2) bit operations. The lin-

ear subsequences of the AQIR sequence are computed in the same

time by Lemma 20. The quadratic subsequences are computed with

Õ(d2L+ d3τ + d2Σ f) bit operations by Lemma 21; the latter two

terms are both dominated by d(dτ + R)2 which yields the com-

plexity bound. The maximal number of required bits follows from

Lemma 7 because the maximal required precision in any AQIR step

is bounded by O(L+dτ +Σ f).

We remark without proof that, with little extra effort, the bound

for a single root can be slightly improved to Õ(d(dτ +Σ f)
2 +dL).

For integer polynomials, res(f , f ′) is an integer and consequently

R < 0. This improves the bound from [12] by a factor of d.

Corollary 23. If f is a polynomial with integer coefficients, the bit

complexity of Algorithm 5 is bounded by

Õ(d3τ2 +d2L).

2In its initial formulation, Algorithm 5 assumes that isolating inter-
vals are for all real roots are given. If only one isolating interval Ik
for a root zk is given, we have to normalize Ik first and, then, com-
pute the signs of f at the endpoints of I. Due to space constraints,
we omit the details for this relatively simple step.

6. REFERENCES
[1] J. Abbott. Quadratic Interval Refinement for Real Roots.

Poster presented at the 2006 Intern. Symp. on Symbolic and

Algebraic Computation (ISSAC 2006), 2006.

[2] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real

Algebraic Geometry. Springer, 2nd edition, 2006.

[3] E. Berberich, P. Emeliyanenko, and M. Sagraloff. An

elimination method for solving bivariate polynomial systems:

Eliminating the usual drawbacks. InWorkshop on Algorithm

Engineering & Experiments (ALENEX), pages 35–47, 2011.

[4] E. Berberich, M. Hemmer, and M. Kerber. A generic

algebraic kernel for non-linear geometric applications.

Research report 7274, INRIA, 2010.

[5] J. Bus and T.J.Dekker. Two efficient algorithms with

guaranteed convergence for finding a zero of a function.

ACM Trans. on Math. Software, 1(4):330–345, 1975.

[6] J. Cheng, S. Lazard, L. Peñaranda, M. Pouget, F. Rouillier,

and E. Tsigaridas. On the topology of real algebraic plane

curves. Mathematics in Computer Science, 4:113–137, 2010.

[7] G. E. Collins and A. G. Akritas. Polynomial Real Root

Isolation Using Descartes’ Rule of Signs. In Proc. of the 3rd

ACM Symp. on Symbolic and Algebraic Computation

(SYMSAC 1976), pages 272–275. ACM Press, 1976.

[8] D.Eppstein, M.S.Paterson, and F.F.Yao. On nearest-neighbor

graphs. Discrete and Computational Geometry,

17(3):263–282, 1997.

[9] Z. Du, V. Sharma, and C. Yap. Amortized bound for root

isolation via Sturm sequences. In Symbolic-Numeric

Computation, Trends in Mathematics, pages 113–129.

Birkhäuser Basel, 2007.

[10] A. Eigenwillig, M. Kerber, and N. Wolpert. Fast and exact

geometric analysis of real algebraic plane curves. In Proc. of

the 2007 Intern. Symp. on Symbolic and Algebraic

Computation (ISSAC 2007), pages 151–158, 2007.

[11] A. Eigenwillig, L. Kettner, W. Krandick, K. Mehlhorn,

S. Schmitt, and N. Wolpert. A Descartes algorithm for

polynomials with bit-stream coefficients. In 8th International

Workshop on Computer Algebra in Scientific Computing

(CASC 2005), volume 3718 of LNCS, pages 138–149, 2005.

[12] M. Kerber. On the complexity of reliable root approximation.

In 11th International Workshop on Computer Algebra in

Scientific Computing (CASC 2009), volume 5743 of LNCS,

pages 155–167. Springer, 2009.

[13] M. Kerber and M. Sagraloff. Supplementary material for

“Efficient Real Root Approximation”, 2011.

http://www.mpi-inf.mpg.de/˜msagralo/apx11.pdf.

[14] K. Mehlhorn, R. Osbild, and M. Sagraloff. A general

approach to the analysis of controlled perturbation

algorithms. CGTA, 2011. to appear; for a draft, see

http://www.mpi-inf.mpg.de/˜msagralo/cpgeneral.pdf.

[15] V. Y. Pan. Optimal and nearly optimal algorithms for

approximating polynomial zeros. Computers and

Mathematics with Applications, 31(12):97–138, 1996.

[16] V. Y. Pan. Solving a polynomial equation: Some history and

recent progress. SIAM Review, 39(2):187–220, 1997.

[17] F. Rouillier and P. Zimmermann. Efficient isolation of

polynomial’s real roots. Journal of Compututational and

Applied Mathematics, 162(1):33–50, 2004.

[18] M. Sagraloff. On the complexity of real root isolation.

arXiv:1011.0344v1, 2010.

[19] C. K. Yap. Fundamental Problems in Algorithmic Algebra.

Oxford University Press, 2000.

