Efficient Real Root Approximation

Michael Kerber IST (Institute of Science and Technology) Austria 3400 Klosterneuburg, Austria mkerber@ist.ac.at Michael Sagraloff Max-Planck-Institute for Informatics 66123 Saarbrücken, Germany msagralo@mpi-inf.mpg.de

ABSTRACT

We consider the problem of approximating all real roots of a squarefree polynomial f. Given isolating intervals, our algorithm refines each of them to a width at most 2^{-L} , that is, each of the roots is approximated to L bits after the binary point. Our method provides a certified answer for arbitrary real polynomials, only requiring finite approximations of the polynomial coefficient and choosing a suitable working precision adaptively. In this way, we get a correct algorithm that is simple to implement and practically efficient. Our algorithm uses the quadratic interval refinement method; we adapt that method to be able to cope with inaccuracies when evaluating f, without sacrificing its quadratic convergence behavior. We prove a bound on the bit complexity of our algorithm in terms of degree, coefficient size and discriminant. Our bound improves previous work on integer polynomials by a factor of deg f and essentially matches best known theoretical bounds on root approximation which are obtained by very sophisticated algorithms.

Categories and Subject Descriptors

G.1.5 [Numerical Analysis]: Roots of Nonlinear Equations; F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Problems

General Terms

Algorithms, Reliability, Theory

Keywords

Root isolation, Root approximation, Quadratic Interval Refinement

1. INTRODUCTION

The problem of computing the real roots of a polynomial in one variable is one of the best studied problems in mathematics. If one asks for a *certified* method that finds all roots, it is common to write the solutions as a set of disjoint *isolating* intervals, each containing exactly one root; for that reason, the term *real root isolation* is common in the literature. Simple, though efficient methods for

©ACM, 2011. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in *ISSAC'11: International Symposium on Symbolic and Algebraic Computation Proceedings*, http://doi.acm.org/10.1145/nnnnnn.nnnnnn this problem have been presented, for instance, based on Descartes' rule of signs [7], or on Sturm's theorem [9]. Recently, the focus of research shifted to polynomials with real coefficients which are approximated during the algorithm. It is worth remarking that this approach does not just generalize the integer case but has also lead to practical [11, 17] and theoretical [18] improvements of it.

We consider the related *real root refinement problem*: assuming that isolating intervals of a polynomial are known, *refine* them to a width of at most 2^{-L} (where $L \ge 0$ is an additional input parameter). Clearly, the combination of root isolation and root refinement, also called *strong root isolation*, yields a certified approximation of all roots of the polynomial to an absolute precision of 2^{-L} or, in other words, to *L* bits after the binary point in binary representation.

We present a solution to the root refinement problem for arbitrary square-free polynomial with real coefficients. Most of the related approaches are formulated in the REAL-RAM model where exact operations on real numbers are assumed to be available at unit costs. In contrast, our approach considers the coefficients as bitstreams, that is, it only works with finite prefixes of its binary representation, and we also quantify how many bits are needed in the worst case. The refinement uses the quadratic interval refinement method [1] (QIR for short), which is a quadratically converging hybrid of the bisection and secant method. We adapt the method to work with a increasing working precisions and use interval arithmetic to validate the correctness of the outcome. In this way, we obtain an algorithm that always returns a correct root approximation, is simple to implement on an actual computer (given that arbitrary approximations of the coefficients are accessible), and is adaptive in the sense that it might succeed with a much lower working precision than asserted by the worst-case bound.

We provide a bound on the bit complexity of our algorithm. Let

$$f(x) := \sum_{i=0}^{d} a_i x^i \in \mathbb{R}[x]$$
(1)

be a polynomial of degree $d \ge 2$ with leading coefficient $|a_d| \ge 1$ and $|a_i| < 2^{\tau}$ for all *i*, where $\tau \ge 1$. Given initial isolating intervals, our algorithm refines *one interval* to width 2^{-L} using

$$\tilde{O}(d(d\tau+R)^2+dL)$$

bit operations and refines all intervals using

$$\tilde{O}(d(d\tau+R)^2+d^2L)$$

bit operations, where $R := \log(|\operatorname{res}(f, f')|)^{-1}$ and \tilde{O} means that we ignore logarithmic factors in d, τ , and L. To do so, our algorithm requires the coefficients of f in a precision of at most

$$O(d\tau + R + L)$$

bits after the binary point. We remark that the costs of obtaining approximations for the coefficients are not included in this bound. For the analysis, we divide the sequence of QIR steps in the refinement process into a *linear sequence* where the method behaves like bisection in the worst case, and a *quadratic sequence* where the interval is converging quadratically towards the root, following the approach in [12]. We do not require any conditions on the initial intervals except that they are disjoint and cover all real roots of f; an initial *normalization phase* modifies the intervals to guarantee the efficiency of our refinement strategy.

We remark that, using the recently presented root solver from [18], obtaining initial isolating intervals can be done within $\tilde{O}(d(d + R)^2)$ bit operations using coefficient approximations of $O(d\tau + R)$ bits. Combined with that result, our complexity result also gives a bound on the strong root isolation problem.

The case of integer coefficients is often of special interest, and the problem has been investigated in previous work [12] for this restricted case. In that work, the complexity of root refinement was bounded by $\tilde{O}(d^4\tau^2 + d^3L)$. We improve this bound to

$$\tilde{O}(d^3\tau^2 + d^2L)$$

because *R* as defined above becomes negative for integer polynomials. The difference in the complexities is due to a different approach to evaluate the sign of *f* at rational points, which is the main operation in the refinement procedure: for an interval of size $2^{-\ell}$, the evaluation has a complexity of $\tilde{O}(d^2(\tau + \ell))$ when using exact rational arithmetic because evaluated function values can consist of up to $d(\tau + \ell)$ bits. However, we show that we can still compute the sign of the function value with certified numerical methods using the substantially smaller working precision of $O(d\tau + \ell)$.

Related work. The problem of accurate root approximation is omnipresent in mathematical applications; certified methods are of particular importance in the context of computations with algebraic objects, e.g., when computing the topology of algebraic curves [10, 6] or when solving systems of multivariate equations [3].

The idea of combining bisection with a faster converging method to find roots of continuous functions was first introduced in *Dekker's method* and elaborated in *Brent's method*; see [5] for a summary. However, these approaches assume exact arithmetic for their convergence results.

For polynomial equations, numerous algorithms are available, for instance, the *Jenkins-Traub algorithm* or *Durant-Kerner itera-tion*; although they usually approximate the real roots very fast in practice, general worst-case bounds on their arithmetic complex-ity are not available. In fact, for some variants, even termination cannot be guaranteed in theory; we refer to the survey [16] for extensive references on these and further methods.

The theoretical complexity of root approximation has been investigated by Pan [15]. Assuming all roots to be in the unit disc, he achieves a bit complexity of $\tilde{O}(d^3 + d^2L)$ for approximating all roots to an accuracy of 2^{-L} , which matches our bound if *L* is the dominant input parameter. His approach even works for polynomials with multiple roots. However, as Pan admits in [16], the algorithm is difficult to implement and so is the complexity analysis when taking rounding errors in intermediate steps into account. Moreover, it appears unclear whether his bound can be improved if only a single root needs to be approximated.

We finally remark that a slightly simplified version of our approach (for integer coefficients) is included in the recently introduced CGAL¹-package on algebraic computations [4]. Experimen-

Algorithm 1 EQIR: Exact Quadratic Interval Refinement

INPUT: $f \in \mathbb{R}[x]$ square-free, I = (a, b) isolating, $N = 2^{2^i} \in \mathbb{N}$ OUTPUT: (J, N') with $J \subseteq I$ isolating for ξ and $N' \in \mathbb{N}$

- 1: **procedure** EQIR(f, I = (a, b), N)
- 2: **if** N = 2, **return** (BISECTION(f, I),4).

3: $\omega \leftarrow \frac{b-a}{N}$

4:
$$m' \leftarrow a + \operatorname{round}(N \frac{f(a)}{f(a) - f(b)}) \omega \triangleright m' \approx a + \frac{f(a)}{f(a) - f(b)}(b - a)$$

- 5: $s \leftarrow \operatorname{sign}(f(m'))$
- 6: **if** s = 0, **return** $([m', m'], \infty)$
- 7: if $s = \operatorname{sign}(f(a))$ and $\operatorname{sign}(f(m' + \omega)) = \operatorname{sign}(f(b))$, return $([m', m' + \omega], N^2)$
- 8: if $s = \operatorname{sign}(f(b))$ and $\operatorname{sign}(f(m' \omega)) = \operatorname{sign}(f(a))$, return $([m' \omega, m'], N^2)$

9: Otherwise, **return**
$$(I,\sqrt{N})$$
.

tal comparisons in the context of [3] have shown that the approximate version of QIR gives significantly better running times than its exact counterpart. These observations underline the practical relevance of our approximate version and suggest a practical comparison with state-of-the-art solvers mentioned above as further work.

Notation. Additional to f, d, τ , a_i , and R as above, we use the following terminology: We denote the complex roots of f by z_1, \ldots, z_d numbered so that z_1, \ldots, z_m are all the real roots. For each z_i , $\sigma_i = \sigma(z_i, f) := \min_{j \neq i} |z_i - z_j|$ denotes the *separation of* z_i and $\Sigma_f := \sum_{i=1}^n \log \sigma_i^{-1}$. An interval I = (a, b) is called *isolating* for a root z_i if I contains z_i and no other root of f. We set $mid(I) = \frac{a+b}{2}$ for the *center* and w(I) := b - a for the *width* of I.

Outline. We summarize the (exact) QIR method in Section 2. A variant using only approximate coefficients is described in Section 3. Its precision demand is analyzed in Section 4. Based on that analysis of a single refinement step, the complexity bound of root refinement is derived in Section 5.

Some technical proofs are left out for brevity. An appendix containing them is available from the authors' homepages [13].

2. REVIEW OF EXACT QIR

Abbott's QIR method [1, 12] is a hybrid of the simple (but inefficient) bisection method with a quadratically converging variant of the *secant method*. We refer to this method as EQIR, where "E" stands for "exact" in order to distinguish from the variant presented in Section 3. Given an isolating interval I = (a,b) for a real root ξ of f, we consider the secant through (a, f(a)) and (b, f(b)) (see also Figure 1). This secant intersects the real axis in the interval I, say at x-coordinate m. For I small enough, the secant should approximate the graph of the function above I quite well and, so, $m \approx \xi$ should hold. An EQIR step tries to exploit this fact:

The isolating interval *I* is (conceptually) subdivided into *N* subintervals of same size, using N + 1 equidistant grid points. Each subinterval has width $\omega := \frac{w(I)}{N}$. Then *m'*, the closest grid point to *m*, is computed and the sign of f(m') is evaluated. If that sign equals the sign of f(a), the sign of $f(m' + \omega)$ is evaluated. Otherwise, $f(m' - \omega)$ is evaluated. If the sign changes between the two computed values, the interval $(m', m' + \omega)$ or the interval $(m' - \omega, m')$, respectively, is set as new isolating interval for ξ . In this case, the EQIR step is called *successful*. Otherwise, the isolating interval remains unchanged, and the EQIR step is called failing. See Algorithm 1 for a description in pseudo-code.

In [12], the root refinement problem is analyzed using the just

¹Computational Geometry Algorithms Library, www.cgal.org

Figure 1: Illustration of an AQIR step for N = 4.

described EQIR method for the case of integer coefficients and exact arithmetic with rational numbers. For that, a sequence of EQIR steps is performed with N = 4 initially. After a successful EQIR step, N is squared for the next step; after a failing step, N is set to \sqrt{N} . If N drops to 2, a bisection step is performed, and N is set to 4 for the next step. In [12], a bound on the size of the interval is given, where every EQIR step will be successful proving that the method converges quadratically from this point on.

3. APPROXIMATE QIR

The most important numeric operation in an EQIR step is the computation of $f(x_0)$ for values $x_0 \in I$. Note that $f(x_0)$ is needed for determining the closest grid point m' to the secant (Step 4 of Algorithm 1), and its sign is required for checking for sign changes in subintervals (Steps 6-8).

What are the problems if f is a bitstream polynomial, so that $f(x_0)$ can only be evaluated up to a certain precision? First of all, $\frac{Nf(a)}{f(a)-f(b)}$ can only be computed approximately, too, which might lead to checking the wrong subinterval in the algorithm if m is close to the endpoint of a subinterval. Even more seriously, if $f(x_0) = 0$, its sign can, in general, not be evaluated using any precision, and even if we exclude this case, the evaluation of $f(x_0)$ can become costly if x_0 is too close to a root of f. The challenge is to modify QIR such that it can cope with the uncertainties in the evaluation of f, requires as low a precision as possible in a refinement step and still shows a quadratic convergence behavior eventually.

Bisection is a subroutine called in the QIR method if N = 2; before we discuss the general case, we first describe our variant of the bisection in the bitstream context. Note that we face the same problem: Writing mid(I) for the center of I = (a,b), f(mid(I))might be equal or almost equal to zero. We will overcome this problem by evaluating f at several x-coordinates "in parallel". For that, we subdivide I into 4 equally wide parts using the subdivision points $m_j := a + j \cdot \frac{b-a}{4}$ for $1 \le j \le 3$. We also assume that the sign of f at a is already known. We choose a starting precision ρ and compute $f(m_1), \ldots, f(m_3)$ using interval arithmetic in precision ρ (cf. Section 4 for details). If fewer than 2 out of 3 signs have been determined using precision ρ , we set $\rho \leftarrow 2\rho$ and repeat the calculation with increased precision. Once the sign at at least 2 subdivision points is determined, we can determine a subinterval of at most half the size of I that contains ξ (Algorithm 2). We will refer to this algorithm as "bisection", although the resulting interval can also be only a quarter of the original size. Note that f can only become zero at one of the subdivision points which guarantees termination also in the bitstream context. Moreover, at least 2 of the 3 subdivision points have a distance of at least $\frac{b-a}{8}$ to ξ . This asserts that the function value at these subdivision points

Algorithm 2 Approximate Bisection

INPUT: $f \in \mathbb{R}[x]$ square-free, I = (a,b) isolating, s = sign(f(a))OUTPUT: $J \subseteq I$ isolating with $2 \cdot w(J) \leq w(I)$.

1: **procedure** APPROXIMATE_BISECTION(f, I = (a, b), s)

2: $V \leftarrow [a + (i-1) \cdot \frac{b-a}{4}, i = 1, \dots, 5]$

3: S = [s, 0, 0, 0, -s]

4: $\rho \leftarrow 2$

- 5: while *S* contains more than one zero do
- 6: **for** i=2,...,4 **do** 7: If S[i] = 0, set
 - If S[i] = 0, set $S[i] \leftarrow \operatorname{sign} \mathfrak{B}(f(V[i]), \rho)$
- 8: $\rho \leftarrow 2\rho$ 9: Find *v*, *w*, such that $S[v] \cdot S[w] = -1 \land (v+1 = w \lor (v+2 = w \land S[v+1] = 0))$ 10: return (V[v], V[w])

is reasonable large and leads to an upper bound of the required precision (Lemma 5).

We next describe our bitstream variant of the QIR method that we call *approximate quadratic interval refinement*, or AQIR for short (see also Figure 1 for the illustration of an AQIR step for N = 4). Compared to the exact variant, we replace two substeps. In Step 4, we replace the computation of $\lambda := N \frac{f(a)}{f(a) - f(b)}$ as follows: For a working precision ρ , we evaluate f(a) and f(b) via interval arithmetic with precision ρ (blue vertical intervals in the above figure) and evaluate $N \frac{f(a)}{f(a) - f(b)}$ with interval arithmetic accordingly (cf. Section 4). Let J = (c, d) denote the resulting interval (in Figure 1, $\mathscr{I} = a + J \cdot \frac{b-a}{N}$ is the intersection of the stripe defined by the interval evaluations of f(a) and f(b) with the real axis). If the width w(J) of J is more than $\frac{1}{4}$, we set ρ to 2ρ and retry. Otherwise, let ℓ be the integer closest to mid(J) and set $m^* := a + \ell \cdot \frac{b-a}{N}$. For $m = a + \frac{f(a)}{f(a) - f(b)}(b-a)$ as before and $m_j := a + j \cdot \frac{b-a}{N}$ (red dots) for $j = 0, \dots, N$, the following Lemma shows that the computed $m^* = m_\ell$ indeed approximates m on the m_j -grid:

Lemma 1. Let *m* be inside the subinterval $[m_j, m_{j+1}]$. Then, $m^* = m_j$ or $m^* = m_{j+1}$. Moreover, let $m' \in \{m_j, m_{j+1}\}$ be the point that is closer to *m*. If $|m - m'| < \frac{b-a}{4N}$, then $m^* = m'$.

PROOF. Let $\lambda := N \frac{f(a)}{f(a)-f(b)}$ and *J* the interval computed by interval arithmetic as above, with width at most $\frac{1}{4}$. Since $m = f(a) + \lambda \frac{b-a}{N} \in [m_j, m_{j+1}]$, it follows that $j \le \lambda \le j+1$. By construction, $\lambda \in J$. Therefore, $|\lambda - \text{mid}(J)| \le \frac{1}{8}$ and, thus, it follows that mid(J) can only be rounded to *j* or j+1. Furthermore, for $m' = m_j$, $|m - m'| < \frac{b-a}{4N}$ implies that $|\lambda - j| < \frac{1}{4}$. It follows that $|\text{mid}(J) - j| < \frac{3}{8}$ by the triangle inequality, so mid(J) must be rounded to *j*. The case $m' = m_{j+1}$ is analogous.

The second substep to replace in the QIR method is to check for sign changes in subintervals in Steps 6-8. As before, we set $\omega := w(I)/N$. Instead of comparing the signs at m' and $m' \pm \omega$, we choose the seven subdivision points (red crosses in Figure 1)

$$m^* - \omega, m^* - \frac{7\omega}{8}, m^* - \frac{\omega}{2}, m^*, m^* + \frac{\omega}{2}, m^* - \frac{7\omega}{8}, m^* + \omega.$$
 (2)

In case that $m^* = a$ or $m^* = b$, we only choose the 4 points of (2) that lie in *I*. For a working precision ρ , we evaluate the sign of *f* at all subdivision points using interval arithmetic. If the sign remains unknown for more than one point, we set ρ to 2ρ and retry. After the sign is determined for all except at most one of the points,

we look for a sign change in the sequence. If such a sign change occurs, we set the corresponding interval I^* as isolating and call the AQIR step successful. Otherwise, we call the step failing and keep the old isolating interval. As in the exact case, we square up N after a successful step, and reduce it to its square root after a failing step. See Algorithm 3 for a complete description.

Note that, in case of a successful step, the new isolating interval I^* satisfies $\frac{1}{8N}w(I) \le w(I^*) \le \frac{1}{N}w(I)$. Also, similar to the bisection method, the function can only be zero at one of the chosen subdivision points, and the function is guaranteed to be reasonably large for all but one of them, which leads to a bound on the necessary precision (Lemma 7). The reader might wonder why we have chosen a non-equidistant grid involving the subdivision points $m^* \pm \frac{7}{8}\omega$. The reason is that these additional points allow us to give a success guarantee of the method under certain assumptions in the following lemma, which is the basis to prove quadratic convergence if the interval is smaller than a certain threshold (Section 5.2).

Lemma 2. Let I = (a,b) be an isolating interval for some root ξ of f, s = sign(f(a)) and m as before. If $|m - \xi| < \frac{b-a}{8N} = \frac{\omega}{8}$, then AQIR(f, I, N, s) succeeds.

PROOF. Let m^* be the subdivision point selected by the AQIR method. We assume that $m^* \notin \{a, b\}$; otherwise, a similar (simplified) argument applies. By Lemma 1 $m \in [m^* - \frac{3}{4}\omega, m^* + \frac{3}{4}\omega]$ and, thus, $\xi \in (m^* - \frac{7}{8}\omega, m^* + \frac{7}{8}\omega)$. It follows that the leftmost two points of (2) have a different sign than the rightmost two points of (2). Since the sign of f is evaluated for at least one value on each side, the algorithm detects a sign change and, thus, succeeds.

ANALYSIS OF AN AQIR STEP 4.

The running time of an AQIR step depends on the maximal precision ρ needed in the two while loops (Step 5, Steps 11-14) of Algorithm 3. The termination criterion of both loops is controlled by evaluations of the form $\mathfrak{B}(E,\rho)$, where E is some polynomial expression and ρ is the current working precision.

We specify recursively what we understand by evaluating E in precision ρ with interval arithmetic. For that, we define down(x, ρ) for $x \in \mathbb{R}$ and $\rho \in \mathbb{N}$ to be the maximal $x_0 \leq x$ such that $x_0 = \frac{k}{2^p}$ for some integer k. The same way $up(x, \rho)$ is the minimal $x_0 \ge x$ with x_0 of the same form. We extend this definition to arithmetic expressions by the following rules (we leave out ρ for brevity):

Finally, we define the interval $\mathfrak{B}(E,\rho) := [\operatorname{down}(E,\rho), \operatorname{up}(E,\rho)].$ By definition, the exact value of E is guaranteed to be contained in $\mathfrak{B}(E,\rho)$. We assume that polynomials $f \in \mathbb{R}[x]$ are evaluated according to the Horner scheme, and when evaluating f(c) with precision ρ , we apply the above rules in each arithmetic step. The next lemma provides a worst case bound on the size of the resulting interval $\mathfrak{B}(f(c), \rho)$ under certain conditions; see [13] for a proof of Lemma 3. We also remark that, in an actual implementation, $\mathfrak{B}(E,\rho)$ is usually much smaller than the worst case bound derived here. Nevertheless, our complexity analysis is based on it.

Algorithm 3 Approximate Quadratic interval refinement

INPUT: $f \in \mathbb{R}[x]$ square-free, I = (a, b) isolating, $N = 2^{2^i} \in \mathbb{N}$, $s = \operatorname{sign}(f(a))$

- OUTPUT: (J, N') with $J \subseteq I$ isolating and $N' \in \mathbb{N}$
- 1: procedure AQIR(f, I = (a, b), N)
- 2: if N = 2, return (APPROXIMATE_BISECTION(f, I, s),4).
- $\omega \leftarrow \frac{b-a}{N}$ 3:
- $ho \leftarrow 2$ 4:
- while $J \leftarrow \mathfrak{B}(N\frac{f(a)}{f(a)-f(b)}, \rho)$ has width $> \frac{1}{4}$, set $\rho \leftarrow 2\rho$ $m^* \leftarrow a + \operatorname{round}(\operatorname{mid}(J)) \cdot \omega$ 5:
- 6:
- if $m^* = a$, $s \leftarrow 4, V \leftarrow [m^*, m^* + \frac{1}{2}\omega, m^* + \frac{7}{8}\omega, m^* + \frac{1}{2}\omega, m^* + \frac{1}{2}$ 7: $\boldsymbol{\omega}$], $S \leftarrow [s, 0, 0, 0]$
- if $m^* = b$, $s \leftarrow 4, V \leftarrow [m^* \omega, m^* \frac{7}{8}\omega, m^* \omega, m^* \omega,$ 8: $\frac{1}{2}\omega, m^*$], $S \leftarrow [0, 0, 0, -s]$

9: **if**
$$a < m^* < b$$
, $s \leftarrow 7, V \leftarrow [m^* - \omega, m^* - \frac{7}{8}\omega, m^* - \frac{1}{2}\omega, m^*, m^* + \frac{1}{2}\omega, m^* + \frac{7}{8}\omega, m^* + \omega], S \leftarrow [0, 0, 0, 0, 0, 0, 0]$

- $\rho \leftarrow 2$ 10:
- while S contains more than one zero do 11:
- 12: for i=1,...,s do
- If S[i] = 0, set $S[i] \leftarrow \operatorname{sign} \mathfrak{B}(f(V[i]), \rho)$ 13:
- 14: $\rho \leftarrow 2\rho$
- 15: If $\exists v, w : S[v] \cdot S[w] = -1 \land (v+1) = w \lor (v+2) = w \land S[v+1)$ [1] = 0) return $((V[v], V[w]), N^2)$
- 16: Otherwise, return (I, \sqrt{N})

Lemma 3. Let f be a polynomial as in (1), $c \in \mathbb{R}$ with $|c| < 2^{\tau}$, and $\rho \in \mathbb{N}$. Then,

$$|f(c) - \operatorname{down}(f(c), \rho)| \le 2^{-\rho + 1} (d+1)^2 2^{\tau d}$$
(3)

$$|f(c) - \operatorname{up}(f(c), \rho)| \le 2^{-\rho + 1} (d+1)^2 2^{\tau d}$$
(4)

In particular, $\mathfrak{B}(f(c), \rho)$ has a width of at most $2^{-\rho+2}(d+1)^2 2^{\tau d}$.

We remark that, for the sake of simplicity, we decided to assume fixed-point arithmetic, that means, ρ determines the number of bits after the binary point. We refer the interested reader to [14, Thm. 12], where a corresponding result for floating-point arithmetic is given.

We analyze the required working precision of approximate bisection and of an AQIR step next. We exploit that, whenever we evaluate f at t subdivision points, t - 1 of them have a certain minimal distance to the root in the isolating interval. The following lemma gives a lower bound on $|f(x_0)|$ for such a point x_0 , given that it is sufficiently far away from any other root of f.

Lemma 4. Let f be as in (1), $\xi = z_{i_0}$ a real root of f and x_0 a real value with distance $|x_0 - z_i| \ge \frac{\sigma_i}{4}$ to all real roots $z_i \ne z_{i_0}$. Then,

$$|f(x_0)| > |\xi - x_0| \cdot 2^{-(2d + \tau + \Sigma_f)}.$$

(recall the notations from Section 1 for the definitions of σ_i and Σ_f)

PROOF. For each non-real root z_i of f, there exists a complex conjugate root \bar{z}_i and, thus, we have $|x_0 - z_i| \ge \text{Im}(z_i) \ge \frac{\sigma_i}{2} > \frac{\sigma_i}{4}$ for all $i = m + 1, \dots, d$ as well. It follows that

$$|f(x_0)| = |a_d \prod_{i=1}^d (x_0 - z_i)| = |a_d| \cdot |\xi - x_0| \cdot \prod_{i=1,\dots,d: i \neq i_0} |x_0 - z_i|$$

$$\geq |\xi - x_0| \cdot \frac{4}{\sigma_{i_0}} \cdot \prod_{i=1}^d \frac{\sigma_i}{4} > |\xi - x_0| \cdot 2^{-2d - \tau} \cdot 2^{-\Sigma_f},$$

where the last inequality uses that $|z_i| < 1 + \frac{\max|a_i|}{|a_d|} < 2^{\tau+1}$ by Cauchy's Bound [19] and, thus, $\sigma(z_{i_0}) \le 2^{\tau+2}$.

We next analyze an approximate bisection step.

Lemma 5. Let f be a polynomial as in (1), I = (a,b) be an isolating interval for a root $\xi = z_{i_0}$ of f and s = sign(f(a)). Then, Algorithm 2 applied on (f, I, s) requires a maximal precision of

$$\begin{split} \rho_0 &:= 2\log(b-a)^{-1} + 4\log(d+1) + 4d + 10 + 2(d+1)\tau + 2\Sigma_f \\ &= O(\log(b-a)^{-1} + d\tau + \Sigma_f), \end{split}$$

and its bit complexity is bounded by $\tilde{O}(d(\log(b-a)^{-1}+d\tau+\Sigma_f))$.

PROOF. Consider the three subdivision points $m_j := a + j \cdot \frac{b-a}{4}$, where $1 \le j \le 3$, and an arbitrary real root $z_i \ne \xi$ of f. Note that $|m_j - z_i| > \frac{b-a}{4}$ because the segment from m_j to z_i spans at least over a quarter of (a,b). Moreover, $|\xi - m_j| \le \frac{3}{4}(b-a)$, and so

$$\sigma_i \leq |\xi - z_i| \leq |\xi - m_j| + |m_j - z_i| \leq \frac{3}{4}(b - a) + |m_j - z_i| \leq 4|m_j - z_i|.$$

It follows that m_j has a distance to z_i of at least $\frac{\sigma_i}{4}$. Hence, we can apply Lemma 4 to each m_j , that is, we have $|f(m_j)| > |\xi - m_j| \cdot 2^{-(2d + \tau + \Sigma_f)}$. Since the signs of *f* at the endpoints of *I* are known, it suffices to compute the signs of *f* at two of the three subdivision points. For at least two of these points, the distance of m_j to ξ is at least $\frac{b-a}{8}$, thus, we have $|f(m_j)| > |b-a| \cdot 2^{-(2d+3+\tau+\Sigma_f)}$ for at least two points. Then, due to Lemma 3, we can use interval arithmetic with a precision ρ to compute these signs if ρ satisfies

$$2^{-\rho+2}(d+1)^2 2^{d\tau} \le (b-a) \cdot 2^{-(2d+3+\tau+\Sigma_f)}$$

which is equivalent to $\rho \geq \frac{\rho_0}{2}$. Since we double the precision in each step, we will eventually succeed with a precision smaller than ρ_0 . The bit complexity for an arithmetic operation with fixed precision ρ is $\tilde{O}(\rho + d\tau)$. Namely, since the absolute value of each subdivision point is bounded by $O(\tau)$, the results in the intermediate steps have magnitude $O(d\tau)$ and we consider ρ bits after the binary point. At each subdivision point, we have to perform O(d) arithmetic operations for the computation of $f(m_j)$, thus, the costs for these evaluations are bounded by $\tilde{O}(d(d\tau + \rho))$. Since we double the precision in each iteration, the total costs are dominated by the last successful evaluation and, thus, we have to perform $\tilde{O}(d(\rho_0 + d\tau)) = \tilde{O}(d(\log(b-a)^{-1} + d\tau + \Sigma_f))$ bit operations. \Box

We proceed with the analysis of an AQIR step. In order to bound the required precision, we need additional properties of the isolating interval.

Definition 6. Let f be as in (1) and let I := (a,b) be an isolating interval of a root ξ of f. We call I normal if

- $I \subseteq (-2^{\tau+3}, 2^{\tau+3}),$
- $|p-z_i| > \frac{\sigma_i}{4}$ for every $p \in I$ and $z_i \neq \xi$, and
- $\min\{|f(a)|, |f(b)|\} \ge 2^{-(32d\tau + 2\Sigma_f 5\log(b-a))}.$

In simple words, a normal isolating interval has a reasonable distance to any other root of f, and the function value at the endpoints is reasonably large. We will later see that it is possible to get normal intervals by a sequence of approximate bisection steps.

Lemma 7. Let f be a polynomial as in (1), I = (a,b) be a normal isolating interval for a root $\xi = z_{i_0}$ of f with s = sign(f(a)), and let $N \le 2^{2(\tau+5\log(b-a))}$. Then, the AQIR step for (f, I, N, s) requires

a precision of at most $\rho_{max} := 87d\tau + 4\Sigma_f - 14\log(b-a)$ and, therefore, its bit complexity is bounded by

$$\tilde{O}(d(d\tau + \Sigma_f - \log(b - a))).$$

Moreover, the returned interval is again normal.

PROOF. We have to distinguish two cases. For N > 2, we consider the two while-loops in Algorithm 3. In the first loop (Step 5), we evaluate $N \frac{f(a)}{f(a)-f(b)}$ via interval arithmetic, doubling the precision ρ until the width of the resulting interval *J* is less than or equal to 1/4. The following considerations show that we can achieve this if ρ fulfills

$$2^{-\rho+1}(d+1)^2 2^{d\tau} \le \frac{\min(|f(a)|, |f(b)|)}{32N}.$$
 (5)

W.l.o.g., we assume f(a) > 0. If ρ fulfills the above condition, then, due to Lemma 3, $\mathfrak{B}(N \cdot f(a), \rho)$ is contained in the interval

$$[Nf(a) - \frac{|f(a)|}{32}, Nf(a) + \frac{|f(a)|}{32}] = Nf(a) \cdot [1 - \frac{1}{32N}, 1 + \frac{1}{32N}]$$

and $\mathfrak{B}(f(a) - f(b), \rho)$ is contained in $(f(a) - f(b)) \cdot [1 - \frac{1}{32N}, 1 + \frac{1}{32N}]$, where we used that f(a) and f(b) have different signs. It follows that $\mathfrak{B}(N\frac{f(a)}{f(a)-f(b)}, \rho)$ is contained in the interval $\frac{Nf(a)}{f(a)-f(b)} \cdot [(1 - \frac{1}{32N})/(1 + \frac{1}{32N}), (1 + \frac{1}{32N})/(1 - \frac{1}{32N})]$, and a simple computation shows that $N \cdot [(1 - \frac{1}{32N})/(1 + \frac{1}{32N}), (1 + \frac{1}{32N})]$ has width less than 1/4. Hence, since $\frac{f(a)}{f(a)-f(b)}$ has absolute value less than 1, $\mathfrak{B}(N\frac{f(a)}{f(a)-f(b)}, \rho)$ has width less than 1/4 as well. The bound (5) on ρ also writes as

$$\rho \ge 7 + \log(d+1) + d\tau + \log N + \log \min(|f(a), f(b)|)^{-1}$$

and since we double ρ in each iteration, computing $N \frac{f(a)}{f(a)-f(b)}$ via interval arithmetic up to an error of 1/4 is achieved with a precision

$$\begin{split} \rho &< 14 + 2\log(d+1) + 2d\tau + 2\log N + 2\log\min(|f(a), f(b)|)^{-1} \\ &< 11d\tau + 2\log N + 2\log\min(|f(a), f(b)|)^{-1}. \end{split}$$

Because I is normal and because of the assumption on N we can bound this by

$$\begin{split} \rho &< 11 d\tau + 4 (\tau + 5 - \log(b - a)) + 2 (32 d\tau + 2 \Sigma_f - 5 \log(b - a)) \\ &< 87 d\tau + 4 \Sigma_f - 14 \log(b - a) = \rho_{max}. \end{split}$$

We turn to the second while loop of Algorithm 3 (that is, Steps 11-14) where *f* is evaluated at the subdivision points $m^* - \omega, m^* - \frac{7\omega}{8}, \ldots, m^* + \omega$ as defined in (2). Since the interval is normal, we can apply Lemma 4 to each of the seven subdivision points. At least six of these points have distance $\geq \frac{b-a}{16N}$ to the root ξ and, thus, for these points, |f| is larger than $\frac{b-a}{16N} \cdot 2^{-(2d+\tau+\Sigma_f)}$. Then, according to Lemma 5, it suffices to use a precision ρ that fulfills

$$2^{-\rho+1}(d+1)^2 2^{d\tau} \le \frac{b-a}{16N} \cdot 2^{-(2d+\tau+\Sigma_f)}, \text{ or }$$

 $\rho \ge \rho_1 := 2\log(d+1) + (d+1)\tau + 2d + 5 + \Sigma_f + \log N - \log(b-a).$

The same reasoning as above then shows that the point evaluation will be performed with a maximal precision of less than

$$2\rho_1 < 2(10d\tau + \Sigma_f + \log N - \log(b-a))$$

$$\leq 20d\tau + 2\Sigma_f + 4(\tau + 5 - \log(b-a)) - \log(b-a)$$

$$\leq 32d\tau + 2\Sigma_f - 5\log(b-a)$$

Algorithm 4 Normalization

INPUT: $f \in \mathbb{R}[t]$ a polynomial as in (1), $I_1 = (a_1, b_1), \dots, I_m =$ (a_m, b_m) disjoint isolating intervals in ascending order, s_1, \ldots, s_m with $s_k = \operatorname{sign}(f(\min I_k))$ OUTPUT: normal isolating intervals J_1, \ldots, J_m with $z_k \in I_k \cap J_k$ 1: **procedure** NORMALIZE (f, I_1, \ldots, I_m) 2: for k=1,...,m-1 do while $\min I_{k+1} - \max I_k < 3 \max\{w(I_k), w(I_{k+1})\}$ do 3: 4: **if** $w(I_k) > w(I_{k+1})$ then APPROXIMATE_BISECTION (f, I_k, s_k) 5: 6: else APPROXIMATE_BISECTION (f, I_{k+1}, s_{k+1}) 7: for k=1,...,m-1 do 8: $d_k \leftarrow \min I_{k+1} - \max I_k$ $J_k \leftarrow [a_k - d_{k-1}/3, b_k + d_k/3]$ 9: \triangleright enlarge I_k by more than $w(I_k)$ at both sides return J_1, \ldots, J_m 10:

which is bounded by ρ_{max} . Moreover, at the new endpoints a' and b', |f| is at least

$$2^{-2\rho_1} > 2^{-(32d\tau + 2\Sigma_f - 5\log(b-a))} > 2^{-(32d\tau + 2\Sigma_f - 5\log(b'-a'))}$$

which proves that I' = (a', b') is again normal.

It remains to treat the case N = 2, where a bisection step is performed. It is straight-forward to see with Lemma 5 that the required precision is bounded by ρ_{max} , and in an analogous way as for the point evaluations for N > 2, we can see that the resulting interval is again normal. By the same argument as in Lemma 5, the overall bit complexity of the AQIR step is bounded by $\tilde{O}(d\rho_{max})$.

5. ROOT REFINEMENT

We next analyze the complexity of our original problem: Given a polynomial f as in (1) and isolating intervals for all its real roots, refine the intervals to a size of at most 2^{-L} . Our refinement method consists of two steps. First, we turn the isolating intervals into normal intervals by applying bisections repeatedly. Second, we call the AQIR method repeatedly on the intervals until each has a width of at most 2^{-L} . Algorithm 5 summarizes our method for root refinement. We remark that depending on the properties of the root isolator used to get initial isolating intervals, the normalization can be skipped; this is for instance the case when using the isolator from [18]. We also emphasize that the normalization is unnecessary for the correctness of the algorithm; its purpose is to prevent the working precision in a single AQIR step of growing too high.

5.1 Normalization

The normalization (Algorithm 4) consists of two steps: first, the isolating intervals are refined using approximate bisection until the distance between two consecutive intervals is at least three times larger than the size of the larger of the two involved intervals. This ensures that all points in an isolating interval are reasonably far away from any other root of f. In the second step, each interval is enlarged on both sides by an interval of at least the same size as itself. This ensures that the endpoints are sufficiently far away from any root of f to prove a lower bound of f at the endpoints. W.l.o.g., we assume that the input intervals are contained in $(-2^{\tau+1}, 2^{\tau+1})$ because by Cauchy's bound [19], all roots are contained in that interval, so the leftmost and rightmost intervals are still isolating and disjoint from each other. Moreover, they do not become too small during the bisection process:

Algorithm 5 Root Refinement

INPUT: $f = \sum a_i x^i \in \mathbb{R}[t]$ a polynomial as in (1), isolating intervals I_1, \ldots, I_m for *all* real roots of f in ascending order, $L \in \mathbb{Z}$ OUTPUT: isolating intervals J_1, \ldots, J_m with $w(J_k) \leq 2^{-L}$ 1: **procedure** ROOT_REFINEMENT (f, L, I_1, \ldots, I_m) 2: $s_k := \operatorname{sign}(a_d) \cdot (-1)^{m-k+1} \triangleright s_k = \operatorname{sign}(f(\min I_k))$

2: $s_k := \operatorname{sign}(a_d) \cdot (-1) \qquad \Rightarrow s_k = \operatorname{sign}(f(\operatorname{IIII} I_k))$ 3: $J_1, \dots, J_m \leftarrow \operatorname{NORMALIZE}(f, I_1, \dots, I_m)$

3: $J_1, \ldots, J_m \leftarrow \text{NORMALIZE}(f, I_1, \ldots, I_m)$ 4: **for** k=1,...,m **do**

5: $N \leftarrow 4$

6: while $w(J_k) > 2^{-L}$ do $(J_k, N) \leftarrow \operatorname{AQIR}(f, J_k, N, s_k)$ 7: return J_1, \dots, J_m

Lemma 8. For J_1, \ldots, J_m as returned by Alg. 4, $w(J_k) \geq \frac{1}{3}\sigma_k$.

PROOF. After the first for-loop, the distance d_k between any two consecutive intervals I_k and I_{k+1} fulfills $d_k \ge 3 \max\{w(I_k), w(I_{k+1})\}$, thus $\sigma_k < w(I_k) + w(I_{k+1}) + d_k < 2d_k$. Hence, in the last step, each I_k is enlarged by at least $\sigma_k/6$ on each side. This proves that the corresponding enlarged intervals J_k have size $\sigma_k/3$ or more.

Lemma 9. Algorithm 4 is correct, i.e., returns normal intervals.

PROOF. Let J_1, \ldots, J_m denote the returned intervals, and fix some interval J_k containing the root z_k of f. We have to prove the three properties of Definition 6. The first property is clear because the initial interval are assumed to lie in $(-2^{\tau+1}, 2^{\tau+1})$. In the proof of Lemma 8, we have already shown that I_k is eventually enlarged by at least $\sigma_k/6$ on each side. More precisely, the right endpoint of J_k has distance at least $d_k/3 > \sigma_{k+1}/6$ to J_{k+1} , and the left endpoint of J_k has distance at least $d_{k-1}/3 > \sigma_{k-1}/6$ to J_{k-1} . It follows that, for each $x_0 \in J_k$, we have $|x_0 - z_{k\pm 1}| \le \sigma_{k\pm 1}/3$, respectively. Hence, the second property in Definition 6 is fulfilled.

For the third property of Definition 6, let *e* be one of the endpoints of J_k . We have just proved that the distance to every root z_i except z_k is at least $\frac{\sigma_i}{3}$ and $|e - z_k| \ge \sigma_k/6$. With an estimation similar as in the proof of Lemma 4, we obtain:

$$|f(e)| \ge \frac{\sigma_k}{6} \prod_{i \ne k} \frac{\sigma_i}{3} \ge \frac{1}{8} \cdot \frac{1}{4^{d-1}} 2^{-\Sigma_f} = 2^{-(2d+\Sigma_f+1)},$$

and $2^{-(2d+\Sigma_f+1)} \ge 2^{-(24d\tau+2\Sigma_f-5\log(b-a))}$ because $\log(b-a) \le \tau+3 \le 2d\tau$ and $-\Sigma_f \le d\tau+1 < 2d\tau$.

Lemma 10. Algorithm 4 has a complexity of $\tilde{O}(d(\tau d + \Sigma_f)^2)$

PROOF. As a direct consequence of Lemma 8, each interval I_k is only bisected $O(\tau + \log(\sigma_k)^{-1})$ many times because each starting interval is assumed to be contained in $(-2^{\tau+1}, 2^{\tau+1})$. So the total number of bisections adds up to $O(d\tau + \Sigma_f)$ considering all roots of f. Also, the size of the isolating interval I_k is lower bounded by $\frac{1}{3} \cdot \sigma_k = 2^{-O(\Sigma_f + d\tau)}$, so that one approximate bisection step has a complexity of $\tilde{O}(d(d\tau + \Sigma_f))$ due to Lemma 5.

5.2 The AQIR sequence

It remains to bound the cost of the calls of AQIR. We mostly follow the reasoning from [12]. We introduce the following convenient notation:

Definition 11. Let $I_0 := I$ be a normal isolating interval for some real root ξ of f, $N_0 := 4$ and $s := \text{sign}(\min I_0)$. The AQIR sequence $(S_0, S_1, \ldots, S_{\nu_{\xi}})$ is defined by

$$S_0 := (I_0, N_0) = (I, 4)$$
 $S_i = (I_i, N_i) := \operatorname{AQIR}(f, I_{i-1}, N_{i-1}, s) \text{ for } i \ge 1,$

where v_{ξ} is the first index such that the interval $I_{v_{\xi}}$ has width at most 2^{-L} . We say that $S_i \stackrel{AQIR}{\rightarrow} S_{i+1}$ succeeds if $AQIR(f, I_i, N_i, s)$ succeeds, and that $S_i \stackrel{AQIR}{\rightarrow} S_{i+1}$ fails otherwise.

As in [12], we divide the AQIR sequence into two parts according to the following definition.

Definition 12. Let ξ be a root of f. Define

$$C_{\xi} := \frac{|f'(\xi)|}{8ed^3 2^{\tau} \max\{|\xi|, 1\}^{d-1}},$$

where $e \approx 2.71...$ denotes the Eulerian number. For $(S_0,...,S_{v_{\xi}})$ the AQIR sequence of ξ , define k the minimal index such that $S_k = (I_k, N_k) \xrightarrow{\text{AQIR}} S_{k+1}$ succeeds and $w(I_k) \leq C_{\xi}$. We call $(S_0,...,S_k)$ linear sequence and $(S_k,...,S_{v_{\xi}})$ quadratic sequence of ξ

Note that $C_{\xi} = \frac{1}{4}M_{\xi}$ as defined in [12], and that the linear sequence was called *initial sequence* therein. We renamed it to avoid confusion with the initial normalization phase in our variant.

Quadratic convergence. We start by justifying the name "quadratic sequence". Indeed, it turns out that all but at most one AQIR step in the quadratic sequence are successful, hence, N is squared in (almost) every step and therefore, the refinement factor of the interval is doubled in (almost) every step. The proof is mostly analogous to [12]. The following bound follows from considering the Taylor expansion of f at ξ in the expression for m (see also [13]).

Lemma 13. [12, Thm. 4.8] Let (a,b) be isolating for ξ with width $\delta < C_{\xi}$ and m as in Lemma 2. Then, $|m - \xi| \leq \frac{\delta^2}{8C_{\varepsilon}}$.

Corollary 14. Let I_j be an isolating interval for ξ of width $\delta_j \leq \frac{C_{\xi}}{N_j}$. Then, each call of the AQIR sequence

$$(I_j, N_j) \stackrel{\text{AQIR}}{\rightarrow} (I_{j+1}, N_{j+1}) \stackrel{\text{AQIR}}{\rightarrow} \dots$$

succeeds.

PROOF. We use induction on *i*. Assume that the first *i* AQIR calls succeed. Then, another simple induction shows that $\delta_{j+i} := w(I_{j+i}) \leq \frac{N_j \delta_j}{N_{j+i}} < \frac{C_{\xi}}{N_{j+i}}$, where we use that $N_{j+i} = N_{j+i-1}^2$. Then, according to Lemma 13, we have that

$$|m - \xi| \le \delta_{j+i}^2 \frac{1}{8C_{\xi}} \le \delta_{j+i} \frac{C_{\xi}}{N_{j+i}} \frac{1}{8C_{\xi}} = \frac{1}{8} \frac{\delta_{j+i}}{N_{j+i}}$$

with *m* as above. By Lemma 2, the AQIR call succeeds.

Corollary 15. [12, Cor. 4.10] In the quadratic sequence, there is at most one failing AQIR call. (see [13] for a proof)

Cost of the linear sequence. We bound the costs of refining the isolating interval of ξ to size C_{ξ} with AQIR. We first show that, on average, the AQIR sequence refines by a factor two in every second step. This shows in particular that refining using AQIR is at most a factor of two worse than refining using approximate bisection.

Lemma 16. Let $(S_0, ..., S_\ell)$ denote an arbitrary prefix of the AQIR sequence for ξ , starting with the isolating interval I_0 of width δ . Then, the width of I_ℓ is not larger than $\delta 2^{-(\ell-1)/2}$.

PROOF. Consider a subsequence
$$(S_i, \ldots, S_{i+j})$$
 of (S_0, \ldots, S_ℓ) such that $S_i \xrightarrow{A_{QIR}} S_{i+1}$ is successful, but any other step in the subsequence fails. Because there are *j* steps in total, and thus $j - 1$ consecutive

failing steps, the successful step must have used a N with $N \ge 2^{2^{j-1}}$. Because $2^{j-1} > \frac{j}{2}$, it holds that

$$w(I_{i+j}) \le \frac{w(I_i)}{N} \le w(I_i)2^{-2^{j-1}} < w(I_i)2^{-j/2}.$$

Repeating the argument for maximal subsequences of this form, we get that either $w(I_{\ell}) \leq w(I_0)2^{-\ell/2}$ if the sequence starts with a successful step, or $w(I_{\ell}) \leq w(I_0)2^{-(\ell-1)/2}$ otherwise, because the second step must be successful in this case.

We want to apply Lemma 7 to bound the bit complexity of a single AQIR step. The following lemma shows that the condition on N from Lemma 7 is always met in the AQIR sequence.

Lemma 17. Let $(I_j, N_j) \xrightarrow{\text{AQIR}} (I_{j+1}, N_{j+1})$ be a call in an AQIR sequence and $I_j := (a, b)$. Then, $N_j \leq 2^{2(\tau+5-\log(b-a))}$.

PROOF. We do induction on *j*. Note that $I_0 \subset (-2^{\tau+3}, 2^{\tau+3})$ by normality, hence $b - a \leq 2^{\tau+4}$. It follows that $2^{2(\tau+5-\log(b-a))} \geq$ $4 = N_0$. Assume that the statement is true for j - 1. If the previous step $(I_{j-1}, N_{j-1}) \stackrel{\text{AQIR}}{\rightarrow} (I_j, N_j)$ is failing, then $N_j = \sqrt{N_{j-1}}$ and the isolating interval remains unchanged, so the statement is trivially correct. If the step is successful, then it holds that $(b - a) \leq \frac{2^{\tau+4}}{\sqrt{N_j}}$. By rearranging terms, we get that $N_j \leq 2^{2(\tau+4-\log(b-a))}$.

It follows inductively that the conditions of Lemma 7 are met for each call in the AQIR sequence because I_0 is normal by construction. Therefore, the linear sequence for a root ξ of f is computed with a bit complexity of

$$\tilde{O}((\tau + \log(C_{\xi})^{-1})d(\log(C_{\xi}^{-1}) + d\tau + \Sigma_f))$$
(6)

because $O(\tau + \log(C_{\xi}^{-1}))$ steps are necessary to refine the interval to a size smaller than C_{ξ} by Lemma 16, and the bit complexity is bounded by $\tilde{O}(d(\log(C_{\xi}^{-1}) + d\tau + \Sigma_f))$ with Lemma 7. It remains to bound $\log(C_{\xi})^{-1}$; we do so by bounding the sum of all $\log(C_{\xi})^{-1}$ with the following lemma.

Lemma 18. $\sum_{i=1}^{m} \log(C_{z_i})^{-1} = O(d(\tau + \log d) + R))$

PROOF. We can write the sum as

$$\sum_{i=1}^{m} \log(C_{z_i})^{-1} \le O(d(\tau + \log d)) + d \cdot \log \operatorname{Mea}(f) - \log |\prod_{i=1}^{n} f'(z_i)|$$

where Mea(f) is the Mahler measure of f (see [12, Thm 4.5] for a more detailed calculation). It is known that $\log \text{Mea}(f) = O(\tau + \log d)$. For the last summand, we use the relation $\text{res}(f, f') = a_d^{d-1} \prod_{i=1}^n f'(z_i)$; see [2, Thm.4.16] [19, Thm.6.15]. It follows that

$$-\log|\prod_{i=1}^{n} f'(z_i)| = \log|a_d^{d-1}| - \log|\operatorname{res}(f, f')| \le (d-1)\tau + R. \quad \Box$$

When we apply Lemma 18 to (6), we obtain a bound that depends on d, τ , Σ_f , and R. The next result shows that Σ_f is bounded by $\tilde{O}(d\tau + R)$. The proof is only sketched for brevity; a complete proof is given in [13].

Theorem 19. $\Sigma_f \in O(d(\tau + \log d) + R).$

PROOF. The product of all σ_i 's is a product of root differences, and corresponds to the nearest neighbor graph [8] of the roots of f. We would like to apply the Davenport-Mahler bound [9] on this product, but the preconditions of it are not satisfied. However, by exploiting simple properties of the nearest neighbor graph, we can define another root product *P* such that $2^{-\Sigma_f} \ge 2^{-5d(\tau+1)}P^6$ and such that the Davenport-Mahler bound is applicable to P. This yields that $\log \frac{1}{P} = O(d(\tau + \log d) + R)$. Π

Lemma 20. The linear sequences for all real roots are computed within a total bit complexity of $\tilde{O}(d(d\tau + R)^2)$.

PROOF. The total cost of all linear sequences is bounded by

$$\tilde{O}(\sum_{i=1}^{d}(\tau + \log(C_{z_{i}}^{-1}))d(\log(C_{z_{i}}^{-1}) + d\tau + \Sigma_{f}))$$

Using Theorem 19 and rearranging terms, we obtain

$$= \tilde{O}(d^2\tau(d\tau+R) + d(d\tau+R)\sum \log(C_{z_i}^{-1}) + d(\sum \log(C_{z_i}^{-1}))^2)$$

which equals $\tilde{O}(d(d\tau+R)^2)$ with Lemma 18.

which equals $\tilde{O}(d(d\tau + R)^2)$ with Lemma 18.

Cost of the quadratic sequence. Let us fix some root ξ of f. Its quadratic sequence consists of at most $1 + \log L$ steps, because N is squared in every step (except for at most one failing step) and the sequence stops as soon as the interval is smaller than 2^{-L} . Since we ignore logarithmic factors, it is enough to bound the costs of one OIR step in the sequence. Clearly, since the interval is not smaller than 2^{-L} in such a step, we have that $\log(b-a)^{-1} \leq L$. Therefore, the required precision is bounded by $O(L+d\tau+\Sigma_f)$. It follows that an AQIR step performs up to $\tilde{O}(d(L+d\tau+\Sigma_f))$ bit operations.

Lemma 21. The quadratic sequences for one real root is computed within a bit complexity of $\tilde{O}(d(L+d\tau+\Sigma_f))$.

Total cost. We have everything together to prove the main result

Theorem 22. Algorithm 5 performs root refinement within

 $\tilde{O}(d(d\tau + R)^2 + dL)$

bit operations for a single real root 2 of f, and within

$$\tilde{O}(d(d\tau+R)^2+d^2L)$$

for all real roots. The coefficients of f need to be approximated to $O(L + d\tau + \Sigma_f)$ bits after the binary point.

PROOF. We concentrate on the bound on all real roots; the case of a single root follows easily. By Lemma 10, the normalization requires $\tilde{O}(d(d\tau + \Sigma_f)^2) = \tilde{O}(d(d\tau + R)^2)$ bit operations. The linear subsequences of the AQIR sequence are computed in the same time by Lemma 20. The quadratic subsequences are computed with $\tilde{O}(d^2L + d^3\tau + d^2\Sigma_f)$ bit operations by Lemma 21; the latter two terms are both dominated by $d(d\tau + R)^2$ which yields the complexity bound. The maximal number of required bits follows from Lemma 7 because the maximal required precision in any AQIR step is bounded by $O(L + d\tau + \Sigma_f)$.

We remark without proof that, with little extra effort, the bound for a single root can be slightly improved to $\tilde{O}(d(d\tau + \Sigma_f)^2 + dL)$. For integer polynomials, res(f, f') is an integer and consequently R < 0. This improves the bound from [12] by a factor of d.

Corollary 23. If f is a polynomial with integer coefficients, the bit complexity of Algorithm 5 is bounded by

$$\tilde{O}(d^3\tau^2 + d^2L)$$

REFERENCES 6.

- [1] J. Abbott. Quadratic Interval Refinement for Real Roots. Poster presented at the 2006 Intern. Symp. on Symbolic and Algebraic Computation (ISSAC 2006), 2006.
- [2] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry. Springer, 2nd edition, 2006.
- [3] E. Berberich, P. Emeliyanenko, and M. Sagraloff. An elimination method for solving bivariate polynomial systems: Eliminating the usual drawbacks. In Workshop on Algorithm Engineering & Experiments (ALENEX), pages 35-47, 2011.
- [4] E. Berberich, M. Hemmer, and M. Kerber. A generic algebraic kernel for non-linear geometric applications. Research report 7274, INRIA, 2010.
- [5] J. Bus and T.J.Dekker. Two efficient algorithms with guaranteed convergence for finding a zero of a function. ACM Trans. on Math. Software, 1(4):330-345, 1975.
- [6] J. Cheng, S. Lazard, L. Peñaranda, M. Pouget, F. Rouillier, and E. Tsigaridas. On the topology of real algebraic plane curves. Mathematics in Computer Science, 4:113-137, 2010.
- [7] G. E. Collins and A. G. Akritas. Polynomial Real Root Isolation Using Descartes' Rule of Signs. In Proc. of the 3rd ACM Symp. on Symbolic and Algebraic Computation (SYMSAC 1976), pages 272-275. ACM Press, 1976.
- [8] D.Eppstein, M.S.Paterson, and F.F.Yao. On nearest-neighbor graphs. Discrete and Computational Geometry, 17(3):263-282, 1997.
- [9] Z. Du, V. Sharma, and C. Yap. Amortized bound for root isolation via Sturm sequences. In Symbolic-Numeric Computation, Trends in Mathematics, pages 113–129. Birkhäuser Basel, 2007.
- [10] A. Eigenwillig, M. Kerber, and N. Wolpert. Fast and exact geometric analysis of real algebraic plane curves. In Proc. of the 2007 Intern. Symp. on Symbolic and Algebraic Computation (ISSAC 2007), pages 151-158, 2007.
- [11] A. Eigenwillig, L. Kettner, W. Krandick, K. Mehlhorn, S. Schmitt, and N. Wolpert. A Descartes algorithm for polynomials with bit-stream coefficients. In 8th International Workshop on Computer Algebra in Scientific Computing (CASC 2005), volume 3718 of LNCS, pages 138-149, 2005.
- [12] M. Kerber. On the complexity of reliable root approximation. In 11th International Workshop on Computer Algebra in Scientific Computing (CASC 2009), volume 5743 of LNCS, pages 155-167. Springer, 2009.
- [13] M. Kerber and M. Sagraloff. Supplementary material for "Efficient Real Root Approximation", 2011. http://www.mpi-inf.mpg.de/~msagralo/apx11.pdf.
- [14] K. Mehlhorn, R. Osbild, and M. Sagraloff. A general approach to the analysis of controlled perturbation algorithms. CGTA, 2011. to appear; for a draft, see http://www.mpi-inf.mpg.de/~msagralo/cpgeneral.pdf.
- [15] V. Y. Pan. Optimal and nearly optimal algorithms for approximating polynomial zeros. Computers and Mathematics with Applications, 31(12):97-138, 1996.
- [16] V. Y. Pan. Solving a polynomial equation: Some history and recent progress. SIAM Review, 39(2):187-220, 1997.
- [17] F. Rouillier and P. Zimmermann. Efficient isolation of polynomial's real roots. Journal of Compututational and Applied Mathematics, 162(1):33-50, 2004.
- [18] M. Sagraloff. On the complexity of real root isolation. arXiv:1011.0344v1, 2010.
- [19] C. K. Yap. Fundamental Problems in Algorithmic Algebra. Oxford University Press, 2000.

²In its initial formulation, Algorithm 5 assumes that isolating intervals are for *all* real roots are given. If only one isolating interval I_k for a root z_k is given, we have to normalize I_k first and, then, compute the signs of f at the endpoints of I. Due to space constraints, we omit the details for this relatively simple step.