
Universität des Saarlandes, FR Informatik
Max-Planck-Institut für Informatik, AG 1

U
N

IV
E R S IT

A
S

S
A

R
A V I E N

S
I
S

Analysis of Real Algebraic
Plane Curves

Diplomarbeit im Fach Informatik
Diploma Thesis in Computer Science

von / by

Michael Kerber

Erstgutachter / first examiner

Prof. Dr. Kurt Mehlhorn

Zweitgutachterin / second examiner

Prof. Dr. Nicola Wolpert

Saarbrücken, 19. September 2006



2



Hilfsmittelerklärung (Non-plagiarism statement)

Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen
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Abstract

This work describes a new method to compute geometric properties of a real al-
gebraic plane curve of arbitrary degree. These properties contain the topology
of the curve as well as the location of singular points and vertical asymptotes.
The algorithm is based on the Bitstream Descartes method (Eigenwillig et al.: “A
Descartes Algorithm for Polynomials with Bit-Stream Coefficients”, LNCS 3718),
which computes exact information about the real roots of a polynomial from ap-
proximate coefficients. For symbolic calculations with algebraic numbers, especially
for counting distinct real roots, it uses Sturm-Habicht sequences (Gonzalez-Vega et
al.: “Sturm-Habicht Sequences . . . ”, in: Caviness, Johnson(eds.): Quantifier Elim-
ination. . . , Springer, 1998), which are related to polynomial remainder sequences.
Our work explains how to combine these methods to reduce the amount of symbolic
calculations without losing exactness.

The geometry of the curve is computed with respect to the predetermined
coordinate system. The algorithm changes coordinates in some situations to bring
the curve into a generic position, but a new technique transports the computed
information back into the original system efficiently. The conditions for a generic
position of the curve are less restrictive than in other approaches and can be checked
more efficiently during the analysis.

The algorithm has been implemented as part of the software library EXACUS.
This work presents comprehensive experimental results. They show that the new
approach consistently outperforms the method by Seidel and Wolpert (“On the
Exact Computation . . . ”, SCG 2005, 107–115) and the frequently cited algorithm of
Gonzalez-Vega and Necula (“Efficient Topology Determination . . . ”, Comp. Aided
Design 19 (2002) 719–743). We therefore claim that our algorithm reflects the
state-of-the-art in the resultant-based analysis of algebraic curves.
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Chapter 1

Introduction

1.1 Problem statement

We present an algorithm for analysing the geometry of an algebraic plane curve.
This curve is defined as the vanishing set of f(x, y) where f ∈ Z[x, y] is a square
free integer polynomial (Figure 1.1.1).

Figure 1.1.1: The curves xy − 1 = 0, x2 + y2 − 1 = 0 and 2x4 + y4 − x3 + xy2 = 0.

To understand the outcome of the algorithm, we consider a vertical line, called
sweep line, that moves from −∞ to +∞ through the plane. In the absence of
vertical line components, the sweep line intersects the curve in a finite number of
points. We want to know how many intersections take place and where they occur
(Figure 1.1.2).

As we can see in Figure 1.1.2, the number of intersections with the sweep line
changes at some positions. Our main interest is to detect those points on the curve
which are responsible for such a change. We call them event points (to be more
precise, we also declare singular points of the curve as event points, although some
types of singularities do not affect the number of intersections). For the event
points, we also count how many arcs of the curve are incident to the point and are
entering it from the left side, and how many arcs are entering from the right side
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Figure 1.1.2: The sweep line is drawn as dashed line. On the left, we see 4 inter-
section points, on the right we see 2 intersections.

of the sweep-line. In Figure 1.1.3, we see an example, where the event point in the
middle has 4 arcs incident from the left, and 2 arcs incident from the right.

Figure 1.1.3: The event points of an algebraic curve.

There are some special situations which must be detected too: The sweep line
reaches a vertical line component of the curve, or in other words, it is completely
covered by the curve, and the number of intersections is ∞. We want to know at
which positions this happens, and additionally we are interested in the behaviour
of the algebraic curve if this vertical line component is removed. Figure 1.1.4 shows
an example.

It can also happen that the number of intersections with the sweep line changes,
although no event point is responsible for it. This happens in presence of vertical
asymptotes of the curve, as depicted in Figure 1.1.5. We are interested in the posi-
tion of vertical asymptotes and, for each asymptote, how many arcs are converging
to it from the left and from the right. Also we want to distinguish whether these
arcs go to +∞ or to −∞.
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Figure 1.1.4: On the left: A curve with a vertical line component. On the right: If
this component is removed, the curve has an event point and a non-event point at
this position.

Figure 1.1.5: The dashed line is a vertical asymptote of the curve – there are two
asymptotic arcs on the left, and two on the right. On the left, one of these arcs
goes to +∞, the other to −∞. On the right, both arc go to +∞.

Let us summarise. For an algebraic curve C, we want to answer the following
questions for any x-coordinate α ∈ R (α corresponds to the position of the sweep
line):

• Does the curve contain the vertical line x = α as a component? If it does,
the following questions refer to the curve where the vertical line is removed.

• How many points on the curve C have x-coordinate α? We will call this
number nα.

• How many arcs of the curve converge to the vertical asymptote x = α in
direction +∞ and −∞, from the left and from the right?
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• For i ∈ {1, . . . , nα}: Is the point (α, β) an event point, where β is the ith
point of C over α (in increasing order)?

• For i ∈ {1, . . . , nα}: How many arcs are incident to (α, β) from the left, and
from the right, where β is defined as above?

• For i ∈ {1, . . . , nα} and ε > 0: Find an interval containing β of size smaller
than ε, where β is defined as above.

The problem of answering these questions is interesting in itself because it is the
main step in determining the shape of an algebraic plane curve. Furthermore the
analysis provides a decomposition of the algebraic curve into x-monotone segments
with no singularities in their interiors. This is the first step to compute the ar-
rangements induced by a set of algebraic curves (see references in Section 1.3).

The strategy for the analysis is to decompose the x-axis into cells: Event x-
values are the x-coordinates of event points, of a vertical line component or of a
vertical asymptote – they form singleton cells. The remaining cells are the open
intervals between event points. For the event values, a data structure called vert-
line is created which contains enough information to answer all queries from above
concerning that value in constant time, except for the approximation. But the vert-
line also contains approximations of the roots which can be refined in an efficient
way. Questions concerning non-event numbers can also be answered in constant
time (except approximation), once it is known that α is a non-event value.

To get a flavour how complex the geometry of algebraic curves can get, here
are some selected examples:

Example. Consider the polynomial

f1 = (y4 − 7x3y3(x2 − 3)− 29x2 − 2)(y4 + (6x3 + 2x)y + 7x2 − 46).

For the resulting curve, see the left of Figure 1.1.6. At x-position 0, there are four
points on the curve, all non-event points with one incident arc from the left and
one incident arc from the right. Up to a precision of 1

100 , the y-coordinates of these
points are −2.60,−1.19, 1.19 and 2.60.

At x-position
√

2, there are three points on the curve: One point at −19.81
(with precision 1

100) which is outside the visible region in the graph. A visible
point is (near) at −3.11. Both points are non-event points, and with one incident
arc from the left and from the right (as any non-event point).

The third point has y-value
√

2. As singularity, this is an event point, and it
has two incident arcs from the left and two from the right.

We remark that f1 has no vertical asymptotes anywhere, although the picture
suggest that it does so.

Example. Consider the curve

f2 = ((x− 1)y + 1)(−(x2 − 1)24y − 3)((4x + 3)2 + 16y2 − 1).

12
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Figure 1.1.6: The graphs of f1 and f2.

The graph is drawn at the right in Figure 1.1.6. At x-position −1, the curve has
two points. The first one (in increasing order) is an event point with no incident
arcs from the left, and two incident arcs from the right. The second one is a non-
event point, with one incident arc from the left and from the right. Furthermore,
the curve has two arcs converging to the vertical asymptote x = −1: one to −∞
from the left, and one to −∞ from the right.

At x-position 1, the curve has no points, and four arcs with vertical asymptote
x = 1: one to +∞ from the left, one to −∞ from the left and two to −∞ from the
right.

Although the two examples above already contain complicated features, they
are still “tidy” in some sense, and hence look artificial. In Figure 1.1.7, we show
the plots of three curves of total degree 7, 10 and 13. Note that the analysis of
these curves is much more difficult (at least for human beings).

Figure 1.1.7: A gallery of complicated curves.
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1.2 Our solution

As already remarked, the goal is to construct for each event value of the curve a vert-
line object, containing geometric information about the curve at this x-coordinate.
Our algorithm consists of two steps:

• Projection phase: Compute a finite set containing all event values of the
curve.

• Extension phase: For each element α in the computed set, create the vert-
line object.

Almost all algorithms for the geometric or topological analysis are subdivided into
these two steps. We postpone the discussion of previous work related to our method
to Section 1.3.

Event x-values of a curve f are roots of the resultant polynomial of f and its
derivative with respect to y, Dyf . Our projection phase computes this resultant
and isolates its real roots using the Descartes method. For the extension phase, our
algorithm brings in several innovations:

1. Older approaches either involve expensive exact arithmetic over algebraic
extensions [ACM84, GK96] or analyse numerically which leads to inexact
results in some cases [GN02]. Improvements on exact methods only filter
good-natured examples and have to fall back on exact methods in other cases
[Ho96, CJK02, Br02]. Our solution manages to apply optimisations for each
imaginable input. We combine exact and (controlled) approximate calcula-
tions to both achieve exactness and efficiency.

For exact calculations concerning an event value α (which is irrational in
general), we employ Sturm-Habicht polynomials, a slight modification of sub-
resultants. They deliver the number of points on the curve with x-coordinate
α. In most cases, calculating this number brings already enough exact infor-
mation to complete the extension at α only with approximate calculations.
Figure 1.2.1 shows local features of curves that cause additional exact calcu-
lations.

For approximate calculations, we make use of the Bitstream Descartes method
[EK+05] which isolates the real roots of a square free polynomial as the usual
Descartes method, but only by drawing approximations of the coefficients.
The remarkable property of this method is that it always computes isolating
intervals for the roots of the exact (square free) polynomials without ever
touching the exact value of any coefficient. This equips us with an efficient
method for root isolation of polynomials over the domain Z[α]. The prob-
lem in our work is that most polynomials we explore are not square free.
We design and apply several advancements of the (Bitstream) Descartes al-
gorithm that can cope with multiple roots if they are enriched with further
information. Mainly, this additive information results from calculations with
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the Sturm-Habicht polynomials. So we do not treat these two techniques
(Descartes and Sturm-Habicht) as two orthogonal concepts suitable for dif-
ferent substeps of the algorithm, but we interweave them and their interaction
improves their performance.

� �� �� �� �� �� �

Figure 1.2.1: Three examples of curve features that cause additional symbolic
calculations: A vertical cusp, a vertical flex point and an isolated point that lies on
a regular point of the curve. The characteristic property is that these points have
one arc incident from the left and right, but their partial derivative with respect
to y vanishes.

2. Older approaches demand some genericity conditions on the analysed curve.
If these conditions are not fulfilled, a different coordinate system is chosen.
The geometric computations are then made with respect to this new coordi-
nate system [GK96, GN02, SW05]. We do the same, but we only switch the
coordinate system as an intermediate step. A new technique allows to switch
back to the original again after the analysis in the transformed system. Con-
sequently, our solution provides an analysis of the input curve in the original
coordinate system. That property appears valuable especially in computa-
tional geometry because it allows to fix a coordinate system beforehand.

3. We already remarked that we require some genericity condition on the anal-
ysed curve and temporarily change coordinates otherwise. Other approaches
check whether these conditions are satisfied as a first step in the analysis
[GK96, SW05], or the check is distributed over the algorithm [GN02]. Our
solution checks genericity as a by-product of the analysis. This means, the
algorithm assumes genericity in the first place and detects unfavourable sit-
uations where a temporary coordinate change is needed. This is possible
because we describe the genericity condition in a “lazy” fashion: On some
x-values, we set more genericity conditions than on others.1 We abandon to
give an algebraic description of our term of genericity, but we show that it is
bounded by two well-defined genericity assumption on the curve.

1In fact, in situations as in Figure 1.2.1, the genericity conditions are most restrictive.
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We designed the algorithm with the idea in mind that the vert-line objects shall
reflect the true mathematical situation at the corresponding x-coordinates and
that all queries shall return the exact result. This matches the Exact Geometric
Computation paradigm for the building of software libraries: If the algorithm is
built upon libraries that commit to this paradigm, then it also commits to the
paradigm.

We realised such an implementation as part of the C++ library EXACUS
[BE+05, EX], the module is called AlciX (Algebraic curves in EXACUS). For
basic algorithms which are critical for the running time, such as the approximation
of algebraic numbers or the computation of the greatest common divisor, we im-
plemented different variants to find out the optimal performance. With the best
configuration, our algorithm clearly outperforms the algorithms top from [GN02]
and insulate from [SW05]. We used top with two different initial precisions. Here
are the running times of the curves depicted in Figure 1.1.7. Timings are given in
seconds:

AlciX insulate top60 top500

degree 7 0.62 7.44 3057 3.60
degree 10 16.5 89.3 >4h 122
degree 13 292 >4h >4h 2221

We present more running times in Chapter 6.

1.3 Related work

Our problem is a special case of the cylindrical algebraic decompositions (cad): In
short, for an input set of m polynomials with n indeterminates, a cad is a decom-
position of Rn into cells such that for every cell, the sign of each polynomial is
constant. Cads were introduced by Collins [Co75] for quantifier elimination, a gen-
eral algorithm for the cad computation can be found in [ACM84]. This algorithm
also consists of a projection and an extension phase. More precisely, their approach
also includes a base phase because the projection must be performed several times
in higher dimension. For the plane, the base phase can be integrated into the
projection phase for a simpler description. The extension phase is realised with
expensive computations over algebraic extensions and modern approaches try to
reduce the costs of the extension phase. Our algorithm constitutes an improvement
for m = 1 and n = 2. Collins et al. [CJK02] described how interval arithmetic can
speed up the extension phase, at least in favourable situations, by using interval
arithmetic for the Descartes method. We also mention an unpublished manuscript
from Brown [Br02]: Even though the Descartes algorithm with interval arithmetic
fails for non-square free polynomials, he can still sometimes benefit from its output,
thanks to additional knowledge of the geometric situation. However, this improve-
ments only apply to easy cases. Moreover, both methods ([CJK02, Br02]) can
fail in case that the coefficients are not approximated precisely enough, so their
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improvements include no success guarantee. In case of a failure, one must fall
back to a (slow) exact method. The improvements of our solution apply for each
polynomial no matter of the level of degeneracy.

A closely related problem is topology computation: For a given algebraic curve
C, a graph homeomorphic to C is computed. Almost all algorithm for topology
computation also divide into projection and extension phases.2 We will discuss
recent results in this area and focus on the extension step: The algorithm from
Gonzalez-Vega and Necula [GN02] uses Sturm-Habicht sequences to ensure that the
x-values of event points are pairwise disjoint, otherwise it changes the coordinate
system. The y-value of the event point can be written as a rational expression in
terms of αi. This allows to explicitly divide out (numerically) the non-square-free
part of f(αi, y) and to isolate its real roots.

The authors describe their algorithm as “seminumerical”, i.e. several compu-
tation steps are performed with floating point numbers. Therefore, the algorithm
can return wrong results for ill-natured inputs. However, we adopt some methods
from this work, such as the Sturm-Habicht sequences and the rational expression
for the y-value for our algorithm. The main difference to our approach lies in the
replacement of purely numerical methods by the Bitstream Descartes algorithm to
maintain exactness. Also, we save costs of intermediate calculations by introduc-
ing new variants of the Descartes method and by avoiding genericity checks. An
additional feature of our work is that we transport the result back into the original
coordinate system.

We also refer to the work of Gonzalez-Vega and El Kahoui [GK96]. Their
algorithm contains the same techniques as [GN02] but with two main differences.
For the representation of an algebraic number α, it uses Thom’s codes, the sign
sequence of the derivatives of some polynomial for which α vanishes. Therefore,
it does not approximate to floating point numbers and produces the exact result.
Also, it checks for generic position beforehand and applies a deterministic method
to find a generic direction. The authors present the running time of O(n16(log n)5),
where n is the maximum of the degree and the maximal bit length of the coefficients
of the polynomial. This running time seems to be the best known complexity bound
for the problem.

Hong [Ho96] proposes a solution using Sturm sequences: He derives a Sturm
sequence for f(αi, y) from subresultant remainder sequences and uses the Sturm
method to isolate the roots of the polynomial. All roots over αi are then encap-
sulated in boxes and the number of arcs running into the points is computed by
intersecting the curve with the boundaries of the boxes. The solution can cope
with several event points over αi, but it assumes y-regularity of the curve. In other
words, it cannot handle vertical asymptotes. As it uses Sturm sequences, the poly-
nomials need not to be made square free before isolation. However, for the sign
variation count during the Sturm isolation, one needs to evaluate repeatedly the

2A remarkable exception is [CF+05], where Gröbner basis methods are used
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sign of numbers in R[αi]. This step also involves expensive symbolic calculations
in the worst case. Hong uses floating point approximation and interval arithmetic
to filter easy cases and reports a good practical behaviour.

Most recently Seidel and Wolpert [SW05] came up with a solution, that, as
they say, “exploits a little more geometry and a little less algebra”. Their idea
is very intuitive: By computing the discriminant also with respect to the x- and
y-variable and isolating their roots, they end up with a quadratic number of boxes
that contain all event points. Now, a third direction is chosen and the discrim-
inant is computed with respect to this direction. More precisely, the coordinate
system is transformed such that the chosen direction becomes the y-axis, and the
discriminant with respect to y is evaluated. This third discriminant eliminates the
boxes that do not contain event points if the third direction is chosen luckily (which
happens with high probability). Once the correct boxes are found, they are shrunk
further until they contain only one root of f(αi, y), and the number of incident arcs
can be obtained similar as in Hong’s approach.

This method also impose genericity conditions on the input curve that must
be checked with algebraic computations in an initial step. The shrinkage of the
boxes gives rise to further expensive calculations. On the other hand, this article
indicates how to extend its idea to the case of several curves.

For older approaches for topology computation, see the references of [GN02,
GK96, Ho96, SW05].

The resultant of two polynomials is a standard object in elimination theory
[CLO92] from the nineteenth century. It is defined as the determinant of the
Sylvester matrix. The subresultants are defined as polynomials whose coefficients
are minors of the Sylvester matrix. Already Sylvester was aware of this concept
[Sy40], and Habicht [Ha48] used them for creating Sturm sequences. Collins [Co67]
and Brown and Traub [BT71] point out their relationship with the polynomials
from the Euclidean algorithm. For a historical survey, we recommend [GL03].
Subresultants have also become textbook material in the last years [GCL92, Yap00,
BPR03]. Ducos [Du00] and Lombardi et al. [LRS00] presented the best known
algorithms for computing the subresultants.

Sturm-Habicht polynomials are introduced in [GL+98]. Generally, they are
defined for two polynomials f and g to produce a “Sturm-like” sequence for f and
f ′g. However, we will not make use of them in full generality, but we will restrict to
the case g = 1 (see also [GN02]). Then, the Sturm-Habicht polynomials correspond
to the subresultants of f with its derivative, but with some sign changes. These
negations bring the sequence of Sturm-Habicht polynomials nearer to a Sturm
sequence, but it is not a Sturm sequence in general. However, the sequence can
be used to compute the number of real roots of f and has good specialisation
properties.

The Descartes method to isolate real roots is described by Collins and Akritas
[CA76]. The idea is to get an upper bound for the number of roots in some inter-
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val, using Descartes’ rule of sign. If this bound is greater than one, the interval is
subdivided. The running time of the algorithm depends on the recursion depth,
Eigenwillig et al. [ESY06] have recently presented the best known bound. Johnson
and Krandick [JK97] demonstrate that, in favourable situations, double precision
arithmetic for the coefficients suffice to isolate real roots, [CJK02] extends the idea
by allowing arbitrarily high precisions, but only up to an a priori specified bound.
This enlarges the class of favourable inputs but still leaves unlucky ones where the
algorithm fails. Eigenwillig et al. [EK+05] improved on this result with the Bit-
stream Descartes method which is able to handle all sorts of input polynomials only
by approximations. This algorithm illustrates the idea of calculating approximately
with guarantees very nicely: Outwards, it always delivers valid isolating intervals
for the real roots of the (exact) input polynomial. But inside, the algorithm never
looks at the exact value of the coefficients. Doubtful decisions during the algorithm
are prevented through a randomised choice of split points in the subdivision step,
and by increasing the approximation when necessary.

The Exact Geometric Computation paradigm is described in [YD95]. The idea
behind is that the interface of the library always returns the exactly right result.
This means that, for instance, rounding errors are not allowed. However, it is
not specified how the internals of the library should look like: If it is guaranteed
that the right decision can be taken by approximate (and inexact) calculation, this
can improve the performance. The challenge is to reduce the cost of computing
the correct result as much as possible. The paradigm has been used successfully
in the libraries LEDA [MN00, LE] and CGAL [FG+98, CG], mainly for linear
objects. The latter also contains algorithms to compute arrangements of line seg-
ments, polylines, conic arcs and arcs of rational functions [CG]. An overview about
applications of arrangements can be found in [AS00] and [Ha04].

EXACUS [BE+05, EX] is another library for geometric problems dealing with
higher degree objects. Arrangements computation of conics [BE+02] is available,
methods for arrangements of cubic plane curves [EK+06] and for arrangements of
quadrics in space [BH+05] were also implemented. All these methods use a generic
sweep line algorithm that requires a collection of predicates for a single curve and
a pair of curves (see [BE+05]). For the predicates only concerning one curve, an
analysis of algebraic curves is performed, with a similar outcome as our algorithm.
These algorithms, however, rely on special properties of the considered curves of
bounded degree. For instance, a singular points of a conic is always an intersection
of two line components. The algorithms are therefore not directly transferable
to arbitrary curves. Though we point out that our viewpoint of the problem for
analysing curves is inspired by previous work in EXACUS and we tried to snap in
our terminology with respect to these works.
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1.4 Overview

We start in Chapter 2 by establishing the mathematical tools needed for the algo-
rithm. Chapter 3 describes the algorithm in detail except the extension phase (i.e.
the analysis of the curve at certain x-values), which is explained in the two subse-
quent chapters. For curves satisfying certain genericity assumptions, the extension
phase is treated in Chapter 4, whereas Chapter 5 handles arbitrary plane curves.
In Chapter 6 we discuss implementation details and present experimental results.

There are two reason why we spend two chapters on the extension phase: First
of all, the method for generic curve is more efficient (if it works) because it reduces
the number of symbolic computations. Furthermore, the division improves the
presentation: Discussing generic curves first allows to encapsulate techniques in a
simpler setting leading to a yet incomplete method. Combining these techniques
with additional ideas for arbitrary curves finally leads to the complete solution.
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Chapter 2

Mathematical Foundations

We start with a discussion of fundamental algebraic definitions and results in Sec-
tion 2.1. Most of the presented material should be known and is included to put
the remaining sections on a stable basis. In Section 2.2, we define the geometric
objects which are in the focus of this work and we show how geometric properties
of algebraic plane curves are related to the algebra of bivariate polynomials. In
Section 2.3, we turn to univariate polynomials, especially how to find their real
roots in an efficient way, using the so called Descartes method. How these real
roots can be represented is the subject of Section 2.4. We also discuss which basic
operations can be implemented efficiently in this representation. Subresultants,
the subject of Section 2.5 are closely related to the intermediate results in the Eu-
clidean algorithm and provide rich information about a pair of polynomials. The
Sturm-Habicht polynomials are certain specialisations of subresultants and allow
to count the number of real roots of polynomials, as we explain in Section 2.6.

2.1 Algebra

This section summarises the definitions and results from basic algebra we need in
this work. We tried to restrict to material which can be easily found in introducing
textbooks in algebra (as [La93, Bo01, Wo96, Wa71]). So, the experienced reader
should be able to go quickly through this section. We assume that the reader is
familiar with very basic concepts from algebra like polynomial rings and fields. For
each ring, we demand commutativity and the existence of a unity element.

2.1.1 Domains

We start with some basic definitions. A domain D is a ring with where ab = 0
implies that a or b is zero. An element a ∈ D divides b ∈ D if there is an element
c ∈ D such that ac = b. We also use the notations that a is a divisor of b or that b
is divisible by a. A unit in D is an element that divides each element of the ring,
or equivalently, an element that has a multiplicative inverse. We call a ∈ D and
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b ∈ D associates, if a = ub with u ∈ D a unit. Being associate is an equivalence
relation; we define Rep(D) to be a representative system for the equivalence classes
of D. We assume that 1 is always chosen as representative for the units of D. For
some familiar domains, there are canonical choices for all representatives:

Example.

• For D = Z, the units are 1 and −1. The canonical choice for Rep(Z) are the
natural numbers.

• For a field K, set D = K[t]. The units are precisely the non-zero constants.
The canonical choice for Rep(D) are the monic polynomials, i.e. polynomials
with leading coefficient 1, plus the zero element.

The next definition should be familiar to everybody, at least for integers:

Definition 2.1.1. Let a, b ∈ D. A greatest common divisor of a and b is an element
g ∈ D such that

• g divides a and g divides b and

• any other element dividing both a and b is divisor of g.

In case of existence, all greatest common divisors of a and b are associates.
Therefore, there is a unique greatest common divisor in Rep(D) and we call it the
greatest common divisor of a and b, in signs gcd(a, b).

Note that gcd(a, b) need not exist for arbitrary domains. We need a bit more
structure to ensure the existence of greatest common divisors, as well as for other
properties. We call a non-unit a ∈ D irreducible, if for each decomposition a = bc
either b or c is a unit. With that definition, it is clear that each element can be
decomposed into irreducible elements. But this decomposition is not necessarily
unique – this motivates the next definition.

Definition 2.1.2. A domain D is factorial, if each element r 6= 0 of D can be
uniquely (up to order) decomposed into

r = u · p1 · · · pr

with u a unit and each p1, . . . , pr ∈ Rep(D) irreducible.

A factorial domain is also called unique factorisation domain or just UFD.

Which domains are factorial? First of all, a field is trivially factorial. Also, Z

is factorial because each integer can be decomposed uniquely into prime numbers
(and they are irreducible by definition). The following theorem is usually called
“Gauss Theorem”, see [La93, §II.3] or [Bo01, §2.7] for proofs.

Theorem 2.1.3 (Gauss). If D is factorial, then D[t] is factorial.
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It follows inductively that each polynomial ring over a field or over Z is factorial.
A characteristic property of factorial rings is that irreducible elements are prime,

which is stated in the next lemma

Lemma 2.1.4. Let D be factorial. If the irreducible a ∈ D divides the product
bc, it divides b or it divides c.

Proof. If a divides bc, we have that ad = bc for some d ∈ D. Now, we can
decompose both sides into irreducible elements, since D is factorial:

u1ad1 · . . . · dl = u2b1 · . . . · bmc1 · . . . · cn

and from the uniqueness of the decompositions, we know that a is associate to
some bi or some cj and the result follows.

The next lemma shows that the gcd is well-defined over factorial rings.

Lemma 2.1.5. For D factorial and a, b ∈ D, gcd(a, b) exists.

Proof. For c ∈ D and p ∈ D irreducible, let µp(c) := max{k | pk divides c} be the
multiplicity of the factor p in c. Let a1, . . . , ar be the distinct irreducible factors of
a. Set ei := min{µai

(a), µai
(b)} and define

g :=
r∏

i=1

aei

i

Clearly, g is a common divisor of a and b. Now, any h ∈ D that does not divide g
has either some irreducible factor which is not equal to one ai, or it contains some
ai more often than g. In both cases, it cannot be a divisor of a and b.

We can naturally extend the definition of the gcd to any finite set of elements:

Definition 2.1.6. For a1, . . . , ar ∈ D with r ≥ 3, we define recursively

gcd(a1, . . . , ar) = gcd(a1, gcd(a2, . . . , ar))

For a factorial domain D, this value is well-defined.

2.1.2 Polynomial rings

We assume from now that D is factorial and consider the polynomial ring D[t]
which is also factorial by Theorem 2.1.3. As we have defined greatest common
divisors for finite sets of elements, we can define:

Definition 2.1.7. For f =
∑n

i=0 ait
i ∈ D[t], we define the content of f to be the

gcd of the coefficients, cont(f) = gcd(a0, . . . , an). A polynomial is called primitive,
if cont(f) = 1. The polynomial

pp(f) :=
f

cont(f)

is called the primitive part of f .
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As we will see later, the content has a simple geometric meaning for bivariate
polynomials.

Our next goal is to define what it means for a polynomial in D[t] to be square
free. However, we make a small detour for this: We first define square free poly-
nomials for K[t] with K a field. First of all, we rephrase the fact that K[t] is
factorial:

Proposition 2.1.8. Each f ∈ K[t] can be decomposed uniquely as

f = u · f1 · . . . · fr

where u ∈ K is the leading coefficient of f and f1, . . . , fr are monic irreducible
polynomials in K[t] of positive degree.

Now, we define square freeness in K[t]:

Definition 2.1.9. A polynomial f ∈ K[t] is square free, if all fi’s from Proposi-
tion 2.1.8 are distinct.

To extend this definition to the polynomial ring D[t], we introduce the concept
of a quotient field:

Definition 2.1.10. For a domain D, we define

Q(D) := {(a, b) | a ∈ D, b ∈ D − {0}} / ∼

with (a, b) ∼ (c, d) if and only if ad = bc. Q(D) is called the quotient field of D.
Indeed, with the addition and multiplication defined as

(a, b) + (c, d) = (ad + bc, bd)

(a, b) · (c, d) = (ac, bd)

Q(D) forms a field, the smallest field containing the domain D. The elements
of Q(D) are written as fractions a

b , where a is called the numerator and b the
denominator.

As an example, Q(Z) = Q. In fact, this is the only example we need in this
work.

From now on, we write Q := Q(D). We can naturally embed elements of D[t]
into Q[t] by embedding the coefficients. We will say that a polynomial in D[x] is
square free if it is square free over Q[x].

We can give a number of equivalent descriptions for square freeness. We remark
that polynomials are formally differentiable with the familiar rules from calculus
and we write f ′ for the derivative of f .

Theorem 2.1.11. Let f ∈ D[t]. The following conditions are equivalent:
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1. f is square free.

2. For each non-constant g ∈ Q[t], g2 does not divide f . (In other words, f
contains no squares.)

3. f and f ′ have no common divisor except constants, i.e. gcd(f, f ′) is a constant.

Proof. We use contraposition in each step:
1 ⇒ 2: we assume that there is some g such that g2 divides f , so hg2 = f for
some h. Decomposing each side (considered as polynomial over Q) into irreducible
components, it follows that each irreducible factor of g appears twice in f . So f is
not square free.
2 ⇒ 3: Assume that f and f ′ have a common factor h. W.l.o.g. we can assume
that h ∈ Rep(D[t]) and irreducible. Decompose

f = uf1 · . . . · fr

into monic irreducible factors over Q. W.l.o.g. we can assume that h = f1. By the
rules of the derivative, we have that

f ′ = u(h(f2 · . . . · fr)
′ + h′(f2 · . . . · fr))

and since h divides this expression, it follows that h divides the product h′(f2 · . . . ·
fr). From Lemma 2.1.4, we know that h must divide h′ or one of the fi’s. The
former is impossible because h is not constant. Thus w.l.o.g. h divides f2, and
since both are irreducible and in Rep(D), it already holds that h = f2. Therefore,
h2 divides f .
3 ⇒ 1: If f is not square free, it immediately follows that f = g2 · h for some
irreducible factor g. The derivative of f is

f ′ = g2h′ + 2gg′h

and we see that g divides f ′. Therefore, g is a common divisor of f and f ′.

We remark the obvious corollary that irreducible polynomials are square free.

2.1.3 Roots of polynomials

A root r of a polynomial f is an element for which f(r) = 0. If f ∈ D[t], then it
does not necessarily have a root in D (for instance, D = Z and f = 2x − 1). But
also if we pass to Q = Q(D), there is not always a root (f = x2− 2 has no rational
root). We need another concept to ensure that there is always a root of f :

Definition 2.1.12. A field K is called algebraically closed if each non-constant
polynomial in K[t] has a root in K. In particular, each non-constant polynomial
factorises into linear factors.

25



The most famous example of an algebraically closed field are the complex num-
bers.

Definition 2.1.13. Let D ⊂ L with D a domain and  L a field, and α ∈ L. α is
called algebraic over D, if there exists a polynomial f ∈ D[t] such that f(α) = 0.

If a number is algebraic over Q, it is also algebraic over D since the polynomial
over Q can be multiplied by a constant such that all denominators vanish, and the
result is an element of D[x] with the same roots. Passing to the field Q does not
enlarge the set of algebraic numbers, consequently.

Definition 2.1.14. Let K ⊂ L be fields. If each element in L is algebraic over K,
we call  L an algebraic extension of K.

Remark. For instance, the extension Q ⊂ R is not algebraic since there exists real
numbers which are not algebraic (they are also called transcendental). This is easy
to see, since the algebraic numbers over Q are countable, but R is not countable.

The next theorem guarantees that we can always find roots of polynomials if
we embed the domain into a suitable field:

Theorem 2.1.15. For a field K, there exists an algebraically closed field K con-
taining K such that K ⊂ K is an algebraic extension. K is called an algebraic
closure of K.

See [La93, §V.2],[Bo01, §3.4] for proofs, or [Wo96, 6.3.3] for a simplified and
weaker version. The algebraic closure is only unique up to an isomorphism (which
restricts to the identity on K) and there is no canonical choice.

From now, we set C := Q = Q(D), where we choose one algebraic closure
arbitrarily. An equivalent description for algebraically closed fields is that the
irreducible elements of C[t] are precisely the polynomials of degree 1. The following
proposition is therefore clear:

Corollary 2.1.16. Each polynomial f ∈ Q[t] can be written uniquely as a product
of linear factors:

f = u

n∏

i=1

(t− αi)

with u the leading coefficient of f and αi ∈ C.

A polynomial of degree n has n roots over C, but some of them can occur
several times.

Definition 2.1.17. Let f ∈ Q[t] with root α ∈ C. The multiplicity m of α is the
number of linear factors (t − α) of f . A root is called simple if its multiplicity is
one, and multiple otherwise. A root with multiplicity k is also called a k-fold root.

For example, 0 is a root for x3 − 2x2 of multiplicity 2.
Let K be a field. It is well-known that the greatest common divisor of two

polynomials f and g over K[t] is obtained with the Euclidean Algorithm:
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Algorithm 2.1.18 (Euclid).
Input: f, g ∈ K[t]
Output: gcd(f, g)

1. If g = 0, return f .
2. Write f = qg + r with deg r < deg g.
3. Compute gcd(g, r).

The intermediate polynomials in the algorithm never leave the field K, so it
follows at once:

Proposition 2.1.19. Let f, g ∈ D[t] be polynomials. Let h be the greatest com-
mon divisor of f and g, considered as polynomials in Q[t], and h∗ their greatest
common divisor over C[t]. Then h = h∗.

This allows the proof of another characterisation of square freeness:

Theorem 2.1.20. A polynomial f ∈ Q[t] is square free if and only if all roots of
f over C are simple.

Proof. Consider a multiple root α of f . It follows that (x− α)2 divides f . Conse-
quently, (x − α) divides f ′. So, f and f ′ have a non-constant common divisor in
C[t] and it follows they also have a non-constant common divisor in Q[t].

On the other hand, if f is not square free, a component appears twice, and each
root of this component is multiple.

2.2 Geometry

We introduce the main geometric objects for our approach, like event points, arcs
of a curve, vertical asymptotes etc. For all those, we derive a description in terms
of algebra and we explore the properties that are relevant for our purposes. Some
of the results are also valid in a more general setting, but the theory is only derived
as much as necessary.

Our viewpoint of algebraic curves is inspired by the previous works in the
EXACUS project, for instance [EK+06], [BH+05].

2.2.1 Algebraic, square-free and primitive curves

Throughout this section, we consider bivariate integer polynomials f ∈ Z[x, y]. For
a monomial xiyj , we define its degree to be i + j. For a general polynomial f , the
total degree deg f is the maximal degree of all its monomial terms. The y-degree of
f , degy f , is the degree of f considered as a polynomial in y.

We start by defining the central object of our interest, the algebraic curve:

Definition 2.2.1. Let K be the field R or C, and f ∈ Z[x, y]. We define the
algebraic curve induced by f to be the point set

CK(f) := {(x, y) ∈ K2 | f(x, y) = 0}
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If K = R, we call CR(f) a real algebraic curve, if K = C, we call CC(f) a complex
algebraic curve.

Let f = f1 · f2 be a decomposition. The curves induced by f1 and f2 are called
components of the curve induced by f . Indeed, it is not hard to verify that

CK(f) = CK(f1) ∪CK(f2)

and this also implies that CK(f) = CK(fk
1 f2). Hence different polynomials can

induce the same algebraic curve.

From now, for the sake of brevity, we will say the curve f instead of the real
algebraic curve induced by the polynomial f . In the same way, we write a point on
the curve for a point in the real plane that solves the defining equation f = 0, and
we explicitly emphasise when we talk about complex curves and points.

We interpret f ∈ Z[x, y] as polynomial in y, with coefficients in the domain
Z[x] for the moment. This allows us to talk about the content and the primitive
part of f , as defined in Definition 2.1.7. In other words, we can decompose f =
cont(f)pp(f) with cont(f) ∈ Z[x], pp(f) ∈ (Z[x])[y]. We now define square free
polynomials over bivariate integer polynomials. Recall the definition for univariate
polynomials and its equivalent formulations from Section 2.1.2.

Definition 2.2.2. f ∈ Z[x, y] is called square free if cont(f) is square free and
pp(f) considered as polynomial in y with coefficients in Z[x] is square free.

We show that this definition is indeed equivalent to the property that f does
not contain a non-constant square.

Lemma 2.2.3. f is square free if and only if for each non-constant polynomial
g ∈ Z[x, y], g2 does not divide f .

Proof. W.l.o.g. we can restrict to irreducible polynomials g. If f is not square free,
then either cont(f) or pp(f) has a non-constant square as divisor. For the other
direction, assume that such a polynomial g exists with g2 divisor of f . There are
two cases: If g does not contain the variable y, then neither does g2. So g2 must be
divisor of the content of f . If g does contain y, then it cannot divide the content,
and as irreducible element, it must divide the primitive part. So, also g2 must
divide pp(f).

The curve f consists of the irreducible components of cont(f) together with the
irreducible components of pp(f). Containing a component twice does not change
the curve by definition. Therefore, we can throw away multiple components without
loosing the ability to represent each algebraic curve:

Theorem 2.2.4. For each algebraic curve C, there is a square free polynomial f
with C = CK(f).
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Proof. Let C be induced by some polynomial f . If f is square free, we are done.
Otherwise, there exists a non constant g such that g2 divides f . We define f̃ := f

g .

This decreasess the total degree of f by at least one, and f̃ and f define the
same algebraic curve. We can repeat in this manner until we obtain a square free
polynomial. This happens after finitely many steps as the degree can only decrease
finitely many times.

The content has a very direct meaning in terms of geometry. We define formally
what it means for the curve f to have a vertical line component:

Definition 2.2.5. f has a vertical line component at α, if

∀β ∈ R : f(α, β) = 0.

The next lemma shows that the content of f is the right tool to compute vertical
line components.

Lemma 2.2.6. f has a vertical line component at α if and only if α is a root of
cont(f).

Proof. Write f in the following form

f =
∑

ci(x)yi

with ci(x) ∈ Z[x].

By definition, α is a vertical line component means that ∀β ∈ R : f(α, β) = 0.
Since R is an infinite field, this is equivalent that the polynomial f(α, y) = 0 ∈ R[y].
In other words, ci(α) = 0 for each polynomial ci, and therefore, x−α divides each
ci and therefore also divides the content.

The lemma implies that f = cont(f)pp(f) decomposes the curve into the ver-
tical line components and non-vertical components. By dividing out the content,
we can work with a version of the curve without vertical lines (this corresponds to
the idea of removing vertical line components in the introduction).

In the proof of Lemma 2.2.6, we used the polynomial f(α, y) ∈ R[y]. As we will
use this construction very often, we introduce an abbreviation for it:

Definition 2.2.7. Let f ∈ R[x, y] be a curve, and α ∈ R. We define

fα(y) := f(α, y) ∈ R[y]

to be the univariate polynomial where α is set for x.

In the remainder of this section, we assume that f is square free and primitive.
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2.2.2 Points on algebraic curves

We recall some basic notation from analysis: For a point p on the curve, the gradient
is defined to be the vector (Dxf(p),Dyf(p))T . If the gradient is not zero, we can
define the tangent at p to be the line through p and perpendicular to the gradient
vector.

Definition 2.2.8. A point p on a curve f is called singular, if Dxf(p) = Dyf(p) =
0. Non-singular points are called regular.

Some examples of singular points are given in Figure 2.2.1.

Figure 2.2.1: Some examples of singularities

Regular points have a (unique) tangent line. If this tangent is not vertical,
we can parametrise the curve f around p by an implicit function. Although the
statement is true in more generality, we formulate it only for bivariate polynomials:

Theorem 2.2.9 (Implicit Function Theorem). Let f be a polynomial and
p = (x0, y0). If Dyf(p) 6= 0, there exist open neighbourhoods D around x0, W
around y0 and a C∞ function g : D → W such that, for all x ∈ D, y = g(x) is the
unique solution in W for f(x, y) = 0. Moreover, the derivative of g is given by:

g′(x) = −Dxf(x, g(x))

Dyf(x, g(x))

The stated version is stated completely in [Fo05, §8], [Ko93, §3.6]. See also
[La68, §XVII.3], [Ap74, §13.4] for slightly weaker formulations.

Geometrically, this means that the curve is given locally around (x0, y0) by a
function y = g(x).

Example. Consider the unit circle, i.e. the polynomial f = x2 + y2 − 1. For the
upper part of the circle, we can parametrise g(x) =

√
1− x2. For the lower part

g(x) = −
√

1− x2. In either case, all properties of the Implicit Function Theorem
are satisfied. Note that the two points where the upper and lower half meet are
exactly those points with a vertical tangent line.

There are two classes of points on f that have no such parametrisation: Singular
points and points with a vertical tangent line.

Definition 2.2.10. We call a point p critical, if Dyf(p) = 0.
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Theorem 2.2.11. f has only finitely many critical points.

Proof. For a critical point p, we have f(p) = Dyf(p) = 0. In other words, p is an
intersection point of the curves f and Dyf . Since f is square free and primitive,
we know from Theorem 2.1.11 that f and Dyf do not share a component. By Be-
zout’s theorem [Wa50, III.3],[BK81, 6.1],[Gi96, 14.4], two algebraic curves without
common component intersect in finitely many points.

To classify critical points, we introduce x-extreme points:

Definition 2.2.12. Let p = (x0, y0) be a point on f . p is called x-extreme, if there
exist open neighbourhoods D around x0, W around y0 such that x0 is the greatest
(or smallest, respectively) x-coordinate among all points in D×W on the curve f .

By the Implicit Function Theorem, f can be viewed as a continuous function
of x locally around non-critical points. This implies:

Lemma 2.2.13. x-extreme points are critical.

But the converse is not true.

Our definition of x-extremity is analytical, we give an equivalent description in
terms of algebraic conditions. Let Dn

y f denote the nth partial derivative of f with
respect to y.

Lemma 2.2.14. Let p be a critical regular point and n be the minimal index such
that Dn

y (p) 6= 0. Then p is x-extreme if and only if n is even.

Proof. Let p = (x0, y0) be a regular point with vertical tangent line. Since Dxf(p) 6=
0, there is a C∞ function g parametrising f around p, but as a function in the y-
coordinate (Implicit Function Theorem). Applying the formula for g′ yields:

g′(y0) = −Dyf(x0, y0)

Dxf(x0, y0)
= 0

and it follows from one-dimensional analysis that y0 is an extreme point if and only
if the first non-vanishing derivative is even. By using the quotient rule, one can
easily show that g(n) is the first non-vanishing derivative.

By definition, Dn
y f(α, β) = f

(n)
α (β), hence (α, β) is x-extreme if and only if β

is a root of fα with even multiplicity.

Let p be a regular critical point. The previous lemma shows that if it is not
x-extreme, it must satisfy D2

y(p) = 0. We define points with this property:

Definition 2.2.15. A point p on the curve f is a vertical flex (or inflection point),
if it is critical, regular and DyDyf(p) = 0.
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Figure 2.2.2: On the left, an x-extreme point, on the right a vertical flex point.

It follows that each critical point is singular, x-extreme or a flex (but it can
both be singular and x-extreme, for instance).

In x-extreme points, the curve changes significantly its behaviour in the fol-
lowing sense: Imagine a vertical line that moves from the left side to the right
through the plane. If this line moves over some x-extreme points, the number of
intersection points with the algebraic curve changes, whereas this number remains
constant for non-x-extreme vertical flexes. This number of intersections might also
change at singularities (compare Figure 2.2.1). Therefore, we distinguish a special
class of critical points with the next definition.

Definition 2.2.16. A critical point is called event point if it is singular or x-
extreme.

For the non-event points, we can state a weaker version of the Implicit Function
Theorem:

Corollary 2.2.17. For p = (x0, y0) a non-event point, there exist open neighbour-
hoods D around x0, W around y0 and a continuous function g : D → R such that
f(x, g(x)) = 0 and y = g(x) is the unique solution in W for f(x0, y) = 0 for all
x ∈ D.

Proof. For non-critical points, this follows at once from the Implicit Function The-
orem. For non-x-extreme vertical flexes, we first apply the Implicit Function Theo-
rem for the variable y, obtaining a C∞ function h(y). By definition, we know that
y0 is not a local extremum of h, hence we can deduce that g is strictly monotone
in a neighbourhood W of y0. Then D := g(W ) is an open neighbourhood of x0,
and we can define the (continuous, but not differentiable) map g := h−1 which has
all stated properties.

2.2.3 Arcs of an algebraic curve

We distinguished the points of our interest in the previous subsection. In the
following, we deal with the remaining points of the curve. Intuitively, if we take
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out the event points from the curve, the remaining curve decomposes into several
connected components. We will call this components arcs of the curve. We take
a different approach in formally defining these paths, compared to [EK+06] or
previous works about EXACUS, but with the same result at the end.

Definition 2.2.18. Let p = (px, py), q = (qx, qy) be two points on the curve f . We
say p ∼ q, if and only if either p = q or there is a continuous map φ : [px, qx]→ R

(or [qx, px]→ R respectively) with

1. φ(px) = py and φ(qx) = qy

2. ∀x ∈ [px, qx] : f(x, φ(x)) = 0

3. (x, φ(x)) is a non-event point for any x ∈ [px, qx]

A bit more informally, two points on the curve are in relation, if there is a path
on the curve connecting these points and not going over any event point of the
curve. The following lemma shows that ∼ indeed decomposes the curve:

Lemma 2.2.19.

1. For p 6= q and p ∼ q, the function φ is uniquely determined.

2. ∼ is a equivalence relation.

3. Every event point is in a singleton equivalence class.

Proof. 1. It is enough to show that for any point x0 ∈ [px, qx], φ is uniquely
determined in an open neighbourhood. This follows from Corollary 2.2.17,
since x0 is a non-event point, and there is only one possible function that
parametrises f around x0.

2. Symmetry and reflexivity hold by construction. For transitivity, assume that
p ∼ q and q ∼ r. if px < qx < rx, p ∼ r follows by gluing together the
functions, otherwise the uniqueness of φ yields the equivalence.

3. By definition.

Definition 2.2.20. We define an arc of f to be the an equivalence class [p] where
p is a non-event point. The set of arcs is denoted by A.

For A ∈ A, define the x-range of A as Ax := px(A), where px is the projection
map (x, y) 7→ x.

Lemma 2.2.21. For A ∈ A, Ax is an open interval and there is a continuous map
Φ : Ax → R such that A = {(x, Φ(x)) | x ∈ Ax}.
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Proof. For the former statement: Ax is indeed an interval from the definition of ∼.
Assume that Ax is not open. W.l.o.g., it has a maximum a. There exists a non-
event point (a, b) in A by definition. By Corollary 2.2.17, we can find a point (a′, b′)
on f with a′ > a and (a, b) ∼ (a′, b′), contradicting the maximality.

For the latter statement, note first that two distinct points with the same x-
coordinate are never equivalent under ∼. Thus defining for every point (a, b) ∈ A :
Φ(a) = b clearly satisfies the equation above. For any a ∈ Ax, Φ corresponds to
the continuous function from Corollary 2.2.17 in an open neighbourhood, so Φ is
continuous over Ax.

We have seen so far: Algebraic curves consist of a finite set of event points and
arcs that correspond to graphs of continuous functions on open intervals. What is
the limit of that function when x converges to one of its interval boundaries? We
distinguish three cases:

Definition 2.2.22. For A ∈ A with parametrisation Φ : (a−, a+)→ R, let

p− := (a−, lim
x→a−

Φ(x)) ∈ (R ∪ {±∞})2

1. If a− = −∞, the arc is called arc towards −∞.

2. If p− = (α,±∞), the arc is said to converge to the vertical asymptote x = α
in direction ±∞ from the right.

3. If p− ∈ R2, the arc is incident to p− from the right.

For p+ := (a+, limx→a+
Φ(x)):

1. If a+ =∞, the arc is called arc towards +∞.

2. If p+ = (α,±∞), the arc is said to converge to the vertical asymptote x = α
in direction ±∞ from the left.

3. If p+ ∈ R2, the arc is incident to p+ from the left.

We also call p−, p+ the endpoints of A.

Not surprisingly, we have the following lemma:

Lemma 2.2.23. If p ∈ R2 is an endpoint of an arc A, then p is an event point.

Proof. Let pi be a sequence of points on A that converges to p. Since f , considered
as a polynomial function, is continuous, we have that f(p) = 0, so p is on the curve.
If it were a non-event point, then p would be on the arc since it is connected by a
continuous function. This contradicts the fact that p /∈ A.
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We see that arcs connect two event points or are unbounded. The definition of
incident arcs can be extended to any point p on the curve: We say that an arc A is
incident to p from the left and to the right if p ∈ A. For any point p on the curve,
we can thus define the incidence numbers of p to be the pair (l, r), where l is the
number of arcs incident from the left, and r the number of arcs incident from the
right. Also, we call the sum of l and r the total incidence number of p. We state
that any regular point has total incidence number two:

Theorem 2.2.24. Let p ∈ R2 be a regular point on the curve f . Then the total
incidence number of p is two.

Proof. For non-event points, this follows at once, since they lie on one arc and this
arcs counts once at the left and once at the right.

For regular x-extreme points, consider a square centred at p with length a.
Now, as a consequence of the Implicit Function Theorem, there is some a0 ∈ R

such that the square boundaries intersect the curve exactly twice for any a < a0

and the theorem follows.

The next criterion characterises regular x-extreme by its incident arcs. We will
use this theorem later to detect x-extreme points after a change of coordinates:

Theorem 2.2.25. Let P be a regular point with incident arcs [p1] and [p2], where
the representatives are non-critical points. Then P is x-extreme if and only if the
signs of Dyf at p1 and p2 differ.

Proof. First of all, there exist non-critical representatives on the arc, since each
arc has infinitely many points, and the number of critical points is finite. All the
non-critical points also have the same sign under Dyf since a sign switch would
cause an event point on the arc.

W.l.o.g. we can restrict to the case that P = (α, β) is critical, otherwise [p1] =
[p2] and the statement is trivial. By the Implicit Function Theorem, there exist a
function φ : V →W such that (φ(y), y) parametrises f around P with

φ′(y) = −Dyf(φ(y), y)

Dxf(φ(y), y)
.

Since Dxf(P ) 6= 0, we can choose V and W so small that Dxf has constant sign
inside D×W . Then, Dyf changes its sign at β if and only if φ′ changes its sign at
β. But the latter happens if and only if P is x-extreme.

The next question is where vertical asymptotes of f can occur. Consider the
easiest example f = xy − 1 first. The vertical asymptote is at x = 0, and this is a
root of the leading coefficient of f ∈ (R[x])[y]. This holds in general:

Theorem 2.2.26. For f ∈ R[x, y], let r ∈ R[x] be the leading coefficient of f ,
considered as a polynomial in y. If x = α is a vertical asymptote of f , then
r(α) = 0.
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Proof. Since x = α is a vertical asymptote, there exists an arc of f converging to
x = α. Let Φ be the parametrisation of this arc. W.l.o.g., assume that there is a
sequence (an) with limit α such that Φ(an) converges to +∞.

Assume now that r(α) 6= 0. We define bn := Φ(an) and consider the sequence

cn :=
fan(bn)

fα(bn)
=

r(an)bk
n + . . .

r(α)bk
n + . . .

It is clear that cn = 0 for all n since the numerator vanishes. On the other hand,
polynomial division gives

cn =
r(an)

r(α)
+

λbk−1
n + . . .

fα(bn)

for some λ ∈ R[x]. Since r is continuous, the first quotient converges to one,
and the second converges to zero as bn goes to infinity. So cn converges to one,
contradiction.

Informally, we can consider (α,±∞) as endpoints of arcs converging to the vertical
asymptote x = α. In this spirit, we use the following terms:

Definition 2.2.27. Let f ∈ R[x, y].

1. a ∈ R supports a point p, if f(p) = 0 and p = (a, b) for some b ∈ R.

2. a ∈ R is a critical x-value or critical x-coordinate, if a supports a critical
point of f , or if x = a is a vertical asymptote of f .

3. a ∈ R is an event x-value or event x-coordinate, if a supports an event point
of f , or if x = a is a vertical asymptote of f .

We are now in position to prove:

Theorem 2.2.28. For any curve f , the number of arcs is finite.

Proof. The x-range of any arc is an open interval, and the interval boundaries are
either ±∞, a root of the leading coefficient of f , or the x-coordinate of an event
point. So, there are only finitely many such choices. Consequently, if there were
infinitely many arcs, there must be some value α that supports infinitely many
points of f , contradiction.

As a corollary, the total incidence number is indeed finite. We remark without
proof that it is always an even number, so the number of arcs incident from the
left and from the right does not change modulo 2.

Another important property is that the number of points supported by a x-value
α remains constant away from event x-values:

Lemma 2.2.29. Let I be an (open or closed) interval such that no event value
of f lies inside I. Then, there exists a constant c such that the number of points
supported by any α ∈ I is c.
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Proof. Consider two x-coordinates α1, α2 ∈ I. Any point p1 supported by α1 lies
on some arc, and there must be a point p2 supported by α2 on the same arc since
the arc cannot end between α1 and α2. The same holds in the other direction.

2.3 Real root isolation of polynomials

2.3.1 The Descartes method in the monomial basis

In this section, we discuss the problem of real root isolation: Given some polynomial
f ∈ R[x, y] with n real roots, find isolating intervals for each root according to the
following definition:

Definition 2.3.1. Let f be a polynomial with root α ∈ R. A closed interval
[c, d] ⊂ R containing α and no further root of f is called isolating interval for α
with respect to f if either c < α < d or c = α = d.

For instance, [1, 2] is an isolating interval for
√

2 wrt. x2−2, for
√

3 wrt. x3−3x,
and also for 3

2 wrt. 2x−3, but not for 1 wrt. x−1 and not for
√

2 wrt. (x2−2)(x2−3).
There are different solutions for the problem of finding isolating intervals for

the roots of polynomials, one is based on Sturm’s Theorem (treated in Section 2.6).
[CL82] is a comprehensive overview over the classical methods. We use an approach
based on a well-known property we formulate next. We use the following notation

• Var f := Var(an, . . . , a0) is the number of sign variation of f = anxn+. . .+a0.
More precisely, when all zeros are deleted from the sequence (an, . . . , a0),
resulting in a new sequence s, then Varf is the number of sign changes in s.

• Let α1, . . . , αr be the positive real roots of f and s1, . . . , sr their multiplicities.
We set p roots(f) = s1 + . . . + sr.

Theorem 2.3.2 (Descartes’ rule of signs). For any non-zero f ∈ R[x], Var(f)−
p roots(f) is non-negative and even.

Proof. Let f = anxn + . . . + a0. W.l.o.g. we can assume that f(0) 6= 0 since we
can otherwise divide f by x, only removing a zero root and not changing the sign
variation.

To show that Var(f) and p roots(f) have the same parity, just consider the
coefficients a0 and an. The number of sign changes is even if and only if these two
coefficients have the same sign. On the other hand, a0 = f(0), and an determines
whether f(x) goes to ±∞ when x goes to +∞. As a continuous function, the
number of roots in (0, +∞), counted with multiplicity is even if and only these two
values have the same sign.

To show that Varf ≥ p roots f , we argue by induction over n, the degree of
f . If n = 0, the statement is obvious. For n ≥ 1, we assume that the statement is
true for the derivative f ′. Its coefficients are positive multiples of coefficients of f ,
so “new” sign variations cannot occur. This means that

Var f ≥ Var f ′.
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For the positive roots of f ′, we know that there is always a root of the derivative
between two distinct roots of f (Rolle’s theorem [La68, §III.3],[Fo01, §16]). A k-fold
root of f causes a k − 1-fold root of f ′. This gives us

p roots f ′ ≥ p roots f − 1

By induction hypothesis, Varf − p roots f ≥ −1. Since we already know that this
difference is always even, the result follows.

To get an upper bound of the real roots of f in any interval (c, d), one can use the
Möbius transformation

φc,d : (0,∞)→ (c, d), x 7→ cx + d

x + 1

which defines a bijection. The sign variations of

Tf,c,d(x) := (x + 1)deg(x) · (f ◦ φc,d)(x)

exceed the number of real roots of f in (c, d) by a non-negative, even integer. Note
that the power of (x + 1) is necessary to get a polynomial.

If the number of sign variations is zero or one, the exact number of real roots is
known directly according to Theorem 2.3.2. We state an algorithm to isolate the
real roots of a polynomial f in an interval (c, d) ([CA76],[CL82],[KM06]):

Algorithm 2.3.3 (Descartes method in power basis).
Input: Interval [c, d], f =

∑n
i=0 aix

i, f(c) 6= 0 6= f(d)
Output: Isolating intervals for the roots of f in (c, d).

1. Compute v = Var(Tf,c,d)

2. If v = 0, return. If v = 1, report the interval [c, d] and return.

3. Otherwise, choose a split point m ∈ (c, d). If P (m) = 0, report the interval
[m,m]. Isolate the roots of f in (c,m) and (m,d).

Two problems still arise here: First of all, the algorithm does not terminate in
cases where f has a real multiple root, except if this root is chosen as split point.
To overcome this problem, we restrict to square free polynomials (Definition 2.1.9
and Lemma 2.1.20).

A second problem is that even for square free polynomials, it is not obvious
that the sign variations eventually drops to zero, if no real root is contained in the
interval, and drops to one if there is exactly one root in the interval. But these two
properties are needed for termination, and they are implied by the following two
theorems:

Theorem 2.3.4 (One-circle theorem). If f has no (complex) roots in the open
disk

{z ∈ C | |z − c + d

2
| < c + d

2
}

then Var Tf,c,d = 0.
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Theorem 2.3.5 (Two-circle theorem). If f has exactly one root in the union
of the two circles

{z ∈ C | |z − c + d

2
± i

√
3

6
(d− c)| <

√
3

3
(d− c)}

then Var Tf,c,d = 1.

Proofs are contained in [KM06]. [ESY06] demonstrates how these bounds can also
be used to derive worst-case running times of the root isolation.

As we will also work with non-square-free polynomials later, we will need a
generalisation of the previous theorems: For roots with multiplicity k, the sign
variation of the isolating interval should be k, if we are close enough at this root.
This has been proven recently by Eigenwillig [Eig06]:

Theorem 2.3.6. Let α be a k-fold root of f and let (c, d) be an open isolating
interval containing α. If no root of f (k) is inside the disk

{z ∈ C | |z − c + d

2
| < c + d

2
},

then Var Tf,c,d = k.

2.3.2 Upper bounds for roots

Algorithm 2.3.3 gives a solution for the real root isolation in some given interval.
To isolate all real roots of f , one must initially enclose them in a sufficiently big
interval. We learned about the subsequent theory from the PhD thesis of Batra
[Ba99].

The following bound and its proof are taken from [Sl70].

Theorem 2.3.7. For a polynomial f = anxn + . . . + a0 and any root α of f , it
holds that

|α| < S(f) := 2 max

{∣∣∣∣
an−1

an

∣∣∣∣ ,

√∣∣∣∣
an−2

an

∣∣∣∣, . . . ,
n−1

√∣∣∣∣
a1

an

∣∣∣∣,
n

√∣∣∣∣
a0

2an

∣∣∣∣

}

Proof. W.l.o.g. we can assume that αn = 1, since scaling does not change the roots
of the polynomial. Thus we can rewrite the root bound as

S(f) = max
i=0,...,n−1

i

√
|ai|
λi

with λi = 2−n+i for i = 1, . . . , n− 1 and λ0 = 2−n+1. In particular,

n−1∑

i=0

λi = 1.
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Therefore, for any |z| > S(f), we can conclude that |z|i > |an−i|
λi

and hence

λi >
|an−i|
|z|i

Since the λi’s sum up to 1, we have

1 >

n∑

i=1

|an−i|
|z|i

Now, let α be any non-zero root of f . It is enough to show that the sum above is
at least one. Indeed,

|αn|
∣∣∣∣∣

n∑

i=1

an−i

αi

∣∣∣∣∣ =

∣∣∣∣∣

n∑

i=1

an−iα
n−i

∣∣∣∣∣

=

∣∣∣∣∣

n−1∑

i=0

aiα
i

∣∣∣∣∣

= |αn| ,

and therefore,

1 =

∣∣∣∣∣

n∑

i=1

an−i

αi

∣∣∣∣∣ ≤
n∑

i=1

|an−i|
|α|i .

The proof shows a bit more: Any choice of positive values λi gives a root bound,
if

∑
λi ≤ 1. This general result already appeared in a work of Fujiwara [Fu16],

and we therefore call S(f) the Fujiwara bound of f . Mignotte and Stefanescu refer
to S(f) with the same naming for general λi [MS99, §2.5.1].

Call fγ the polynomial that multiplies all roots of f by γ, in other words
fγ(x) := f(x

γ ). For the coefficients ãi of fγ , we have that ãi = ai

γi , and from the

definition of S(f), it follows that S(f) is scale-independent:

S(fγ) = γS(f). (2.3.1)

Furthermore, S(f) is a nearly optimal root bound in the following sense:

Theorem 2.3.8. Let f = anxn + . . . + a0 be a polynomial. The polynomial
|an|xn − |an−1|xn−1 − . . .− |a0| has a unique positive root α0. It holds that

S(f) ≤ 2α0.

Proof. The existence and uniqueness of α0 follows from Descartes’ rule of sign
(Theorem 2.3.2).
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Because of (2.3.1), it suffices to prove the statement for α0 = 1, and we can
w.l.o.g. assume that f is monic. Then, the polynomial

xn − |an−1|xn−1 − . . .− |a0|
has a root at 1 and therefore, the sum

∑n−1
i=0 |ai| = 1. It follows that each coefficient

of f has absolute value smaller one and consequently, S(f) ≤ 2.

The former theorem shows that S(f) is at most twice the optimal root bound
of f , if only the absolute values of the coefficients are considered. [Sl70] includes
more examples of root bounds and other interesting properties of S(f).

The Fujiwara bound equips us with a complete algorithm for isolating real
roots of a square free polynomial f : We first apply the Fujiwara bound to find an
initial interval for all real roots of f . Then the Descartes algorithm for square free
polynomials 2.3.3 finds isolating intervals for the real roots.

2.3.3 The Descartes method in Bernstein basis

We introduce the Bernstein polynomials which will lead to an easier description of
the Descartes method and allow to develop a version of the Descartes algorithm
that only works with approximate coefficients.

Definition 2.3.9. For n ∈ N and c, d ∈ R with c < d, the ith Bernstein polynomial
of degree n is defined as

Bn
i [c, d](x) :=

(
n

i

)
(x− c)i(d− x)n−i

(d− c)n

for 0 ≤ i ≤ n.

The Bernstein polynomials span the vector space of polynomials of degree ≤ n:

Theorem 2.3.10. Bn
0 [c, d], . . . , Bn

n [c, d] is a basis of the vector space R[x]≤n.

Proof. Set

S :=

{
n∑

i=0

ciB
n
i [c, d] | ci ∈ R

}

the space spanned by the Bernstein polynomials. It is enough to show that all
elements of the basis (x − c)0, . . . , (x − c)n are in S. This is clear for (x − c)n =
(d − c)n · Bn

n [c, d]. Now, for any k ∈ {0, . . . , n − 1}, if (x − c)m ∈ S for all m ∈
{k + 1, . . . , n}, we have that

(d− c)n

(
n
k

) ·Bn
k [c, d](x)

︸ ︷︷ ︸
∈S

:= (x− c)k(d− x)n−k

= (x− c)k(d− c− (x− c))n−k

= (d− c)(x− c)k +

n∑

i=k+1

λi(x− c)i

︸ ︷︷ ︸
∈S
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with some λi, and therefore, also (x− c)k ∈ S.

So we can write each polynomial in R[x]≤n as

f(x) =
n∑

i=0

biB
n
i [c, d](x) (2.3.2)

with some bi ∈ R. We call the bi’s Bernstein coefficients of f with respect to the
interval [c, d].

For shorter notation, we set Bi := Bn
i [c, d]. If we apply our transformation

function T·,c,d on Bi, a small calculation shows that

TBi,c,d = (x + 1)n

(
n

i

)
(φc,d(x)− c)i(d− φc,d(x))n−i

(d− c)n
=

(
n

i

)
xn−i.

Since T·,c,d is a linear mapping, It follows with (2.3.2):

Tf,c,d =
n∑

i=0

biTBi,c,d =
n∑

i=0

(
n

i

)
bix

n−i.

This gives a reformulation of Descartes’ rule:

Theorem 2.3.11 (Descartes’ rule of sign in the Bernstein basis). For
nonzero f =

∑n
i=0 biB

n
i [c, d], let v be the number of sign variations of the Bernstein

coefficients and let r be the number of real roots in (c, d), counted with multiplici-
ties. Then v − r is non-negative and even.

With Theorem 2.3.11, the root isolation simplifies when the Bernstein basis is
used consequently:

Algorithm 2.3.12 (Isolation of real roots in Bernstein basis).
Input: Interval (c, d), f =

∑n
i=0 biB

n
i [c, d] square free, f(c) 6= 0 6= f(d).

Output: Isolating intervals of the roots of P in (c, d).

1. Compute v, the number of sign variations of the Bernstein coefficients.

2. If v = 0, return. If v = 1, report the interval [c, d] and return.

3. Otherwise, choose a rational split point m ∈ (c, d). If f(m) = 0, report the
interval [m,m].

4. Compute the basis representation with respect to the Bernstein polynomials
(Bn

i [c,m])n
i=0 and (Bn

i [m,d])n
i=0.

5. Isolate the roots of f in (c,m) and (m,d) recursively.
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A straightforward and efficient solution for step 4 is the famous de Casteljau
algorithm. Its idea is to start with the sequence (b0, . . . , bn) and to form a triangular
shape of numbers by iteratively adding neighbours. The edges of this triangle give
the Bernstein coefficients with respect to [c,m] and [m,d]. See [BPR03, Algorithm
10.2], or [ESY06] and the references therein for more detailed treatments.

The recursion steps in the Descartes method (in the power basis and in Bern-
stein basis) can be represented in a binary tree structure: Every node corresponds
to one visited interval and one node v1 is an ancestor of v2 if the interval of v2 is a
subset of v1.

We will mark every node with the sign variation of the corresponding interval.
It is then clear that nodes marked with 0 or 1 are leafs in the tree. If we assume
that no roots occur on the chosen split points, the leaves are exactly the nodes
marked with 0 and 1. Figure 2.3.1 shows one example.

9

5 4

2 1 0 2

1 10 2

0 0

Figure 2.3.1: A possible Descartes tree. Note that the sum of the children is not
necessarily equal to the parents sign variation, but they differ by an even number
(assuming that no split point is a root)

The following observation is crucial for our applications. It says that the mark
of a node is always at least the sum of its children, and both differ by an even
number.

Lemma 2.3.13. Let c, d,m be non-roots of f and v, v1, v2 be the number of sign
variations of the Bernstein coefficients of f with respect to [c, d], [c,m] and [m,d],
respectively. Then v − (v1 + v2) is non-negative and even.

This follows quite directly by considering the de Casteljau triangle. See [BPR03,
Prop.10.34] for a proof.

We explain next that it is possible to transform Algorithm 2.3.12 such that only
approximations of the coefficients are necessary: Since the real roots of a polynomial
depend continuously on the coefficients, isolating intervals remain isolating if the
polynomial’s coefficients are slightly perturbed (or closely approximated). Thus, as
long as we can be sure to take the correct decision in each step of Algorithm 2.3.12,
we can just use approximations of the Bernstein coefficients.

Eigenwillig et al. ([EK+05]) describe how this idea can be used to build the so-
called Bitstream Descartes method. There are two main obstacles: First, there is a
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problem if a chosen split point is a root of the polynomial, since this is impossible
to test by only calculating approximate. This problem is solved via randomised
choices of the split points during the algorithm.1

Second, it can happen that the sign of some coefficient during the computation
cannot be determined. So, there is not a unique number of sign variation of an
interval, but a set of possible numbers. At least, the algorithm ensures (again by
the randomised choice of split points) that the sign of the first and last Bernstein
coefficient (which correspond to the function values at the interval endpoints) are
determined, hence the parity of each number of sign variations is known. The
authors show that isolating intervals for simple roots of the exact polynomial and
intervals without any root can be determined if the coefficients are sufficiently
approximated. Of course, it is not known a priori how much the coefficients must
be approximated for a successful run of the algorithm, and the precision must be
increased in situations where the algorithm fails to find suitable split points. For
a detailed treatment, see [EK+05].

To illustrate why the Bitstream Descartes algorithm is very useful for our pur-
poses, consider a square free bivariate polynomial f ∈ Z[x, y]. We want to find the
roots of the polynomial fα = f(α, y) ∈ R[y] for some α ∈ R (the roots correspond
to the y-coordinates of points on the curve with x-coordinate α). The coefficients of
fα are not integers in general, but coefficient over the domain Z[α], and performing
a usual Descartes algorithm would result in expensive algebraic calculation with α.
However, the Bitstream Descartes method allows us to find isolating intervals only
by computing approximations of the coefficients. How to find these approximations
for real algebraic numbers is the subject of Section 2.4.

2.3.4 Root isolation for polynomials with multiple roots

For the Descartes method (in Bernstein basis or power basis), we had to restrict
to square free input polynomials. That’s a serious restriction because polynomials
with multiple root will appear all over the place in our algorithm. The simplest
solution to overcome this problem is the following lemma. We only show it for real
polynomials although it remains valid for arbitrary factorial domains:

Lemma 2.3.14. Let f be a polynomial in R[x]. Then, f
gcd(f,f ′) is square free and

has the same roots as f .

Proof. W.l.o.g. we assume that f is monic. We can decompose:

f = (x− α1)e1 · . . . · · · (x− αr)er = (x− α1)e1 · F

with distinct αi ∈ C. Recall that by definition, ei gives the multiplicity of the root
αi.

1In a second variant, the problem is solved via performing a random shift of the input coefficient
and choosing always the midpoint of the interval.
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Computing the derivative, we see that

f ′ = (x− a1)e1 · F ′ + e1(x− a1)e1−1 · F

We see that α1 is a root of the gcd of f and f ′ with multiplicity e1 − 1. In
particular, if α1 is a simple root of f , it is not a root of f ′. The same holds for
each αi. Therefore,

gcd(f, f ′) = (x− α1)e1−1 · . . . · · · (x− αr)er−1

and the claim follows.

Consequently, a solution for non-square-free polynomials is to divide out the
greatest common divisor and apply the Descartes method on the square free version
of the polynomial. We remark that this technique is not always a practicable
way of isolating roots: If the coefficients of the polynomial are not integers, but
from the domain Z[α] with α algebraic, the gcd-computation becomes extremely
complicated. A main result of this work is to give alternative solution for the
isolation of multiple roots based on the Descartes method, exploiting additional
properties of the polynomial.

2.4 Representation of real algebraic numbers

We introduce the interval representation of general real algebraic numbers and
present some basic operations. For approximations, we need some properties of
interval arithmetic which we discuss first. A detailed introduction to interval arith-
metic can be found in [Mo79].

Interval arithmetic

Assume that a number α ∈ R is not known exactly, but it is assured that it is
contained in some interval I. For an operation op on real numbers, we want to
define an operation op on intervals such that op(α) ∈ op(I). For basic operations
like addition and multiplication, this is straightforward to define:

Definition 2.4.1. For intervals [a, b], [c, d] and λ ∈ R, we define

1. λ + [a, b] := [λ + a, λ + b],

2. [a, b] + [c, d] := [a + c, b + d],

3. λ · [a, b] :=

{
[λ · a, λ · b] if λ ≥ 0,

[λ · b, λ · a] if λ < 0,

4. [a, b] · [c, d] := [min{ac, ad, bc, bd}, max{ac, ad, bc, bd}].

45



For an interval I and f =
∑n

i=0 aix
i ∈ R[x], we evaluate f at the interval I

according to the Horner scheme and write:

f(I) := a0 + I · (a1 + I · (a2 + I · · ·+ I · (an−1 + I · an) . . .))

For α ∈ I, β ∈ J , we have −α ∈ −I, α + β ∈ I + J , α · β ∈ I · J etc. Thus it
also follows that f(α) ∈ f(I). We show next that f(α) can be approximated up
to arbitrary precision by refining the interval of α. Therefore, we use the following
famous theorem about nested intervals [Fo01, §5]. For I = [c, d], define the length
of I as L(I) := d− c.

Theorem 2.4.2. Let (Ik) be a sequence of intervals with I0 ⊃ I1 ⊃ . . . such that
limk→∞ L(Ik) = 0. Then, there exists an α ∈ R such that

∞⋂

i=0

Ik = {α}

We call (Ik) a nested interval sequence for α.

Proof. If the intersection of all intervals contained more than one point, all intervals
would contain two points with a fixed distance δ and so L(Ik) ≥ δ, contradicting
the assumption. It is therefore enough to show that the intersection is not empty.

We define [ak, bk] := Ik. The sequence (ak) is a Cauchy-sequence. By the
completeness axiom, (ak) converges to some α ∈ R. Since the ak are monotone, it
holds that ai ≤ α. Furthermore, each bj is an upper bound for the sequence (ai)
and therefore α ≤ bj. In other words, α ∈ Ik for all k ∈ N.

Lemma 2.4.3. Let λ ∈ R and (Ik), (Jk) nested interval sequences for α and β.
Then

1. (λ + Ik) is a nested interval sequence for λ + α.

2. (Ik + Jk) is a nested interval sequence for α + β.

3. (λ · Ik) is a nested interval sequence for λ · α.

4. (Ik · Jk) is a nested interval sequence for α · β.

Proof. We only prove the last statement, the others are easy.
First of all, it holds that I0 · J0 ⊃ I1 · J1 ⊃ . . . . Next, we show that the length

indeed converges to zero: There exist numbers ak, Ak ∈ Ik, bk, Bk ∈ Jk such that

Ik · Jk = [ak · bk, Ak · Bk].

As a consequence of Theorem 2.4.2, (ak) and (Ak) converge to α, and (bk) and
(Bk) converge to β. So (ak · bk) converges to α · β as well as (Ak · Bk).

Since polynomial evaluation is a finite sequence of additions and multiplications,
this lemma implies

Theorem 2.4.4. If (Ik) is a nested interval sequences for α, (f(Ik)) is a nested
interval sequence for f(α).
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Exact representation

Recall the definition of algebraic from Section 2.1.3: α is algebraic over a domain
D, if there exists a non-zero polynomial f ∈ D[x] such that f(α) = 0. From now,
we will call c ∈ C algebraic, if it is algebraic over Z. We will call it real algebraic if
it is also a real number. As already remarked in Section 2.1.3, being algebraic over
Z and being algebraic over Q is equivalent.

For instance,
√

2 is algebraic since it is a root of x2−2. But root expressions are
not a general representation for (real) algebraic numbers – the famous Galois theory
(covered by most textbooks in Algebra, for instance [La93, Bo01, Wo96, Wa71])
shows that not all polynomial equations are solvable with radicals. Instead, we
represent real algebraic numbers in the following way:

Definition 2.4.5. Let α be a real algebraic number that is a root of f ∈ Z[x].
If I = [c, d] is an isolating interval of f for α, we call (f, I) an (integral) interval
representation of α. We also write α =̂ (f, I). We call an interval representation
simple, if α is a simple root of f , i.e. a root of multiplicity one.

The algebraic number α is uniquely identified by an interval representation,
although neither f nor I are unique. For instance,

√
2 has the representation

(x2 + 2, [0, 2]), but also (x3 + 2x, [1, 4]).
The results from the previous section can be used to compute a simple interval
representation of any real root of f . The naive approach would be to divide out
gcd(f, f ′) first to make the polynomial square free (compare Lemma 2.3.14), and
then isolate the roots using the Descartes method. However, for computational
purposes, it is an advantage if the defining polynomial for the roots are of smaller
degree. So, we factorise the square free part of f into polynomials F1, . . . , Fr, such
that Fi contains exactly the roots of f with multiplicity i. We refer to [GCL92,
§8.1] for an excellent and much more detailed treatment:

Algorithm 2.4.6 (Square free factorisation).
Input: Polynomial f ∈ Z[x].
Output: Polynomials F1, . . . , Fr such that

f =

r∏

i=1

F i
i

1. Set g ← gcd(f, f ′), f∗ ← f
g , i← 1

2. While g 6= 1, do the following:
i. y ← gcd(g, f∗)

ii. Set Fi ← f∗

y , i← i + 1.

iii. Update f∗ ← y and g ← g
y

3. Set Fi ← f∗

For our implementation, we use a slight modification of that algorithm, called
Yun’s Square-Free Factorisation. See [GCL92, Algorithm 8.2] and [Yun76] for de-
tails.
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We formulate an algorithm to create interval representations of algebraic num-
bers:

Algorithm 2.4.7.
Input: An integer polynomial f ∈ Z[x]
Output: A sequence of simple interval representation (f, I)

1. Decompose f = F1, . . . , Fr as above.

2. For each i = 1, . . . , r, apply the Descartes algorithm to find isolating intervals.

3. Output the representations

We remark that the output list is not ordered so far. As we will see later
in this section, it is easily possible to compare two algebraic numbers in interval
representation. Hence, the algorithm above can be easily modified to produce a
increasing list of algebraic numbers.

We now study what operations we can perform efficiently with our representa-
tion of algebraic numbers. First, we demonstrate how the isolating interval can be
shrunk to arbitrary width, leading to a numeric approximation of the number:

If α = (f, (c, d)) is simple, it holds that sgn(f(c)) 6= sgn(f(d)). To make the
interval smaller, one can just use the well-known bisection: Choose a split point
(e.g. the midpoint m = c+d

2 ), and look for the subinterval with a sign change at the
boundaries. However, each step only gives us one more bit precision. Another well-
known method is the Newton method: It converges quadratically in good cases, but
it can diverge, too. Also the denominators appearing in the iteration can become
complicated (whereas in the bisection, we can always chose split points such that
the denominator is a power of 2). Abbott ([Ab06]) describes the quadratic interval
refinement method, a combination of bisection and regula falsi. Its advantage is
that it always terminates and eventually doubles the number of exact bits in every
step. We give a short description of the nice idea:

Let N be an integer initially set to 4. We divide the isolating interval (c, d) of
α into N subintervals, with N +1 equidistant boundary points. Now, we construct
the line through the points (c, f(c)) and (d, f(d)). Since the signs of f(c) and f(d)
differ, this line intersects the x-axis between c and d. Let m be the boundary point
nearest to that intersection point. If the signs of f(c) and f(m) differ, we expect
the root to be in the subintervals with m as right boundary, otherwise we expect
it to be in the subinterval with m as left boundary. We call this interval J .

There are two cases: If N = 4, two bisection steps are performed and it is
checked whether the resulting isolating interval equals J . If it does, N is set to
N2 = 16. Otherwise, N remains 4.

If N 6= 4, it is simply checked whether the signs at the boundaries of J differ.
If so, then J is taken as new isolating interval, and N is set to N2. If there is no
sign change, the isolating interval remains unchanged, and N is set to

√
N .
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The method terminates when the isolating interval is small enough. This hap-
pens eventually, since there is always a refinement if N = 4, and otherwise N is
decreased if no refinement takes place.

The idea is also illustrated in Figure 2.4.1. Intuitively, the function is better and
better approximated by the resulting secants, and the guessed interval J will be
eventually always right and doubles the precision in each step. [Ab06] also contains
a proof for the quadratic convergence – we will focus on the practical behaviour of
the method compared to simple bisection in the experiments in Chapter 6.

Figure 2.4.1: In the left picture, the guessed interval does not contain the real root,
therefore, N is decreased to 4 in the next step. On the right, there is a sign change
in the guessed interval. Therefore, it is taken as refined isolating interval and N is
increased to 256.

Knowing how isolating intervals can be refined, we can now compare two real
algebraic numbers in simple interval representation. For the equality test, we need
symbolic computations:

Algorithm 2.4.8 (Equality).
Input: Two simple representations α =̂ (f, I) and β =̂ (g, J).
Output: true iff α = β

1. If I and J are disjoint intervals, return false

2. Set K := I ∩ J . If K is not isolating for α as well as for β, return false. This
can be checked by comparing the signs of f and g at the boundaries of K.

3. Compute h := gcd(f, g). Return whether h switches sign at the boundaries
of K.
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If α and β are not equal, one can refine the isolating intervals of both until they
are disjoint and deduce whether α is greater or less than β.
Next, we consider the problem of evaluating polynomials in real algebraic numbers.

Algorithm 2.4.9 (zero test for g at α).
Input: g ∈ Z[x], α = (f, I).
Output: True if and only if g(α) = 0

1. Compute h := gcd(f, g)

2. Check whether the signs of h at the boundaries of I differ.

The correctness is immediate: g(α) = 0 if and only if h(α) = 0. Since the roots
of h form a subset of the roots of f , I must also be an isolating interval for h in
this case.
If g(α) 6= 0, we compute the sign of g(α) as follows:

Algorithm 2.4.10 (non-zero sign of g at α).
Input: g ∈ Z[x], α = (f, I) with g(α) 6= 0.
Output: The sign of g(α)

1. Evaluate J := g(I), using interval arithmetic.

2. If both interval boundaries have the same sign, return it.

3. Otherwise, refine the interval I to I ′

4. Call the algorithm recursively with the representation α = (f, I ′)

The algorithm terminates since the isolating intervals used form a nested inter-
val sequence for α, so the interval boundaries of the J ’s converge to g(α). Since
this is non-zero, both boundaries have eventually the same sign.

For a numerical approximation of f(α), we use the same principle. The termi-
nation criterion is that the length of g(I) becomes smaller than some given ε.

We want to derive a second, more general representation of real algebraic num-
bers. First of all, we recall from Section 2.1.3 that Q, the algebraic closure of Q,
is an algebraically closed field. Moreover, the extension Q ⊂ Q is algebraic, this
means that Q only contains algebraic elements. This shows that Q is precisely the
set of algebraic numbers. As a consequence, the roots of any g ∈ Q[x] are alge-
braic numbers again. Such roots arise, for instance, when a bivariate polynomial
f ∈ Z[x, y] is evaluated at the position x = α with α ∈ Q. We give such (real)
roots a special representation:

Definition 2.4.11. Let f ∈ Z[x, y], α, β ∈ R and α be in interval representation.
If f(α, β) = 0 and I is an isolating interval of fα for β with rational boundaries,
we call (f, α, I) an algebraic interval representation of β and write β =̂ (f, α, I). It
is called simple if β is a simple root of fα.
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In other words (f, α, I) is the representation of a root of fα. It is still possible
to refine I by bisection, if the representation is simple: All we need are the signs of
fα, evaluated at the boundaries of I, and at the split point. But this is nothing but
a sign computation of the polynomial f(x, q) (where q is one of these three rational
values) at the real algebraic number α. We will see later that it is also possible to
refine the isolating interval in non-simple cases.

Using that refinement property, it is also possible to compare two different
algebraic interval representations by merely refining their isolated intervals until
they are disjoint.

As a conclusion, here are the operations that we have described for our rep-
resentations of real algebraic numbers. For simple integer interval representations
α =̂ (f, I):

• Refine I to any precision

• Compare α to another real algebraic number of that kind

• Compute the sign of g(α) for a polynomial g ∈ R[x]

• Compute g(α) up to any precision

For simple algebraic interval representations β =̂ (f, α, I):

• Refine I to any precision

• Compare β to any different real algebraic number

We remark that there exist methods to transform algebraic numbers from the
algebraic interval representation into integral interval representation [Lo82b]. We
abstain from using these methods for efficiency.

2.5 Subresultants and the greatest common divisor

We give a geometric motivation: Imagine two curve f, g in the plane and some
x-coordinate α. We are interested in intersection points of these curve at α as
a geometric property. To find them, one has to compute the greatest common
divisor of fα = f(α, y) and gα = g(α, y). Instead of calculating this gcd with the
Euclidean algorithm, one can use subresultants, a sequence of polynomials. Their
most important properties are

• They are defined as algebraic expressions in the coefficients of f and g.

• The formal leading coefficients of the subresultants provide the degree of the
greatest common divisor.

• The sequence of subresultants contains all polynomials occurring in the Eu-
clidean algorithm (in particular the gcd itself), up to a scalar factor. In fact,
their size is smaller than the size of the Euclidean polynomials.
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• If the polynomials have only one common root, one can express this root as
rational expression in the subresultant coefficients.

• The subresultant are well-behaved under homomorphisms: Suppose φ is a
homomorphism of domains from D to D′ which preserves the degree of f
and g ∈ D. One can obtain a subresultant sequence for φ(f) and φ(g) by
applying φ on the subresultant sequence of f and g.

Especially the last property is extremely useful in geometric applications as we
show at the end of this section. We discuss the named properties one after another.
Throughout this section, let D be a factorial domain and

f =

n∑

i=0

fix
i, g =

m∑

i=0

gix
i

polynomials in D[x] with n = deg(f) ≥ deg(g) = m.

The kth Sylvester submatrix of f and g is defined to be the following (n + m−
2k) × (n + m − k) matrix, composed of m− k rows of coefficients of f and n − k
rows of coefficients of g:

Syll(f, g) =





fn . . . f0

. . .
. . .

fn . . . f0

gm . . . g0

. . .
. . .

gm . . . g0





The matrix Syl0(f, g) is also called the Sylvester matrix.
The Sylvester submatrices arise naturally by asking if there exist (non-zero)

polynomials u, v with deg(u) < m − k, deg(v) < n − k such that uf + vg = 0.
Expressed in terms of linear algebra, this corresponds to the linear system

(u, v) · Sylk(f, g) = 0 (2.5.1)

where u and v are identified with their coefficient vector.

Definition 2.5.1. For a polynomial f =
∑n

k=0 akx
k, we set

coefk(f) := ak.

Definition 2.5.2. For 0 ≤ k ≤ n, the kth subresultant of f and g is defined as

Sresk(f, g) =






∑k
i=0 Mk

i (f, g)xi if k ≤ m− 1,

g if k = m,

0 if m + 1 ≤ k < n,

f if k = n,
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where Mk
i (f, g) is the determinant of the matrix built with the first n + m− 2k− 1

and the (n + m− k − i)th column of the kth Sylvester matrix. The kth principal
subresultant coefficient (psc) for k = 0, . . . , n is defined as

sresk(f, g) =

{
1 if k = n,

coefk(Sresk(f, g)) if k = 0, . . . , n− 1.

We call coefk−1(Sres(f, g)) =: cosresk(f, g) the kth coprincipal subresultant coeffi-
cient for k = 1, . . . , n.

The sequence Sresn(f, g), . . . , Sres0(f, g) is called the subresultant sequence of
f and g. The sequences of principal and coprincipal coefficients are defined in the
same way.

In particular, Sres0(f, g) = sres0(f, g) = res(f, g), where res(f, g) denotes the
resultant of f and g.

Some authors call the psc’s “subresultants” (or scalar subresultants) which
might confuse the reader. [GL03] contains an overview how the term “subresul-
tants” is used in the literature.

The psc’s provide the degree of the greatest common divisor as we will show
next. We use the following lemma that gives another description for the degree of
the greatest common divisor [Wol02]:

Lemma 2.5.3. Let f, g be polynomials in D[x] and k := deg(gcd(f, g)). Then k
is the minimal integer i such that all non-zero u, v ∈ D[x] with deg u < m − i,
deg v < n− i satisfy deg(uf + vg) ≥ i.

Proof. Let h := gcd(f, g), and k its degree. Set u′ := g
h and v′ := − f

h . Clearly,
for any integer i < k, deg(u′) = m − k < m− i and deg(v′) = n − k < n − i, and
u′f + vg′ = 0. This shows the minimal integer with the specified property is at
least k.

To show that i = k satisfies the specified property, assume for a contradiction
that there exist non-zero polynomials u, v with deg(u) < m−k and v with deg(v) <
n − k such that deg(uf + vg) < k. Since h divides uf + vg, this means that
uf + vg = 0, and also uf

h + v g
h = 0. This implies that f

h divides v because f
h and

g
h are coprime. But deg f

h = n− k > deg(v), a contradiction.

If one truncates the last i columns of Syli in (2.5.1), the new system has a (non-
trivial) solution iff there exist polynomials u, v with deg(u) < m− i, deg(v) < n− i,
such that deg(uf + vg) < i. By definition, such a solution exists iff sresi(f, g), the
determinant of the truncated matrix, vanishes. Together with Lemma 2.5.3, this
proves that the principal subresultant coefficients are an indicator for the degree
of the greatest common divisor:

Corollary 2.5.4.

deg(gcd(f, g)) = min {k ∈ {0, . . . , n} | sresk(f, g) 6= 0}
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We show next that even more is true: The first non-vanishing subresultant is an
associate of the greatest common divisor of f and g. We follow the argumentation
from [BT71] and express the ith subresultant as one single determinant.

Sresi(f, g) = det





fn . . . . . . f2i−m+2 xm−i−1f
. . .

...
...

fn . . . fi+1 f
gm . . . . . . g2i−n+2 xn−i−1g

. . .
...

...
gm . . . gi+1 g





(2.5.2)

with fj = 0 = gj for negative indices j. The equality follows directly from the
linearity of the determinant in the last column.

Laplace expansion in the last column in (2.5.2) yields

Sresi(f, g) = uf + vg, deg(u) < m− i, deg(v) < n− i. (2.5.3)

Let k := deg(gcd(f, g)). By Corollary 2.5.2, Sresk(f, g) is a polynomial of degree
k, since it has sresk(f, g) 6= 0 as leading coefficient. With (2.5.3), it follows at once
that

Sresk(f, g) ∼ gcd(f, g). (2.5.4)

Even better, the subresultant sequence does not only contain the greatest common
divisor, but all polynomials occurring in the Euclidean algorithm, up to associates.
We call a subresultant Sresi(f, g) regular, if deg(Sresi(f, g)) = i and defective oth-
erwise. Note that the ith subresultant is defective if and only if sresi(f, g) vanishes.

Theorem 2.5.5. Let Sk, . . . , S0 be the sequence of regular subresultants (starting
with Sk = f, Sk−1 = g). Then, there exist αi, βi ∈ D,Qi ∈ D[x] such that

αiSi+1 = QiSi + βiSi−1

for i ∈ {1, . . . , k − 1}.

Proofs can be found in [Co67, BT71, Lo82a, GL03].
It is possible to calculate the values of αi, βi, and this leads to efficient algo-

rithms to compute the subresultant. These expressions are quite complicated in
general, but if all subresultants are regular, we have the equality

sres2
i Sresi+1 = Qi · Sresi + sres2

i+1Sresi−1 (2.5.5)

for some Qi ∈ D[x] and all i = 1, . . . , n−1 (compare [Lo82a], [GL03]). In particular,
all αi, βi are positive.

Consider C := Q(D), the algebraic closure of D’s quotient field (you can also
set D := Q and C := C for simplicity). Suppose that f and g only have one
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common root over C with multiplicity k. In other words, gcd(f, g) = (x − β)k.
Using (2.5.4) gives

Sresk(f, g) = sresk(f, g)(x− β)k,

and by comparing the coefficients of xk−1, it follows

β = − cosresk(f, g)

k · sresk(f, g)
. (2.5.6)

This expression also appears in [GN02]. We see that the multiple root can be
expressed as rational expression which depends on the principal and coprincipal
subresultant coefficients of f and g.

Let ϕ : D → D′ be a homomorphism of domains such that the leading coeffi-
cients of f and g are not in the kernel of ϕ. This means that ϕ preserves the degree
of f and g, and therefore for any i,

ϕ(Syli(f, g)) = Syli(ϕ(f), ϕ(g)),

where ϕ(A) means applying ϕ on each entry of the matrix A. Since the determinant
is nothing but a sum of products, we have that

ϕ(det A) = det(ϕ(A)).

This proves the following theorem (see also [Yap00, §4.4, Lemma 4.9]):

Theorem 2.5.6 (Specialisation property). Let ϕ : D → D′ be a homomor-
phism of domains with lc(f), lc(g) /∈ ker ϕ. Then, for any i ∈ {0, . . . , n}

ϕ(Sresi(f, g)) = Sresi(ϕ(f), ϕ(g)).

The name of the theorem comes from its main application: Assume D = R[x]
is a domain with parameter, and consider the homomorphism to R that specialises
x to α. Then, by knowing the subresultant sequence of f, g ∈ D, one obtains the
subresultant sequence of fα, gα by evaluating Sresi(f, g) at x = α, in other words

Sresi(fa, ga) = Sresi(f, g)(α)

Of course, the specialisation works as well in more generality for an arbitrary
number of parameters where all or only a part of them are specialised by the
homomorphism.

2.6 Sturm-Habicht sequences and real root counting

The subresultant sequence provides information for the intersections of two different
polynomials f and g. For our problem of analysing a single curve, we are mainly
interested in the special case g = f ′, as intersections of f and Dyf are critical
points of the curve. Apart from the properties derived in the previous section, we
can also slightly modify the subresultant sequence of f and f ′ to count the number
of real roots of f over any x-coordinate α. Therefore, we introduce Sturm-Habicht
sequences and exploit their relation to Sturm sequences.
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Definition 2.6.1. A Sturm sequence for the polynomial f is a sequence of non-zero
polynomials Sk, . . . S0 with Sk = f, Sk−1 = f ′ and

αiSi+1 = QiSi + βiSi−1

for some Qi ∈ D[x], αi, βi ∈ D and deg Si−1 < deg Si where the Sturm property
αiβi < 0 is satisfied for all i = 1, . . . , k − 1

The famous theorem from Sturm counts the real roots of a polynomial in some
interval. A proof can be found in [Yap00, §7.3]. For a sequence of real numbers
I := (ak, . . . , a0), let Var I again denote the number of sign variations of I, i.e. the
number of sign switches from plus to minus or vice versa, ignoring zeroes.

Theorem 2.6.2 (Sturm). Let f ∈ R[x] have Sturm sequence Sk, . . . , S0, and
a, b ∈ R, a < b such that f(a) 6= 0 6= f(b). The number of real roots in [a, b]
(counted without multiplicities) is given by

Var(Sk(a), . . . , S0(a)) −Var(Sk(b), . . . , S0(b)).

For our applications, we are especially interested in the total number of real
roots. This can be computed as follows:

Corollary 2.6.3. Let f ∈ R[x] have the Sturm sequence Sk, . . . , S0, and let
sk, . . . , s0 be the sequence of leading coefficients. The total number of real roots of
f is

k−1∑

i=0

εi, with εi =

{
0 if deg(Si+1)− deg(Si) is even

sgn(si+1si) if deg(Si+1)− deg(Si) is odd

Proof. We choose a large interval [a, b] such that all real roots of any Si are con-
tained in (a, b). Var(Sk(a), . . . , S0(a)) and Var(Sk(b), . . . , S0(b)) are then deter-
mined by the leading coefficients – more precisely,

Var(Sk(b), . . . , S0(b)) = Var(sk, . . . , s0)

and
Var(Sk(a), . . . , S0(a)) = Var(δksk, . . . , δ0s0)

with δi = (−1)deg(Si).
We run through both sequences in parallel and we count 1 if there is a sign

variation from Si+1(b) to Si(b), but not from Si+1(a) to Si(a), we count −1, if we
find a sign variation from Si+1(a) to Si(a), but not from Si+1(b) to Si(b), and we
count 0 otherwise. A simple case distinction yields the formula.

As an easy corollary from Theorem 2.5.5, one can show that the sequence of
regular subresultants of f and f ′ can be transformed into a Sturm sequence by
only multiplying some entries with −1. But it is not that easy to give an explicit
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formula – Hong [Ho96] presents a solution for this conversion. Yap [Yap00, §7.1.1]
describes an algorithm to transform an arbitrary polynomial remainder sequences
into a Sturm sequence. These method have the drawback that they have no good
specialisation properties. Calculations are necessary for each x-value α to obtain
the Sturm sequence.

Our approach follows Gonzalez-Vega et al. [GL+98]. Their definition of Sturm-
Habicht sequences does not completely satisfy the Sturm property, but we are still
in position to count the real roots of polynomials. Furthermore, the sequence
can be computed for a polynomial with parameters, and the specialisation of the
parameters always yields a valid Sturm-Habicht sequence again:

Definition 2.6.4. Let δk := (−1)k(k+1)/2. For f as above and k ∈ {0, . . . , n}, the
kth Sturm-Habicht polynomial of f is defined as:

StHak(f) =






f if k = n

f ′ if k = n− 1

δn−k−1Sresk(f, f ′) if 0 ≤ k ≤ n− 2

The kth principal Sturm-Habicht coefficient is defined as

sthak(f) :=

{
1 if k = n

coefk(StHak(f)) if k = 0, . . . , n− 1

for k = 0, . . . , n.
The kth coprincipal Sturm-Habicht coefficient is defined as

costhak(f) := coefk−1(StHak(f))

for k = 1, . . . , n.

We call (StHan(f), . . . , StHa0(f)) the Sturm-Habicht sequence of f . The prin-
cipal and coprincipal Sturm-Habicht sequences are defined the same way.
Observe that many results from the previous section still hold for Sturm-Habicht
polynomials instead of subresultant. We summarise them for completeness.

Corollary 2.6.5. Let k be the degree of gcd(f, f ′).

1. k = min {k ∈ {0, . . . , n− 1} | sthak(f) 6= 0}

2. StHak(f) = gcd(f, f ′)

3. If β is the only root of f over Q(D), then

β = − costhak(f)

k · sthak(f)
.
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4. Let ϕ : D → D′ be a homomorphism of domains with lc(f) /∈ ker ϕ. Then,
for any i ∈ {0, . . . ,m− 1}

ϕ(StHai(f)) = StHai(ϕ(f)).

If all Sturm-Habicht polynomials are regular (defined in the same way as for
subresultants), it follows from (2.5.5) that the Sturm-Habicht sequence has the
Sturm property. In general, this is not true:

Example. Consider f = 2x4 + 4x3 + 3x2 + x. One computes the principal Sturm-
Habicht coefficients stha4, . . . , stha0 which are 1, 8, 0, 0,−8. This means that the
sequence of regular Sturm-Habicht polynomials is

(StHa4, StHa3, StHa0) = (f, f ′, res(f, f ′)).

We have that
64f = (16x + 8)f ′ + (−8)

or, equivalently
64StHa4 = (16x + 8)StHa3 + StHa0.

So, α = 64, β = 1 and according to Definition 2.6.1, this is not a Sturm sequence.

Though Theorem 2.6.2 is not directly applicable for Sturm-Habicht sequences,
we can still count the total number of roots, similar to Corollary 2.6.3. Therefore,
we define the following function:

Definition 2.6.6. For a sequence I := (a0, . . . , an) of real numbers with a0 6= 0,
define

C(I) =

s∑

i=1

εi

where s is the number of subsequences of I of the form

(a, 0, . . . , 0︸ ︷︷ ︸
k

, b)

with a 6= 0, b 6= 0, k ≥ 0.
For the ith subsequence of I, define

εi :=

{
0 if k is odd,

(−1)k/2sgn(ab) if k is even.

Now applying C on the principal Sturm-Habicht sequence of f gives the result:

Theorem 2.6.7. For f ∈ R[x] with deg f = n, we have:

C(sthan(f), . . . , stha0(f)) = #{α ∈ R | f(α) = 0}
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This is taken from [GN02], the proof needs some deeper results from subresul-
tant theory, it can be found in [GL+98]. Note that the result follows from Corol-
lary 2.6.3 if all Sturm-Habicht polynomials are regular. Also, the total number of
real roots only depends on sign of the principal Sturm-Habicht coefficients.

We explain how Sturm-Habicht sequences help to give information about geo-
metric properties of algebraic curve. Let f ∈ Z[x, y] be such an curve. We assume
that it is primitive, and that the principal Sturm-Habicht sequence (sn, . . . , s0) :=
(sthan(f), . . . , stha0(f)) is known. Each element of the sequence is a polynomial
in x. Now, we fix some x-coordinate α. To learn about the number of points sup-
ported by α, we need to evaluate the signs of (sn(α), . . . , s0(α)) which are needed
in the count-function C. For information about critical points, we are interested
in the degree of fα and f ′

α, so need to evaluate the signs of s0(α), s1(α), . . . until
we encounter the first non-zero element, according to Corollary 2.6.5. But these
signs are already known from the first step, so we have the nice property that com-
puting the real points over α gives the degree of the gcd of fα with its derivative
for free, and only the principal Sturm-Habicht coefficients suffice to compute that
quantities. We will show in Section 4.2 how these two numbers help the Bitstream
Descartes method to isolate the real roots of fα even if the polynomial contains
one multiple root.
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Chapter 3

Description of the Algorithm

We start with a repetition of the problem statement: For a real algebraic plane
curve C, induced by a square free integer polynomial f , we want to answer the
following queries for arbitrary α ∈ R:

• Does the curve contain the vertical line x = α as a component? If it does,
the following questions refer to the primitive part of the curve.

• How many points on the curve C have x-coordinate α? We will call this
number nα.

• How many arcs of the curve converge to the vertical asymptote x = α in
direction +∞ and −∞, from the left and from the right?

• For i ∈ {1, . . . , nα}: Is the point (α, β) an event point, where β is the ith
point of C over α (in increasing order)?

• For i ∈ {1, . . . , nα}: How many arcs are incident to (α, β) from the left, and
from the right, where β is defined as above?

• For i ∈ {1, . . . , nα} and ε > 0: Find an interval containing β of size smaller
than ε, where β is defined as above.

Our algorithm analyses the curve such that the queries above can be answered
efficiently. It proceeds in two steps:

• Projection phase: Compute a finite set containing all event x-values of the
curve.

• Extension phase: For each element α of the computed set, create a data
structure collecting geometric information of the curve at x-value α.

The data structure to create will be defined formally in Section 3.1. Basically,
it contains the answers for all queries concerning an event value α, plus isolating
intervals which can be further refined for approximation.

61



Figure 3.0.1: Illustration of projection and extension phase

The projection phase of the algorithm is treated in Section 3.2. We follow
the usual approach of computing the resultant of the polynomial symbolically and
isolating its real roots. We give an overview of our new approach for the exten-
sion phase in Section 3.3, postponing the details to the subsequent two chapters.
We describe next how queries can be answered efficiently for non-critical values
(Section 3.4). For the approximation query, we introduce a generalised Descartes
algorithm in Section 3.5 and we describe how to apply this algorithm when approxi-
mating at event x-values (Section 3.6). For the whole analysis, we only consider the
primitive part of f and explain how to analyse curves with vertical line components
in Section 3.7.

3.1 The data structure

Our data structure is a sequence of so called vert-line objects. These objects store
information about a curve at a certain value α and they are arranged in increasing
order of α:

Definition 3.1.1. Let f ∈ Z[x, y]. A vert-line object for α is a seven-tuple

(α, vert comp, local degree, number of points, number of arcs lr,
asym numbers, points)

such that

• α =̂ (R, I) is a simple interval representation of a real algebraic number.

• vert comp is a flag denoting whether or not the vertical line x = α is a
component of f .

• local degree is the degree of the polynomial fα.

• number of points is the number of points on f supported by α.
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• number of arcs lr=(l, r) is a pair of integers, l denoting the number of
points supported by α − ε, r denoting the number of points supported by
α + ε, where ε is arbitrarily small. Equivalently, l is the number of arcs
that are either incident to any point at α from the left, or converging to the
vertical asymptote x = α from the left. The same holds for r from the right.

• asym numbers=(plus left,plus right,minus left,minus right) is a tuple
of integers. plus left denotes the number of arcs that converge to (α, +∞)
from the left side. The other three values have the corresponding meaning.

• points is a sequence of length number of points. Its elements are triples

(approx, incidence numbers, event),

containing further information about the points supported by α, in increasing
order of y.

– approx is an interval such that (f, α, approx) is an algebraic interval
representation of that point.

– incidence numbers=(l, r) is a pair of integers, denoting how many arcs
are incident to this point from the left, or from the right respectively.

– event is a flag indicating whether or not this point is an event point.

Obviously, if such a vert-line object exists for α, all queries listed above can be
answered in constant time, except for further approximation.

Example. Consider the curve

f = (xy − 1)(x− y)(x + y)(x2 + y2 − 2)

illustrated in Figure 3.1.1. We want to create the vert-line for α = 0. It should be
clear that the elements of the seven-tuple take the following values,
α = 0
vert comp = false

local degree = 4
number of points = 3
number of arcs lr = (5,5)
asym numbers = (0,1,1,0)
points = ((I1,(1,1),false), (I2,(2,2),true), (I3,(1,1),false))

where I1, I2, I3 are isolating intervals for −
√

2, 0,
√

2 respectively.

3.2 Identification of event values (projection phase)

As we want to create vert-line objects for each event value, the question arises how
to find them algorithmically. Fortunately, the resultant is a very suitable tool for
that. Recall that the resultant of f and g is defined to be the zeroth subresultant.
From now, we use the following notation.
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Figure 3.1.1: The graph of f = (xy − 1)(x− y)(x + y)(x2 + y2 − 2).

Definition 3.2.1. For polynomials f and g in K[x1, . . . , xn], we write res(f, g, xi)
to denote the resultant of f and g, considered as univariate polynomials in xi. In
particular, res(f, g, xi) ∈ K[x1, . . . , xi−1, xi+1, . . . , xn]. We define Sresi(f, g, y), sresi(f, g, y)
for all possible i in the same way.

The next well-known lemma (for instance in [CLO92, §3.5, Prop.8]) is a special
case of our results from Section 2.5:

Theorem 3.2.2. Two polynomials f, g ∈ R[x] have a common factor with positive
degree if and only if res(f, g) = 0

Proof. The first condition is equivalent to degy(gcd(f, g)) ≥ 1. But Corollary 2.5.2
tells us that

degy(gcd(f, g)) = min {k | sresk(f, g, y) 6= 0}
and this yields the equivalence at once.

Corollary 3.2.3. For polynomials f, g ∈ R[x, y]: If (α, β) is an intersection point
of f and g, then res(f, g, y)(α) = 0.

Proof. If (α, β) is intersection point, we have that fα(β) = gα(β) = 0, and therefore
fα and gα have the common factor (x−β), so res(fα, gα) = 0. By the specialisation
property (Theorem 2.5.6), it is res(fα, gα) = res(f, g, y)(α).

For g := Dyf , this tells us that the resultant vanishes for x-coordinates of
critical points. If x = α is vertical asymptote of f , the leading coefficient of f
vanishes. It follows that res(f,Dyf, y)(α) = 0 also in this case, since the first
column of the Sylvester matrix only contains zeros. We conclude

64



Theorem 3.2.4. If α is a critical x-value of f , then res(f,Dyf, y)(α) = 0.

This is only a necessary condition: It can happen that the resultant has roots
which do not support critical points, if f and Dyf meet in complex points with
real x-coordinate, or if the leading coefficient of the polynomial vanishes without
causing a (real) asymptotic arc at this x-coordinate.

Furthermore, R := res(f,Dyf, y) 6= 0 for square free f because f and Dyf have
no common component. This shows that R only has finitely many roots, and the
set of these roots contains all event x-values. The idea is now to find the roots
of R and build a vert-line object for each root. Since the roots of R are algebraic
numbers, we represent them in interval representation. Algorithm 2.4.7 describes
how to find the real roots of R. For a repetition, we first factorise R into square free
polynomials R1, . . . , Rr where Ri contains precisely the roots of R with multiplicity
i. Then, we isolate the real roots of each Ri, using the Descartes method. All roots
are then merged into one increasing sequence.

We could define an algorithm for the projection phase in a straightforward
fashion by computing the resultant and isolating its roots. Since we will make
use of the principal and coprincipal Sturm-Habicht coefficients in the extension
phase, and since the zeroth principal Sturm-Habicht coefficient is an associate to
the resultant R, we save time by computing it already in the projection phase:

Algorithm 3.2.5 (Projection phase).
Input: Square free and primitive polynomial f ∈ Z[x, y].
Output: α1, . . . , αn roots of the resultant res(f,Dyf, y), stha0(f), . . . , stham(f)
principal Sturm-Habicht coefficients, costha1(f), . . . , costham(f) coprincipal Sturm-
Habicht coefficients.

1. Compute the principal and coprincipal Sturm-Habicht coefficients. In par-
ticular, this gives R := res(f,Dy, y) ∼ stha0(f).

2. Factorise R into R1, . . . , Rr using the square free factorisation method and
isolate the real roots with the Descartes method (Algorithm 2.4.7).

3. Merge the roots of all Ri’s into an increasing sequence.

The computation of the Sturm-Habicht coefficients can either be done by evalu-
ating the appropriate minors of Sylvester submatrices, or by using pseudo-division-
based approaches that exploit the relation of Sturm-Habicht polynomials with the
Euclidean algorithm. We postpone a more detailed discussion of both variants to
Chapter 6.

3.3 Building vert-line objects (extension phase)

The projection phase returns a set of x-values α1, . . . , αn where all event x-values
are included. The next step is the extension phase, where we construct a vert-line
object for each αi.

We describe a new algorithm for the extension phase. It is structured in two
steps: First, we apply an algorithm called Generic Extension: It tries to create
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the vert-line objects by working directly in the original coordinate system. For that,
it relies on some genericity assumptions for the curve that simplify the analysis, for
example the curve must not have vertical asymptotes, and also covertical critical
points are forbidden. But the algorithm detects unfavourable situations during
execution and reports a failure in this cases. For real root isolation of fαi

, it uses
a new variant of the Bitstream Descartes method which can handle one multiple
root. This is the main step to get all necessary data for the vert-line objects. All
details are described in Chapter 4.

If Generic Extension reports a failure, a second approach must be applied:
The curve is then analysed in a different coordinate system to get a, roughly speak-
ing, more generic position (where features as vertical asymptotes or covertical crit-
ical points do not occur). Algorithmically, this change of coordinates correspond to
a shear of the curve, i.e. we transform f into a new polynomial Ssf = f(x + sy, y)
with some shear factor s. With the newly generated Ssf , we apply an algorithm
called Nongeneric Extension: It tries to create the vert-line objects of the origi-
nal curve by using the sheared curve. The algorithm first analyses the curve Ssf
in a similar fashion as Generic Extension and a set of sheared-line objects (which
are slightly modified vert-line objects) is created. This substep can also fail, and
the algorithm is able to detect these situations. Using the αi’s and the sheared-line
objects, Nongeneric Extension applies a new technique to create the vert-lines of
the original curve. Details of all substeps are described in Chapter 5.

Algorithm 3.3.1 (Extension phase).
Input: f ∈ Z[x, y] square free and primitive, α1, . . . , αn

Output:Vert-line object for each αi.

1. Try to apply Generic Extension. In case of success, return the vert-line
objects.

2. In case of a failure, repeat choosing a shear factor s and apply Nongeneric

Extension until it runs successful. Return the vert-line objects.

We are aware that the algorithm is not conform to the idea of randomised
algorithm where unfavourable inputs are prevented through initial randomisation.
Though we decided to use Generic Extension, because it speeds up the analysis
for a large class of polynomials. For instance, it only needs to compute a single
resultant whereas Nongeneric Extension needs two additional resultants to work
with. Of course, cancelling the call of Generic Extension in the extension phase
would give a second variant which is more independent of the initial coordinate
system.

3.4 Queries for non-critical values

We have explained how to detect event values of primitive curves and how to
create vert-line objects for them. We assume for the remainder of the chapter that
the vert-lines are created and we turn to the question how the queries (listed at
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the beginning of the chapter) for the curve can be answered using these vert-line
objects. We start with the case a query must be answered for an x-coordinate
where no vert-line exists. We assume that all x-coordinates are represented in
simple interval representation.

Let γ be such an x-coordinate. γ is non-critical since critical x-values are roots
of the resultant of f and Dyf , and a vert-line object is created for them. Most
queries are thus easy to answer: There is certainly no event point supported by γ
and no vertical asymptote. Every point has one incident arc from the left and one
from the right. Only two queries remain: The number of supported points, and an
ε-approximation of the ith point.

The number of points on the curve with x = γ can be answered using the
vert-line objects: One simply finds the smallest event x-value that is greater than
γ, if existing. Let α be the x-coordinate of this vert-line. The number of points
supported by α − ε is stored in the number of arcs lr field of the vert-line, and
this number is equal to the number of points supported by γ (Theorem 2.2.29). If
such an event x-value does not exist, γ is greater than any event x-value, and the
vert-line for the greatest event x-value α contains the number of points supported
by α + ε, which is equal to the number of points supported by γ.

For the approximation, first note that fγ is square free, because multiple roots
would cause a critical point of f . Here, we exploit that we have created vert-line
objects for all critical x-values of the curve, and not only for event x-values. We
can isolate the real roots of fγ with the Bitstream Descartes method to obtain
isolating intervals of its roots. Let I be the ith isolating interval. The y-coordinate
can be represented in algebraic interval representation (f, γ, I) and we know from
Section 2.4 how to refine this number to arbitrary precision.

3.5 A generalised Descartes algorithm

It remains the question how queries can be answered for x-coordinates that own
a vert-line object. For the approximation of those values, we need a method of
the (Bitstream) Descartes method that can handle multiple roots. As the same
principle is also applied in the extension phase in the subsequent chapters, we
develop the general idea next.

Recall Algorithm 2.3.12, the Descartes algorithm for square free polynomials.
For a more compact description, we assume from now that none of the chosen split
points is a root of the input polynomial. As we will always work with approxima-
tions of the coefficients, this is no restriction, since the Bitstream Descartes method
avoids to choose roots as split points through randomisation. But our idea also
applies for the usual Descartes method if this special case is handled properly.

Algorithm 2.3.12 is implemented with a depth-first-search strategy, we change
the traversal strategy to breadth-first-search in the generalised method. As main
novelty, we relax the termination condition that the leaves of the Descartes tree
must be marked with either one or zero. Instead the termination condition must be
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specified by the application. The markings of the leaves are returned as additional
data. When the termination condition is satisfied, an additional post-processing
step allows to manipulate the set of leaves before returning it.

Algorithm 3.5.1 (Generic Descartes).
Input: Polynomial f , initial interval J
Output: A sequence of pairs (I, n) such that I is an isolating interval for a root
of f with v sign variations.

1. Compute the sign variation v in J . If v = 0, return the empty sequence.
Otherwise initialise the sequence leaves as [(J, v)].

2. While the termination condition is not satisfied, repeat:
i. If leaves is empty, return the empty sequence
ii. Delete the first element ((c, d), v) from leaves.

iii. If v = 1, append ((c, d), n) to the end of leaves and continue.
iv. Otherwise, chose a split point m, obtaining the intervals I1 = (c,m) and

I2 = (m,d). Compute v1, v2, the sign variations of I1, I2.
v. If v1 > 0, append (I1, v1) to leaves. If v2 > 0, append (I2, v2) to

leaves.
3. Post-process leaves.
4. Shift leaves cyclically such that the intervals are ordered in increasing
order.

5. Return leaves.

((0,8),5) ((0,4),2),((4,8),1) ((4,8),1),((2,4),2) ((2,4),2),((4,8),1)

2 1

5

2 1

5

0 2

2 1

5

0 2

5

Figure 3.5.1: Example for Generic Descartes. It is assumed that the initial
interval is (0, 8) and the split point is always chosen in the middle. The arrow
marks the head in the leaves sequence, the next processed interval.

At each stage, the leaves sequence corresponds to the leaves in the Descartes
tree with non-zero sign variation, and the intervals are sorted in increasing order
up to some cyclic shift (Figure 3.5.1). The BFS version of Algorithm 2.3.12 is
now easily obtained: the termination condition is that all intervals in leaves have
exactly one sign variation. The post-process stage (Step 3 in the algorithm) can
remain empty in this case.

We also define a Generic Bitstream Descartes algorithm which is the ana-
logue to the Generic Descartes version for approximate calculations. Recall that
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for the Bitstream Descartes, the number of sign variations might not be determi-
nate, so there is a set of possible sign variations instead.

Algorithm 3.5.2 (Generic Bitstream Descartes).
Input: Polynomial f , initial interval J
Output: A sequence of pairs (I, V ) such that I is an isolating interval for a root
of f with a set V of possible sign variations.

1. Compute the possible sign variations V in J . If V = {0}, return the empty
sequence. Otherwise initialise the sequence leaves as [(J, V )].

2. While the termination condition is not satisfied, repeat:
i. If leaves is empty, return the empty sequence

ii. Delete the first element ((c, d), V ) from leaves.
iii. If V = {1}, append ((c, d), V ) to the end of leaves and continue.
iv. Otherwise, chose a split point m, obtaining the intervals I1 = (c,m) and

I2 = (m,d). Compute V1, V2, the sign variations of I1, I2.
v. If V1 6= {0}, append (I1, V1) to leaves. If V2 6= {0}, append (I2, V2) to

leaves.
3. Post-process leaves.
4. Shift leaves cyclically such that the intervals are ordered in increasing
order.

5. Return leaves.

In our algorithm, we only use instances of the Generic Bitstream Descartes

algorithm. However, we decided to describe their exact version first as instances
of Generic Descartes and explain how to apply them in a Bitstream version
as a second step (as in the next section). We think that this helps for a better
understanding of the presented algorithm.

3.6 Approximation of event points

Suppose that there exist a vert-line object for α (this is always the case for critical
values). We can easily answer most queries since the vert-line provides the suit-
able information. Only the approximation of the ith point supported by α is not
immediate.

The vert-line object provides an isolating interval I for the y-coordinate β of
the ith point. If that point is a non-event point, β is a simple root and I can
be refined by bisection. The remaining question is how to refine the interval for
event points. If I = [c, d] and the sign at the boundaries of c and d differs, we can
again use bisection to refine the interval for that event point (this applies for each
non-event point of the curve, since vertical flexes have this property). The difficult
part arises if the signs at the boundaries are equal.

For shorter notation, set g := fα, and let β be the y-coordinate of the event point
with I as isolating interval. Since the signs at the boundaries of the interval do not
differ, β must have even multiplicity (this follows from the proof of Theorem 2.3.11).
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If the Descartes algorithm is started for the polynomial g and isolating interval I,
the interval is split into I1 and I2, and two outcomes are possible: If one of the
intervals has zero sign variations, the other one accommodates the root and we did
successfully refine the interval. Otherwise, both intervals have at least one sign
variation (in fact, they must also have at least sign variations), but is is sure that
one of them does not contain a real root because I is isolating. We call splits of
this kind noisy. W.l.o.g. let I1 contain the root. Since the algorithm cannot decide
which interval contains the root, it must refine both, and after finitely many steps,
all intervals which are subsets of I2 count zero as sign variation, in other words,
no subset of I2 appears in the leaves sequence of the algorithm (we say that the
noisy split is hushed).

During the execution of the algorithm, also the interval containing α was refined
several times, and it might be the case that more noisy splits were produced. But as
before, these splits will hush after finitely many steps, and the total number of noisy
splits is finite, since the sign variation drops in each noisy split (Theorem 2.3.13).
It follows that the leaves sequence eventually consists of one single interval and
this is taken as the refined version of the isolating interval (Figure 3.6.1.

In summary, to refine a root (f, α, I) in algebraic interval representation, we call
Generic Descartes for fα and I. The termination condition is that the leaves

sequence contains exactly one interval that is a proper subset of I (to avoid that the
algorithm terminates without doing anything). The post-process step can remain
empty.

0 2

0

0 0

8

6 2

2 0

04

4

Figure 3.6.1: An example of a noisy split. Note that further refinements are easy
since the number of sign variations has fallen to 2, and there cannot be more noisy
splits.

This algorithm can be directly transferred into the bitstream model. Each
noisy split must eventually hush, since the interval that contains no real root will
eventually count zero sign variations also in the approximated version [EK+05].
So we can apply Generic Bitstream Descartes (Algorithm 3.5.2) with the same
termination condition as above.

At this point, we make an important remark: Let f =
∑n

i=0 ri(x)yi be the
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defining polynomial of the curve, and assume that fα is passed to any instance
of Generic Bitstream Descartes. The Bitstream Descartes algorithm needs to
compute a lower bound of the leading coefficient of its input polynomial. It is
not always the case that rn(α) is the leading coefficient of fα because rn(α) = 0
is possible. Since the Bitstream Descartes only uses approximations of ri(α), it
cannot decide whether this coefficient is zero or not. This means, whenever the
Bitstream Descartes method is applied for fα, the degree of that polynomial must
be known beforehand. That is the reason why the local degree field is included
in the vert-line object.

3.7 Curves with vertical components

We have explained how to answer all queries listed at the beginning for primitive
input curves. We describe next how this can be extended to non-primitive curves.

In a very first step of the algorithm, we divide out the content of the input
polynomial and analyse the primitive part. Lemma 2.2.6 tells us that the roots
of the content are exactly the vertical lines of the curves. Since each root α of
the content is an event x-value, there must exist a vert-line object for α where the
vert comp flag is set. If the vert-line object for α already exists from the analysis
of the primitive part, we can directly set the flag, otherwise we must first create
the corresponding vert-line. This is easy with the results from Section 3.4.

The complete algorithm looks as follows.

Algorithm 3.7.1.
Input: Square free polynomial f ∈ Z[x, y]
Output: Vert-line objects (at least) for all critical x-values of f

1. Decompose f = cont(f)pp(f).
2. Projection phase: Call Algorithm 3.2.5 on pp(f).
3. Extension phase: Call Algorithm 3.3.1 on pp(f).
4. Isolate the roots of cont(f) and create vert-line objects at these positions,
if necessary. Set the vert comp flag at these x-coordinates.

The idea is very simple: We take out the vertical line components, analyse the
primitive curve, and add the vertical lines at the end. We did not give details for
the extension phase so far. We continue with this subject in the next two chapters.
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Chapter 4

Extension Phase for
“Sufficiently Generic” Curves

4.1 Overview

The goal of this chapter is the definition of the algorithm Generic Extension

which we have already sketched in Section 3.3: For a square free and primitive
polynomial f and a set of values α1, . . . , αn (where all event x-values of f are
contained), it computes vert-line objects for the αi’s.

The algorithm tries to analyse the curve directly in the original coordinate
system. It combines exact information about the polynomial fα, obtained from the
Sturm-Habicht sequence with the Bitstream Descartes method to produce the vert-
line objects in an exact and efficient way. There is no guarantee that the algorithm
succeeds, but it detects awkward situations during the execution and reports a
failure in these cases. In order to work, it requires certain genericity condition
on the curve, but we will not define these properties formally. Instead, we give
two guarantees which are related with the following two well-defined genericity
conditions:

Definition 4.1.1. Let K be the field R or C. A polynomial f ∈ R[x, y] is in
K-generic position if

• The leading coefficient of f , considered as polynomial y is a constant (we call
this y-regularity) and

• For all α ∈ R, the polynomial fα ∈ R[y] has at most one multiple root in K.

Note that R-genericity implies that f has no vertical asymptote (from Theo-
rem 2.2.26) and no two covertical event points. C-genericity is a stronger condi-
tion implying very useful algebraic properties (for instance, this implies that each
root of the resultant supports a (real) critical point and the y-coordinate of this
point can be expressed as rational expression according to (2.5.6)). The algorithms
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from Gonzalez-Vega and Necula [GN02], and Seidel and Wolpert [SW05] check
C-genericity of the curves.

Proposition 4.1.2. Generic Extension satisfies the following properties:

• If the input curve is not R-generic, Generic Extension reports a failure.

• If the input curve is C-generic, Generic Extension succeeds.

R-genericity is a must for the algorithm: If two critical points are covertical at
some x-coordinate α, there are two multiple roots at fα. The advancement of the
Bitstream Descartes method that we will define cannot handle these cases. The
presence of vertical asymptotes complicates the computation of the incidence num-
bers and is therefore undesired as well. The second property of Proposition 4.1.2
shows that the algorithm indeed succeeds for a large class of polynomials. Curves
which are R-generic but not C-generic lie in a grey zone. The algorithm might
succeed or not, and in fact, this can even change from instance to instance, since
random choices are made during the algorithm.

As a first step, Generic Extension verifies that the input curve is indeed y-
regular,or reports a failure otherwise. Recall from Definition 3.1.1 that the vert-line
objects are seven-tuples with entries

(α, vert comp, local degree,number of points, number of arcs lr,
asym numbers, points)

For each αi, a vert-line object is created. The asym numbers entry is set to
(0, 0, 0, 0) and local degree is set to degy f for each vert-line, since the curve
is y-regular. The vert comp flag is set to false because the curve is primitive.

The other entries in the vert-line objects are not that obvious to compute.
The remaining sections of this chapter explain in detail how Generic Extension

computes this data.

4.2 Counting real roots

This section discusses how to compute the data field number of arcs lr and de-
scribes two variants for the calculation of the number of points field.

For the data field number of arcs lr, the number of points supported by α− ε
and α + ε must be computed, where ε is arbitrarily small. We only describe the
former case, the latter is analogous. As the number of supported points does
not change between critical points (Lemma 2.2.29), it is enough to count the real
roots over any x-coordinate between αi−1 and αi. Generic Extension chooses a
rational number r in that interval and applies Descartes method for the (square
free) polynomial fr. The number of isolating intervals gives the solution.

For the number of points, we will fist handle the case that αi is a simple root
of R = res(f,Dyf, y). This can be decided easily because we have factorised R into

74



square free factors R1, . . . , Rr, and the simple roots of R are exactly the roots of
R1.

The geometric situation at simple roots is particulary simple, as the following
theorem demonstrates.

Theorem 4.2.1. Let f ∈ R[x, y] and α root of R := res(f,Dyf, y). If α is a simple
root of R, then there exists only one critical point p with x-value x0 and p is a
non-singular x-extreme point.

For the proof, we use the following lemma from Wolpert. A proof can be found
in [Wol02, §4.1.1].

Lemma 4.2.2. Let (α, β) be an intersection point of two polynomials f and g.
Then α is a multiple root of the resultant of f and g if and only if

(Dxf ·Dyg −Dyf ·Dxg)(α, β) · sres1(f, g, y)(α)

vanishes.

Proof of Theorem 4.2.1. Let α be a simple root of res(f,Dyf, y). Thus there is
some β ∈ C such that f(α, β) = Dyf(α, β) = 0. From Lemma 4.2.2, it follows that

(Dxf ·Dyyf −Dyf ·Dyxf)(α, β) · sres1(f,Dyf, y)(α) 6= 0

since α is a simple root. By assumption, Dyf(α, β) = 0, so the term simplifies to:

(Dxf ·Dyyf)(α, β) · sres1(f,Dyf, y)(α) 6= 0

The first subresultant does not vanish, so the gcd has degree one:

gcd(fα,Dyfα) = x− β

and thus (α, β) has no covertical critical point. Moreover, Dxf(α, β) does not
vanish, so this point is not singular. Since Dyyf(a, b) does not vanish, it must be
an x-extreme point.

Let (l, r) be the number of arcs lr entry for αi. Because there is exactly one
x-extreme point at αi, the two integers differ exactly by two. The number of points
over αi is then l+r

2 , just the value between l and r since two arcs end in a common
point. Hence we have computed number of points. We point out that the proof
of Theorem 4.2.1 also showed that the degree of gcd(fαi

, f ′
αi

) = 1, the algorithm
will need this number for the next step (Section 4.3).

If αi is a multiple root of R, we use the principal Sturm-Habicht coefficients for
counting: The number of points on the curve supported by αi equals the number
of real roots of fαi

and Theorem 2.6.7 tells us that

{β ∈ R | fαi
(β) = 0} = C(sthan(fαi

), . . . , stha0(fαi
)).
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The specialisation property 2.6.5 says that

sthai(fαi
) = sthai(f)(αi)

and we have computed sthan(f), . . . , stha0(f) in the projection phase (see Algo-
rithm 3.2.5). Our extension algorithm Generic Extension proceeds as follows for
multiple roots αi: First, it evaluates the signs of the principal Sturm-Habicht co-
efficients (which are polynomials in x) evaluated at αi. In particular, this yields
the degree of the greatest common divisor of fαi

and f ′
αi

because this number is
equal to the minimal index of a non-vanishing principal Sturm-Habicht coefficient
(Theorem 2.6.5). This number is stored temporarily for later usage. Applying The-
orem 2.6.7 on the obtained sign sequence returns the number of supported points
by αi.

4.3 Root isolation at critical values

So far, we computed all entries in the vert-line object, except the points vector.
Recall from Definition 3.1.1 that this is a sequence of triples

(approx, incidence numbers, event),

where each element holds information about some point supported by αi: An
isolating interval, the number of incident arcs from the left and right, and a flag
denoting whether the point is an event point or not. As the number of points
over αi is already known from the last section, the algorithm creates (yet empty)
elements for each point. This section introduces a new method how the approx field
is computed, i.e. how to isolate the real roots of fαi

. As the algorithm works for
any univariate polynomial with additional information, we describe it for a general
g ∈ R[x]. Although we want to realise it as an instance of Generic Bitstream

Descartes (Algorithm 3.5.2) for efficiency, we first describe its exact version to
communicate the idea.

For g ∈ R[x], the following quantities are assumed to be known:

• m, the number of real roots of g

• k, the degree of the greatest common divisor of g and g′

We want to find isolating intervals of the real roots of g, or report a failure in
unfavourable cases.

Assume for the moment that g has at most one multiple real root. If the
Generic Descartes Algorithm (3.5.1) is applied for g (with some sufficiently big
initial interval), it eventually isolates all m−1 simple roots in intervals with exactly
one sign variation, and there is exactly one further leaf having more than one sign
variation. It is clear than that this interval must also contain a root of g and the
algorithm terminates and reports the m isolating intervals (see Figure 4.3.1 for an
example).
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This algorithm does not terminate if g has several multiple real roots, we also
need a termination condition in these cases. Therefore, assume for the moment
that g has several multiple roots over the complex numbers. It follows that each
multiple root of g has multiplicity at most k (a proof follows below). The Generic

Descartes Algorithm will eventually enclose each multiple root in an isolating
interval such that the number of sign variations equals the multiplicity of the root
(Theorem 2.3.6). In other words, at some state no leaf in the Descartes tree has
a mark greater than k. The algorithm terminates and reports a failure in this
situation(see Figure 4.3.2 for an example).

0

0

0

0

1

1

1 0

1

1 04

Figure 4.3.1: Assume that we want to find m = 5 roots of the polynomial. In
this situation, we found 4 simple roots, and there is only one more interval that
with greater sign variation. So the algorithm stops at this point, reporting the five
non-zero leaves as isolating intervals.
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Figure 4.3.2: Suppose that m = 4 and k = 3. On the left side, there are still two
intervals with multiple sign variation. The node marked with four splits into two
nodes with mark two (right side), and the maximal sign variation in the leaves also
drops down to two. Thus a failure is reported in this situation.

We define the algorithm m-k-Descartes, as a specialisation of Generic Descartes

setting the parameters as follows.

• Initial interval: Apply the Fujiwara root bound S from Theorem 2.3.7 for
g.
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• Termination condition: leaves has size m with m− 1 simple roots (con-
dition A), or leaves contains only intervals with sign variation at most k
(condition B).

• Post-processing step: If leaves does not satisfy A, report a failure.

Lemma 4.3.1. m-k-Descartes terminates for any g.

Proof. We have already argued that condition A is satisfied eventually if g has at
most one multiple real root. If g has more than one multiple root over the complex
numbers, let k1, . . . , ks denote the multiplicities of the multiple roots β1, . . . , βs

(with all ki > 1). We know that:

k = deg(gcd(g(y), g′(y))) =

s∑

i=1

(ki − 1)

Therefore ki ≤ k for all i. During the algorithm, all real βi are eventually enclosed
in intervals that are counted with multiplicity ki and condition B is satisfied.

Consider the case that m-k-Descartes is applied for polynomial g that has one
multiple real root, but several complex roots. The proof shows that both termi-
nation conditions A and B are eventually satisfied, and it is not clear whether the
algorithm succeeds or not. This depends on which condition is satisfied first.

In all other cases, we can give the following guarantees:

Lemma 4.3.2.

• If g has more than one multiple real root, m-k-Descartes reports a failure.

• If g has exactly one multiple root over the complex numbers, m-k-Descartes
returns the isolating intervals of g.

Proof.

• It is enough to show that condition A is never satisfied in presence of several
multiple real roots. But this follows at once, since the algorithm can never
find m− 1 simple roots of g, because there are at most m− 2.

• We must show that condition B is never satisfied here. As there is at only
one complex root β, we know that β must be real. This follows from the fact
that β can be expressed as rational expression in the subresultant coefficients
of g (2.5.6). Furthermore, it is

gcd(g, g′) = (x− β)k

and therefore, β is root of g with multiplicity k + 1. The interval containing
β has always at least k +1 sign variations and assures that condition B is not
satisfied.
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Important remark. If the algorithm succeeds, it does not guarantee that the
interval with multiple sign variation contains a multiple root. It is possible that
a simple root has imaginary roots in its closer neighbourhood causing a greater
number of sign variations in that interval. At least, it is clear that all other intervals
contain simple roots.

We formulate the bitstream version next. The previous properties and proofs
still apply, since a root with multiplicity v will eventually be enclosed in an isolating
interval with the set {v} as set of possible sign variations. Thus we can straightly
define the algorithm Bitstream m-k-Descartes as a specialisation of Generic

Bitstream Descartes and the following parameters:

• Initial interval: Apply the Fujiwara root bound S from Theorem 2.3.7 for
g.

• Termination condition: leaves has size m with m− 1 intervals that have
{1} as set of possible sign variation (A), or leaves contains only intervals
where the maximal possible sign variation is at most k (B).

• Post-processing step: If leaves does not satisfy (A), report a failure.

We explain how this algorithm is used for the analysis of our curve f : Generic

Extension applies Bitstream m-k-Descartes for each polynomial fαi
. If the real

roots are isolated successfully, Generic Extension fills the approx fields in the
points sequence of αi. If a failure is reported, also Generic Extension reports a
failure. Using Lemma 4.3.2, we can now prove the first part of Proposition 4.1.2:

Lemma 4.3.3. If f is not R-generic, Generic Extension reports a failure.

Proof. If f has a vertical asymptote, this was detected in the very first step of
Generic Extension. Otherwise, there exists some α with two real multiple roots,
and Bitstream m-k-Descartes reports a failure for fα.

We cannot prove the second part of the proposition yet since the algorithm is
not completely described. But we can record:

Lemma 4.3.4. If f is C-generic, Bitstream m-k-Descartes succeeds for each
fαi

.

Proof. If f is C-generic, each fαi
has exactly one multiple root over the complex

and the claim follows with Lemma 4.3.2.

For the remaining part of the algorithm, we can assume that f is R-generic.
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4.4 Incident arc counting

From the last step, isolating intervals for any point over αi are known. and we turn
to the question how many arcs are incident from the left and right of any point.

In fact, this assignment is very easy to make with the information computed
so far: There are m − 1 isolating intervals with exactly one sign variation, so the
points inside are non-critical. It follows that they have one incident arc from the
left and from the right. We also know the total number of arcs entering from the
left and right which is stored in the number of arcs lr field. Thus the incidence
numbers of the remaining point are obtained by subtracting m− 1 from these two
quantities.

αi

P

bi−1 bi

Figure 4.4.1: A singular point with 4 arcs entering and 2 leaving

In Figure 4.4.1, a typical situation is depicted: There are four roots over αi,
and we count seven roots on the left (at some intermediate value bi−1). Thus, four
arcs have to be incident to P from the left.

Note that this approach would not work if the curve is allowed to have a vertical
asymptote at α or if there is more than one multiple root over α. But these cases
are already excluded since the curve is R-generic.

4.5 Finding event points

The last missing data to complete the vert-lines is the event flag for any point
supported by αi (we will skip the index and set α := αi for simplicity). Let Ic

denote the isolating interval that has not exactly one sign variation (if there is
any). For all other intervals, the flag can immediately be set to false, since the
point inside is not even critical. We call Ic the candidate interval (and the root
inside the candidate point), denoting that it might or might not contain an event
point.
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Generic Extension first considers the incidence numbers of the candidate
point which were computed in the last step. If they are not (1, 1), it sets the
event flag because the point must be an event point (if the incidence numbers are
(0, 2) or (2, 0), the point is x-extreme, and it is singular in all other cases).

If the incidence numbers are (1, 1), the candidate point cannot be x-extreme,
and three situation are possible for Ic: It may contain a singularity, a vertical flex
or a non-critical point (compare Figure 4.5.1). Only in the first case, the candidate
point should receive the event flag. To distinguish singularities, we explicitly
check whether Dxf and Dyf vanish at the candidate point. Doing this directly, i.e.
substituting the values α for x and β = (f, α, Ic) for y is possible ([ET05] proposes
a method for that kind of problem using Sturm-Habicht sequences). However,
answering this question in general is a very costly algebraic task – we use an
alternative approach which seems to be more efficient, but fails in disadvantageous
situations.

Figure 4.5.1: The curves f1 := x2− y3, f2 := (x2 − y) · (x2 + y2), f3 := x2− y, and
f4 := x− y3. f1 and f2 have singularities at the origin, whereas it is a non-critical
point for f3 and a vertical flex for f4.

Assume that we know a rational expression for β in terms of α, i.e. that there
exist integer polynomials p and q such that

β =
p(α)

q(α)

To check whether (α, β) is singular is the same question as to ask whether

Dxf(α,
p(x)

q(x)
) = 0 = Dyf(α,

p(x)

q(x)
). (4.5.1)

Defining

Th(x) := q(x)degy hh(x,
p(x)

q(x)
),

(4.5.1) can be rewritten as

TDxf (α) = 0 = TDyf (α). (4.5.2)
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Since TDxf and TDyf are integer polynomials, we can check whether the algebraic
number α (in interval representation) is a root using Algorithm 2.4.9.

But how can we find such a rational expression for β? If the polynomial fα has
only one multiple root over the complex numbers, we know from (2.5.6) that

β = − costhak(fα)

k · sthak(fα)
= − costhak(f)(α)

k · sthak(f)(α)
, (4.5.3)

where k is the the degree of the greatest common divisor of fα and f ′
α. The idea is

now as follows: We do not know whether fα has indeed at most one multiple root
over the complex numbers (and we do not want to check this in general because it
is too expensive). But we can always form the rational expression

ρ(x) = − costhak(f)(x)

k · sthak(f)(x)
.

In a first step, we must verify that β = ρ(α), in other words that ρ(α) is indeed
the y-coordinate of the candidate point. If it is, we can check the property given
by (4.5.2) and set the event flag accordingly.

We formulate the single steps of Generic Extension for analysing the candi-
date. To check whether ρ(α) = β, it proceeds in two steps. The first step checks
whether (α, ρ(α)) is a point on the curve. With the same argument as above, this
is equivalent to

Tf (α) = 0.

If α is not a root of Tf , a failure is reported, because the rational expression does
not yield the candidate. If it is a root of Tf , it is still not sure that (α, ρ(α)) is the
candidate point. It might be some other covertical point on the curve which has ac-
cidently the y-coordinate ρ(α). To exclude this, Generic Extension approximates
ρ(α) with interval arithmetic. Let J be the isolating interval for α.

1. Set sk := sthak(f), ck := costhak(f).
2. Refine J until sk(J) does not contain zero.

3. Refine J until ρ(J) = − ck(J)
k·sk(J) overlaps with at most one isolating interval I

of fα.

After termination, it is certain that ρ(α) is the root of fα inside I. If I is not the
candidate interval, a failure is reported. If it is the candidate interval, ρ(α) = β is
verified. Next, it is tested whether

TDxf (α) = 0 = TDyf (α)

is satisfied, and the event flag is set if and only if both equations hold.

We point out that these symbolic tests must only be performed in special oc-
casions, namely in presence of vertical flexes which are not x-extreme, singularities
with incidence numbers (1, 1) (vertical cusps and isolated points on regular arcs),
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or in case that fα has imaginary multiple roots and a simple points was wrongly
nominated as a candidate.

Generic Extension only reports a failure if ρ(α) 6= β. But if the curve is
C-generic, each fα has only one multiple complex point and ρ is always chosen
correctly. Together with 4.3.4 it follows

Lemma 4.5.1. If the curve is C-generic, Generic Extension succeeds.

This completes the proof of Proposition 4.1.2. Note that the algorithm can also
succeed for curve which are not C-generic (if they are at least R-generic).

The expression ρ is also used in [GN02], but for a slightly different purpose:
ρ is first used to ensure C-genericity of the curve. Also, if the curve is C-generic,
then fα can be made square free by dividing out gcd(fα, f ′

α) = (y − ρ(α))k (for a
suitable k), and the roots of this square free polynomial can be computed. We do
not check C-genericity in our approach, and the roots of fα can be isolated without
making fα square free beforehand.

4.6 A short summary

We briefly recapitulate: The goal of this chapter was the construction of the algo-
rithm Generic Extension. We summarise its functioning:

Algorithm 4.6.1 (Generic Extension).
Input: Curve f , α1, . . . , αn x-values
Output: Vert-line objects for α1, . . . , αn (or a failure)

For each αi, perform the following steps

1. Compute m, the number of points on the curve with x-coordinate αi and
k, the degree of gcd(f,Dyf) (Section 4.2).

2. (Try to) isolate the points supported by αi, using Bitstream m-k-Descartes

(Section 4.3).
3. Compute the incident numbers of each point supported by αi (Section 4.4).
4. (Try to) check where the event point supported by αi are (Section 4.5).

We believe that the substeps were sufficiently described in the corresponding
sections and skip a more formal description.

How much symbolic calculation with the αi’s is necessary during Generic

Extension? There are three different cases to consider:

• If αi is a simple root of the resultant, the vert-line object can be constructed
without any symbolic calculation with αi.

• Otherwise, the number of real points supported by αi is computed using the
principal Sturm-Habicht coefficients. In many cases, this is the only necessary
symbolic calculation with αi.
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• Some features of the curve cause additional symbolic calculations. Therefore,
the principal and coprincipal Sturm-Habicht coefficients are necessary.

We remark that for C-generic curves without singular points and vertical flexes,
the extension phase is performed without any exact calculation of the αi’s.

The described algorithm reports a failure in some cases. As we want to give a
complete solution, we must deal with these situations as well. In the next chapter,
we will introduce an algorithm called Nongeneric Extension that creates the vert-
line objects by using a linear change of coordinates. All substeps of Generic

Extension also appear in Nongeneric Extension with minimal modifications.
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Chapter 5

Extension Phase for
Non-Generic Curves

In this chapter, we describe a second algorithm for the extension phase, called
Nongeneric Extension, which was already outlined in Section 3.3. As input, it
gets the input curve f and some values α1, . . . , αn, containing the critical values of
f . Additionally, it gets some shear factor s ∈ Z as input. The principal idea is that
Nongeneric Extension tries to create the vert-line objects for f at the positions
α1, . . . , αn by analysing the shearing of the curve f , called Ssf . This shearing
arises from f by a linear change of coordinates. Applying a shear is a well-known
technique in the analysis of algebraic objects, it also appears in [GK96, GN02,
Wol02, EK+06]. We start with an investigation of the shear transformation in
Section 5.1 and discuss the problems arising from changing the coordinate system
in Section 5.2.

5.1 Shearing

We define the shearing of a point with shear factor s ∈ R:

Ss(x, y) =

(
1 s
0 1

)(
x
y

)
= (x + sy, y)

and for a point set
SsM = {Ssp | p ∈M}.

If it is clear what shear factor is used, we also write Sp instead of Ssp.
The corresponding shearing of a curve is defined as:

Ssf(x, y) := (f ◦S−s)(x, y) = f(x− sy, y)

Since S−s is inverse to Ss, it follows that Sf induces the point set of all sheared
points on f :

f(p) = 0 ⇔ Sf(Sp) = 0. (5.1.1)
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Figure 5.1.1: The curve f = 2x2 + (y − 1)2 − 2, and the two shears S1f and S3f

The shearing operator is defined as a mapping from the affine plane to itself
(respectively, from the space of bivariate polynomials into itself), and the objects
f and Ssf are different polynomials for s 6= 0. There is also another viewpoint:
Shearing might be considered as a basis change from the standard basis to the basis
given by ((

1
0

)
,

(
s
1

))

Thus shearing is nothing but choosing a different y-axis. Thus, instead of changing
the objects like points and curves, the shearing can be considered to change the
coordinate system, leaving all objects untouched.

Both descriptions can lead to quite different statements for the same idea. As
an example, consider two covertical points p and q and apply the shearing operation
with a non-zero shear factor. If you think that the basis changed, you can say now
that p and q are not on the same parallel line to x + sy = 0, which is the y-axis in
the sheared system. If you think that the map S was applied, you might say that
Sp and Sq are not covertical.

Both interpretations of shearing should be borne in mind – for the algorithmic
description, it is better to use the idea of a map since it allows to consider Sf as
an independent polynomial that can be analysed like any other curve. However,
with the idea of a basis change, results are quite often clear by intuition. We use
this intuition sometimes for explanations in this chapter.

We point out some easy but nevertheless important properties of shearing.

Theorem 5.1.1. Let p ∈ C2 and s ∈ R any shear factor:

1. The y-coordinate of p is invariant under shearing.

2. f, g ∈ R[x, y] have no common component iff Sf,Sg have no common com-
ponent.

3. f is square free iff Sf is square free.
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4. p is intersection point of f and Dyf iff Sp is intersection point of Sf and
SDyf .

5. p ∈ R2 iff Sp ∈ R2.

6. p is singular for the curve f iff Sp is singular for Sf

7. For s 6= 0: If p is a non-singular, critical point on f , then Sp is non-critical
for Sf .

Proof.

1. trivial

2. Follows from the fact that multiple components h of f and g cause multiple
components Sh of Sf and Sg and vice versa.

3. Apply the previous statement with g := Dyf .

4. Follows immediately with (5.1.1).

5. trivial

6. For a point (α, β) ∈ R2, we compute the gradient of Ssf using the chain rule:

∇Ssf(α, β) = ∇(f ◦S−s)(α, β)

= (Dxf(α− sβ, β),Dyf(α− sβ, β))

(
1 −s
0 1

)

= (Dxf(α− sβ, β),−s ·Dxf(α− sβ, β) + Dyf(α− sβ, β))

This implies

∇f(p) = 0⇔ ∇Sf(Sp) = 0,

as desired.

7. p is non-singular and critical, so Dyf(p) = 0 and Dxf(p) 6= 0. From the
previous proof, we know that

(DySf)(Sp) = −s · fx(p)︸ ︷︷ ︸
6=0

+ fy(p)
︸ ︷︷ ︸

=0

6= 0

So, Sp is not critical for Sf .

We turn to the following question: How likely is it that the curve Ssf is C-
generic (Definition 4.1.1) for a random choice of s? The following theorem states
that this is almost certain.
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Theorem 5.1.2. There are only finitely many choices of s such that Ssf is not
C-generic.

This property is very important for us: We will show that Nongeneric Extension,
the extension algorithm described in this chapter, succeeds if Ss(f) is C-generic,
hence it is very likely that the algorithm succeeds for a random choice of s.

The proof is quite long and needs mathematical concepts which are not neces-
sary for the rest of this work. We decided to postpone the it to Appendix A as a
bonus.

From now on, we assume s 6= 0 is a fixed shear factor.

5.2 Event points in a different coordinate system

Before we start with the definition of the algorithm, we discuss the main problem
when working with a sheared curve. Using the algorithm from the last chapter, it
would be possible to create the vert-line objects for Sf (at least, if the shear factor
was chosen luckily and Sf is C-generic). Unfortunately, event points depend on
the coordinate system.

Example. Consider the curve f = x + x3− y2. The origin is clearly an x-extreme
point. Using the shear factor s = −2, we obtain:

g := S−2f = 8y3 + (12x − 1)y2 + (6x2 + 2)y + (x3 + x)

Now, computing the resultant gives:

res(g,Dyg, y) = 864x4 − 32x3 + 960x2 + 3040x + 2016

and it is straightforward to check (with an computer algebra tool) that this poly-
nomial has no real root. Thus g has no critical point.

This example shows that we lose information about the event points of f if we
only consider Sf . More precisely, we lose exactly the non-singular event points:
Theorem 5.1.1 tells us that singular points of f are mapped to singular points of
Sf , whereas non-singular critical point always become non-critical if the curve is
sheared with a nonzero shear factor. This is not surprising either: A non-singular
critical point is only critical because its tangent happens to be parallel to the
y-axis, but the partial derivative of a singular point vanishes in every direction.
Additionally, some non-critical points of f become event points of Sf , because the
y-axis is chosen parallel to their tangent line. We introduce the following notation:

Definition 5.2.1.

• Let p be an event point of f . We call Sp a sheared event point, its x-coordinate
sheared event x-value.

• A event point of Sf is called a shear point, its x-coordinate shear x-value.
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The x-coordinates of shear values are roots of Rsh := res(Sf,DySf, y). We
also want to detect the sheared event points of f in Sf because this allows to switch
back to the original system later. The price we have to pay for this is a second
resultant: Since all event x-values of f are roots of res(f,Dyf, y), the sheared event
x-values are roots of Rev := res(Sf,SDyf, y).

We will also use the following notation: For x-coordinates of critical points in
the original system, we will use α or αi with some index. When we talk about the
sheared system, we will use σ or σi instead. As the y-coordinate does not change
under shearing, we will always use β or βi for it.

We restate the relation between sheared event point and shear points, and
resultants in the following lemma.

Lemma 5.2.2.

1. If (σ, β) is a sheared event point, then Rev := res(Sf,SDyf, y) vanishes at σ.

2. If (σ, β) is a shear point, then Rsh := res(Sf, (DySf), y) vanishes at σ.

3. If (σ, β) is a singular point, then Rev and Rsh both vanish at σ.

With the results from Theorem 5.1.1, it follows that both Rev, and Rsh are
non-zero polynomials if f is square free.

In summary, introducing a sheared curve complicates the situation both alge-
braically (more resultants) and geometrically (different types of event points). Still
it can be used to create the vert-line objects in the original system. For that, we
define the algorithm Nongeneric Extension which consists of two phases:

Algorithm 5.2.3 (Nongeneric Extension).
Input: Curve f , shear factor s, α1, . . . , αn roots of res(f,Dyf, y)
Output: Vert-line objects for α1, . . . , αn

1. Analysis phase: Create a sequence of so-called sheared-line objects that
contain information about sheared event points and shear points of Ssf for
certain x-coordinates.

2. Backshear phase: Use the sheared-lines to create vert-line objects for
α1, . . . , αn.

The analysis phase again divides into a projection phase and an extension phase.
The projection phase is similar to the projection phase of f (Section 3.2), and the
obtained values σ1, . . . , σm contain all shear x-values and all sheared event x-values.
The extension phase resembles the Generic Extension. It creates a simplified
analogue of vert-line objects for Sf , the sheared-line objects. This step can fail,
and a failure is reported, but the algorithm succeeds at least if Sf is C-generic.
The main difference to the usual extension phase is that sheared event points are
detected during the execution, although they are non-event points of Sf . We
describe this procedure in Section 5.3.
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The backshear phase is a new method which allows to create the vert-line
object in the original system using the sheared-line objects. The idea is that,
as we have detected all sheared event points of f during the analysis, we can
represent Sf combinatorially as a graph with sheared event points as nodes. For
each sheared event point, we apply the inverse shearing to find out which αi is the
x-coordinate of the corresponding event point. Also, the behaviour of unbounded
arcs of Sf is analysed when the inverse shearing is applied. With this information,
the graph already contains enough information to compute most data of the vert-
line objects. The last challenge is the computation of isolating intervals for fαi

. We
will introduce another instance of the Generic Bitstream Descartes Algorithm

to compute them. The whole backshear phase is described in Section 5.4.

5.3 Analysis of Sf (analysis phase)

We start by specifying the output of the analysis. For each shear x-value and each
sheared event x-values of Sf , we build an object of the following form.

Definition 5.3.1. A sheared-line object is a triple

(σ, number of points, points)

where σ denotes the x-coordinate of the sheared-line, number of points is the
number of points on Sf supported by σ and points is a sequence of triples

(approx, incidence numbers, sheared event).

Each element of points stores information about one point over σ. approx is an
isolating interval of the y-coordinate, incidence numbers is a pair of integers de-
noting the number of arcs incident from the left and from the right. sheared event

is a flag which is set if and only if the point is a sheared event point.

Nongeneric Extension starts by computing the polynomial Sf and checks
whether it is y-regular (i.e. whether the leading coefficient is a constant). It it
is not, the presence of vertical asymptotes cannot be excluded and a failure is
reported.

In the next step, the x-coordinates must be identified for which a sheared-line
object is to be built. This is called sheared projection phase and we can define it
directly with the results from the previous section:

Algorithm 5.3.2 (Sheared Projection Phase).
Input: Curves f , Sf
Output: σ1, . . . , σm, containing all shear x-values and all sheared event x-values.

1. Compute the principal and coprincipal Sturm-Habicht coefficients of Sf .
This gives in particular Rsh = res(Sf,DySf, y), isolate its real roots.

2. Compute Rev = res(Sf,SDyf, y) and isolate its real roots.
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3. Merge both root sets into one increasing sequence σ1, . . . , σm. Store for
each element whether it is root of Rev and root of Rsh.

4. Find rational values r0, . . . , rm such that σi < ri < σi+1 (with σ0 =
−∞, σm+1 = +∞).

We call an x-coordinate a pure Rev-x-value, if it is a root of Rev, but no root of
Rsh. Similarly, a pure Rsh-x-value is a root of Rsh that is no root of Rev. A hybrid
x-value is a root of both Rev and Rsh. The ri’s are called intermediate x-values.

The goal of the sheared extension phase is to create a sheared-line object for
each σi. For that, the curve is first analysed at the intermediate x-values: For
each ri, the isolating intervals of Sfri

are computed. As ri is a non-critical x-value
of Sf and even a rational number, this can be done with the usual Descartes
method. The algorithm will make use of these isolating intervals when it performs
the extension step for pure Rev-x-values and for hybrid x-values.

In the following three subsection we explain how the extension is done for pure
Rev-x-values, for pure Rsh-x-values and for hybrid x-values. It is possible that the
extension fails for pure Rsh-x-values or for hybrid x-values, but it will satisfy the
following property:

Lemma 5.3.3. If Sf is C-generic, Nongeneric Extension successfully creates a
sheared-line object for each σi.

5.3.1 Sheared extension phase for pure Rsh-x-values

Let σ be a pure Rsh-x-value. To fill the number of points field, the algorithm
proceeds exactly as in Section 4.2. Note that the Sturm-Habicht sequence is only
used for non-simple root of Rsh because otherwise the simplified method for count-
ing the supported points applies. The isolating intervals are computed with the
Bitstream m-k-Descartes Algorithm from Section 4.3. The incidence numbers
are then obtained as in Section 4.4.

The last missing data is the sheared event flag. This can be set to false

immediately for each point because σ is not a root of Rev and therefore, it cannot
support any sheared event x-value.

5.3.2 Sheared extension phase for pure Rev-x-values

Let σ be a pure Rev-x-value. No critical point of Sf occurs, since Rsh does not
vanish. Therefore, Sfσ is square free, and the Bitstream Descartes method isolates
the real roots. This step also gives the number of real roots supported by σ, so
the Sturm-Habicht sequence is not needed here. The incidence numbers are clearly
(1, 1) for each point. It remains to set the sheared event flags.

Let p be a point on f such that Sp is a point on Sf that is supported by σ.
The question is whether or not p is an event point of f . Clearly, p is non-singular
because otherwise σ would be a hybrid x-value. Theorem 2.2.25 tells us that p is
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x-extreme if and only if Dyf has different signs for the two incident arcs of p. For
any point q ∈ R2, we have

Dyf(q) = Dyf(S−1
Sq) = SDyf(Sq),

so p is x-extreme if and only if SDyf has different signs for the two arcs of Sf
which are incident to Sp. To find points on these arcs, we use the neighbouring
intermediate lines of σ: Clearly, if Sp is the ith point of Sfσ, the ith points
of the intermediate lines are on arcs incident to Sp. Since we have chosen the
ri’s as rational numbers, the y-coordinate of these arc points is given in interval
representation, and the sign of SDyf at these point can be evaluated. Note that
this can be done merely with interval arithmetic because SDyf cannot be zero at
any point on the curve f with x-coordinate ri.

Consequently, the algorithm advances i from 1 to n. pi is the ith point on Sf
over the left neighbouring intermediate x-value, qi is the ith point over the right
neighbouring intermediate x-value. The ith sheared event flag is set to

SDyf(pi) 6= SDyf(qi)

Remark. This algorithm is capable to find several sheared event points over σ,
so there is no genericity condition imposed at σ. Consequently, no failure is ever
reported when analysing a pure Rev-x-value.

5.3.3 Sheared extension phase for hybrid x-values

Let σ be a hybrid x-value. We start as in the case of a pure Rsh-x-value: The
number of supported points, the isolating intervals and the incidence numbers are
computed in the same way as in Chapter 4. It remains to find the sheared event

flags.

Recall that the Bitstream m-k-Descartes Algorithm returns not only the
isolating intervals of Sfσ, but it also distinguishes one candidate interval with a
candidate point inside. The candidate point is the only point which is possibly non-
simple. As singular points always cause non-simple roots of Sfσ, the candidate
interval is the only one which can contain a singular point.

But it can still happen that the other (simple) intervals contain sheared x-
extreme points. Before we handle the candidate, we first consider the other points.
As explained in the last section, it is enough to find points p, q on the two incident
arcs of the point and to compare the signs of SDyf(p) and SDyf(q). The points
p and q are again found by looking at the neighbouring intermediate x-values, the
assignment is only slightly more complicated as in the case of pure Rev-x-values.

Example. Consider a situation as in Figure 5.3.1. We start at the bottom. To set
the sheared event flag for the first point, the algorithm checks the signs of SDyf
at the first arc at the left and the first arc at the right. For the flag of the second
point, it considers the second arc at the left and at the right.
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The third point is the candidate, this is handled later. The incidence numbers
of the candidate are (2, 4) in this example, so the next two arcs on the left and the
next four arcs on the right must be skipped. For the fourth point, the algorithm
must therefore check the fifth arc at the left and the seventh at right, and for the
fifth point it must check the sixth arc at the left and the eighth arc at the right.

Figure 5.3.1: Example of a hybrid x-value.

We formulate the procedure for completeness:

1. Set j := 1, k := 1
2. For i from 1 to number of points

i. if the ith point over σ is not the candidate point, compare the jth arc
on the left and the kth arc on the right and set the sheared event flag of
the ith point over σ accordingly. Increase j and k by one.

ii. If the ith point is the candidate, let (l, r) be its incidence numbers.
Increase j by l, and k by r.

This procedure sets the sheared event flags for the non-candidate points. There
is only one remaining question: Whether the candidate is a sheared event point
or not. We try to filter out easy cases with cheap arguments, and only if none of
those simple techniques applies, we allow a more expensive calculation with the
algebraic number σ.

For the easiest argument, we first look at the incidence numbers of the candi-
date. If their sum does not equal 2, this point is clearly singular and we are done
(an example is in Figure 5.3.1). This filters out all candidates with not exactly two
incident arcs and we only have to deal with candidates whose incidence numbers
are (1, 1), (0, 2) or (2, 0).

We present two further results which allow to set the sheared event flag in
special situations. If σ is a simple root of Rsh, Theorem 4.2.1 tells us that the
candidate is a regular x-extreme point. Therefore its preimage is non-critical for
f , and consequently the candidate is not a sheared event point. However, not all
regular x-extreme points are filtered out by this method because imaginary multiple
roots can push up the multiplicity of σ in Rsh.
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The next lemma can be used to detect sheared event point in some cases. It is
a simple rephrasing of Theorem 2.2.25

Lemma 5.3.4. Let p1, p2 denote two points on the two arcs of Sf incident to the
candidate. If SDyf(p1) and SDyf(p2) have different signs, then the candidate is
a sheared event point.

Proof. Assume that the signs are indeed different. If the candidate is singular, it is
a sheared event point, and if it is not, the candidate must be a sheared x-extreme
point according to Theorem 2.2.25.

This lemma identifies all regular sheared x-extreme points as sheared event
points, but there are examples of singular points where the signs at the two incident
arcs do not change. Here is one typical situation:

Example. Consider a vertical cusp:

f = y3 − x2.

Passing to S−1f gives the equation

S−1f = y3 − (x + y)2,

and the origin is still singular. We easily compute that S1Dyf = Dyf = 3y2, and
this is non-negative everywhere.

Finally, if the three criteria from above do not apply, we use an algebraic condi-
tion to detect singularities of Sf . From the fact that DySf and SDyf are partial
derivatives of Sf in two linearly independent directions, it follows:

Proposition 5.3.5. A point p on Sf is singular if and only if SDyf(p) =
DySf(p) = 0.

To check that condition, we can proceed in exactly the same way as for the
event flags in Section 4.5, using the rational expression

ρ(x) := − costhak(Sf)(x)

k · sthak(Sf)(x)

for the y-coordinate. We summarise the complete procedure for determining the
sheared event flag of the candidate:

1. If the incidence numbers of the candidate are not in the set {(1, 1), (0, 2), (2, 0)},
set the flag to true.

2. Otherwise: If σ is a simple root of Rsh, set the flag to false.
3. Otherwise: Find a point on each of the two incident arcs to the candidate,

using the neighbouring intermediate x-values. If the sign of SDyf differs for
those two points, set the flag to true.
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4. Otherwise: Set

ρ(x) := − costhak(Sf)(x)

k · sthak(Sf)(x)
.

Check, whether (σ, ρ(σ)) is the candidate point. If it is not, report a failure.
If it is, set the flag to true, if

SDyf(σ, ρ(σ)) = 0 = DySf(σ, ρ(σ))

is satisfied, and to false otherwise.

This completes the description of the analysis phase in Nongeneric Extension.
We remark that the algorithm indeed never reports a failure if Sf is C-generic. A
failure can only be reported during the execution of the Bitstream m-k-Descartes

or during the symbolic check for the sheared event flag, if (σ, ρ(σ)) does not
represent the candidate. But both substeps always work if Sf is C-generic.

5.4 From Sf to f (backshear phase)

In the last step, the sheared-line objects for the curve Sf were created. This
section describes how this information can be used to build the vert-line objects
of the curve f . We denote by α1, . . . , αn the real roots of res(f,Dyf, y), and by
σ1, . . . , σm the positions where the sheared-line objects are located (which means,
the real roots of Rev and Rsh).

It is conceptually easier to consider the curve Sf as a graph with its event points
and some artificial nodes at ±∞ as nodes. The edges correspond to paths on the
curve that connect two nodes. Formally, the edges correspond to the connected
components of

Sf \ {p | p is a sheared event point of Sf}.
We call the graph to create Gs. We distinguish two classes of nodes in Gs:

Vfin := {p | p is an sheared event point of Sf}
Vinf := {+∞i | 1 ≤ i ≤ #{arcs to +∞ in Sf}}

∪{−∞i | 1 ≤ i ≤ #{arcs to −∞ in Sf}}
V := Vfin ∪ Vinf

V is the set of nodes of Gs. Note that regular shear points are not nodes of this
graph. The construction of that graph Gs is discussed in Section 5.4.1. The edges
of the graph correspond to paths in Sf connecting two sheared event points with
no further sheared event point on the way. Therefore, the edges of Gs of Sf
correspond to the arcs of f .

The graph Gs provides the topology of the curve f , as well as of Sf (shear-
ing is a homeomorphic mapping). But to create the vert-line objects, geometric
information is needed as well. Therefore, for each sheared event point of Sf , the
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x-coordinate of the corresponding event point of f is computed. This x-coordinate
must be one of the αi’s since it must be an event x-value. We formally define a
function:

Index : V → {−∞, 1, . . . , n,∞}
(n is the number of vert-line object to be constructed), which is defined for sheared
event points as follows:

For Sp ∈ Vfin, Index(Sp) = i, if αi supports p.

This means that the Index function computes the x-coordinate of the preimage of
a sheared event point. We describe how to compute the Index of sheared event
points in Section 5.4.2.

We also want to examine the behaviour of unbounded arcs of the original curve
f . Therefore, we extend the Index function to nodes in Vinf . Each node q ∈ Vinf is
a symbolic endpoint of some unbounded arc A′ of Sf , and there is an unbounded
arc A of f that was sheared to A′. There is only one meaningful return value of
Index for such an unbounded arc:

Index(q) =






+∞ if A is an arc to +∞
−∞ if A is an arc to −∞
i if A is an arc with vertical asymptote x = αi

The Index function, applied on the endpoints of an edge, yields the x-range of the
corresponding arc:

Proposition 5.4.1. Let e = (v,w) be an edge of Gs and A be the corresponding
arc of f . Let i :=Index(v) < Index(w) =: j. Then (αi, αj) is the x-range of A
(with α−∞ = −∞, α+∞ = +∞).

For any arc converging to a vertical asymptote, we are also want to know
whether it converges in direction +∞ or −∞. We define

Sign : {v ∈ Vinf | Index(v) 6= ±∞} → {±1}
as

Sign(q) = ±1, if q is an arc going to ±∞
The computation of the Index and Sign function for unbounded arcs is the subject
of Section 5.4.3.

Knowing the graph Gs and the functions Index and Sign, the vert-line objects
of f are constructed in Section 5.4.4. Most data is easy to compute with one
iteration over the graph. For instance, the number of points supported by αi can
be computed as follows:

#{v ∈ Vfin | Index(v) = i}
+ #{(v,w) ∈ Gs | Index(v) < i < Index(w) or Index(v) > i > Index(w)}.

The last remaining problem is that these points supported by αi are not yet ordered
with respect to their y-coordinate. We will derive another instance of Generic

Bitstream Descartes that computes isolating intervals for the y-coordinates.
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5.4.1 Building the graph

We describe how Gs can be constructed using the sheared-line objects from the
analysis phase. In a first step, a slightly extended graph Gs is created: The shear
points of Sf are included in the nodes set. Consequently, the edges of Gs are the
same as for Gs, except that some edges are split into several pieces. The creation
of Gs is done with a simple sweep-line algorithm [BK+97]. The idea is to consider
a vertical line moving from −∞ to +∞ through the plane. It maintains a so-called
Y-structure: At each position x, that structure contains edges supported by x in
increasing order, and the structure is updated at sheared event x-values and shear
x-values.

We will not give a formal definition of this sweep-line algorithm because its
implementation is straightforward. After the creation of Gs, search for a regular
shear point in the node set, and find the two edges in Gs incident to it. Remove
those two edges from the edge set and connect the two adjacent nodes by a new
edge instead. Also, remove the shear point from the node set. Repeat until the
node set is free of any regular shear point, the resulting graph is Gs.

It is possible to integrate this post-processing in the sweep-line algorithm, and
our implementation does so. However, we will not discuss this in detail because
this substep is not time-critical anyway, and it is longish to discuss all special cases.

5.4.2 Indexing event points

The next problem is to compute the value of the Index function for each node
of the constructed graph. In this section, we start with the finite nodes, i.e. we
explain how to compute the function for sheared event points.

We start by choosing intermediate values qi ∈ Q, i = 0, . . . , n with qi−1 < αi <
qi. These values partition the plane into n + 2 vertical stripes, which are labelled
with −∞, 1, 2, . . . , n, +∞. Let Sp be some sheared event point of Sf , i.e. p is the
corresponding event point of f . It is enough to determine the stripe in which p lies
to assign Index(Sp). Let σi be the x-value of Sp, β be its y-value. With shear
factor s, the following equation holds:

σi − s · β = αj

for some αj . Since isolating (and refineable) intervals Ix for σi and Iy for β are
known, interval arithmetic can be used: By computing J := Ix− s · Iy, one obtains
an interval containing αj, and by refining Ix and Iy, J can be made arbitrarily
small. In this case, it is only necessary to shrink J until it is completely contained
in one interval [qj−1, qj ]. It is clear then, that Index(Sp) = j.

In geometric terms, Ix and Iy define a box B in the plane that contains Sp.
Refining the intervals means shrinking B. Now, J is the x-range of the object
S−sB, a parallelogram in the plane. The idea is to shrink the box until S−sB
is contained in one of the stripes, and the point p must be also contained in this
stripe, thus is supported by that αi (see Figure 5.4.1 for an illustration).
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Figure 5.4.1: Above, the box of the event point intersects three stripes. After one
refinement, it is completely contained in the stripe between qi and qi+1 and hence,
the index of this singularity is i + 1.

5.4.3 Indexing unbounded edges

We consider an unbounded arc of Sf now. Our goal is to find out the behaviour of
the corresponding unbounded arc of the original curve, namely whether this arc is
unbounded in x-direction, or whether it converges to a vertical asymptote. In the
latter case, we also want to know whether it converges in direction +∞ or −∞.

Let us fix some unbounded arc SA of Sf which goes to +∞, the arcs to −∞
are handled with the same idea. That unbounded arc SA has a symbolic endpoint
+∞i ∈ Vinf . If the backsheared arc A is unbounded in x-direction, it finally lies in
one of the stripes −∞ or +∞. If it is an asymptotic arc to x = αj , it is finally
contained in the stripe j. Thus, knowing where A “finally” lies would be enough
to set Index(∞i). The idea is to go “far” to the right in the sheared system, to the
x-coordinate τ , and consider the point Sp on the arc SA with x-value τ . If we are
far enough on the right, the stripe of backsheared point p denotes the behaviour of
the backsheared arc A.

We explain next why this intuition is right, and how to find such an x-value
“far” enough at the right: Consider all intersection points of the curve f with a
vertical line x = qi. These are the places where an arc of f changes the stripe. As f
is primitive, the number of intersections is finite, and consequently we can define a
box B containing all those points. If this box is sheared, it becomes a parallelogram
in the sheared system. We claim that being on the right of SB means being far
enough on the right (see also Figure 5.4.2 for an illustration).

Theorem 5.4.2. Let B be an axis-aligned box, containing all points on the curve
f that are supported by some qi. Let τ ∈ R be greater than any x-coordinate
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of SB, and let Sp be a point supported by τ on the unbounded arc of Sf with
symbolic endpoint +∞i. Let j ∈ {−∞, 1, . . . , n,∞} be the stripe in which the
backsheared point p lies. Then it holds that:

• Index(∞i) = j

• In case j ∈ {1, . . . , n}: If p is above the box B, then Sign(∞i) = 1, otherwise
Sign(∞i) = −1

Proof. Denote SA the unbounded arc with symbolic endpoint ∞i. Define the
unbounded path from τ to +∞ on SA as follows:

SS := {(a, b) ∈ SA | a ≥ τ}

We consider the backsheared point set S, which is a path on the curve f . By
definition of τ , S cannot enter the box B and consequently it cannot change the
stripe. It follows that S is completely contained in the stripe j. If the arc converges
to a vertical asymptote, and p is above the box, the whole of S must be above the
box. The result follows.

Figure 5.4.2: On the left, the original curve f . The blue box contains all points
where the curve changes the stripe, the stripes are defined by the dashed lines. In
the middle, the sheared curve, and the sheared box. The dashed red line on the
right corresponds to τ in the text. On the right, we see the backsheared points of
the sheared points supported by τ . We can see the behaviour of the unbounded
arc by considering the location of those encircled points.

The box B can be found by applying a the Fujiwara bound S for each fqi
. The

complete procedure looks as follows:

1. Compute

M := max{S(fq0
), . . . , S(fqn)}

and define B := [q0, qn]× [−M,M ].
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2. Compute a rational value τ satisfying

τ > max{|σi| | i ∈ {1, . . . ,m}}

and

τ > max{|q0 ± s ·M |, |qn ± s ·M |}.

(The values q0 ± s ·M, qn ± s ·M are the sheared corners of B.)
3. Isolate the real roots of Sfτ , using the Descartes method.
4. For the ith point Spi supported by τ , find the stripe j in which the backs-

heared point pi belongs, using interval arithmetic as in Section 5.4.2. In the
case that j ∈ {1, . . . , n}, decide whether pi is above or below B.

5. Set Index(+∞i) = j and, in the case that j ∈ {1, . . . , n}, Sign(+∞i) = 1 iff
pi is above B.

6. Isolate the real roots of Sf−τ , using the Descartes method, and repeat steps 4
and 5 to set Index(−∞i) and Sign(−∞i).

5.4.4 Construction of vert-line objects

Having constructed the graph Gs and knowing the values of Index and Sign for
each node, we can finally create the vert-line objects of f . We recall once again
which data the vert-lines consist of (Definition 3.1.1). They are seven-tuples

(α, vert comp, local degree, number of points, number of arcs lr,
asym numbers, points),

where points is a sequence of triples

(approx, incidence numbers, event).

Computing the degree of fα The local degree field is a special case among
the seven entries of the vert-line, because it is the only field that does not need any
information from the sheared curve, and it is the only field which is computed for
all values αi at once.

Let f =
∑N

i=0 riy
i with ri ∈ Z[x]. Obviously, the degree of fα is the maximal

index d such that rd(α) does not vanish. We define the following sequence of
polynomials:

Ri :=

{
ri

gcd(ri,r′i)
if i = N

gcd(Ri+1, ri) if i = 0, . . . , N − 1
.

For all αi’s which are not roots of RN , it holds that deg fαi
= N . For the roots αi

of RN which are not root of RN−1, it holds that deg fαi
= N − 1 and so on. As

the roots of each Ri form a subset of the αj ’s, and each Ri is square free, we can
immediately decide whether αj is a root of Ri by sign evaluation at the boundaries
of the isolating interval of αj . We formulate the complete algorithm:
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Algorithm 5.4.3.
Input: f =

∑N
i=0 riy

i ∈ Z[x, y], α1, . . . , αn.
Output: The degree of all fαi

1. Set d← N , R← rN

gcd(rN ,r′
N

)
and A← {α1, . . . , αn}.

2. While A 6= ∅ repeat
i. For each α ∈ A

a. Check whether R(α) = 0 by comparing the sign of R at the bound-
aries of the isolating interval of α.

b. If R(α) 6= 0, set local degree← d for α’s vert-line object and
remove α from A.

ii. Update d← d− 1 and R← gcd(R, rd).

Note that A is the empty set before d reaches −1 because f is primitive.

Exploiting the edge set Let E be the edge set of Gs. We assume w.l.o.g. that
for every edge (p, q) ∈ E, Index(p) < Index(q). In fact, the indices cannot be equal
since this would cause a vertical component in f , and if the index of q is smaller,
we can swap the two entries.

The number of roots of fαi
can be calculated with one iteration over the nodes

and edges:

Lemma 5.4.4. For any αi, i = 1, . . . , n, the number of real roots supported by αi

is equal to

#{v ∈ Vfin | Index(v) = i}+ #{(v,w) ∈ E | Index(v) < i < Index(w)}.
Proof. The left set counts the event points at αi. All other points belong to arcs
starting somewhere to the left hand side of αi and ending to the right hand side of
αi. So they are counted by the second set.

Similarly, the number of arcs converging to the vertical asymptote x = αi can
be computed:

Lemma 5.4.5. For any αi, the number of arcs converging to the vertical asymptote
x = αi in direction +∞ from the left is equal to

#{(v,w) ∈ E | w ∈ Vinf , Index(w) = i, Sign(w) = +1}.
The number of arcs converging to x = αi in direction +∞ from the right is equal
to

#{(v,w) ∈ E | v ∈ Vinf , Index(v) = i, Sign(v) = +1}.
Similar results hold for the other asymptotic numbers. The number of arcs at

α± ε is also easy to compute:

Lemma 5.4.6. For any αi, the number of arcs at the left of αi is equal to

#{(v,w) ∈ E | Index(v) < i, Index(w) ≥ i}
These three lemmas are used to compute the fields number of points, asym numbers

and number of arcs lr in the vert-lines, it remains to fill the points sequence.
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Computing isolating intervals Fix one αi and set

Ev := {v ∈ Vfin | Index(v) = i}, e := #Ev

Let m denote the number of points on f supported by αi. We know that there are
e event points over αi, and m− e non-event points. Furthermore, we know that all
non-event points have odd multiplicity. In other words, if an interval is isolating
for a non-event root, the sign variation is odd.

For the e event points, we also know an approximation of their y-coordinate.
This is because we know an isolating interval of the sheared event points over
some σj, and the y-coordinate does not change under shearing. However, it is not
sure that these intervals are also isolating for the original curve f . But still, these
intervals allow to approximate the y-coordinate of the event points to any precision.

Let us summarise: We want to isolate the real roots of g := fαi
. What we know

is:

• The number of real roots of g is m.

• A set Ev of e real roots can be approximated arbitrarily.

• All other roots have odd multiplicity.

We use another instance of Generic Descartes to isolate the real roots of g. We
call an interval marked, if it contains an element of M , and unmarked otherwise.
This can be checked by refining the y-coordinate of the elements in M . If the
leaves sequence of the Descartes tree contains exactly e marked intervals, the
roots in M are isolated against each other. The other roots have odd multiplicity,
isolating intervals for them therefore have an odd number of sign variations by the
Descartes’ rule of signs. Consequently, we further refine until m − e unmarked
intervals with odd sign variation are found (compare Figure 5.4.3). We define the
algorithm Backshear-Descartes as an instance of Generic Descartes and the
following parameters:

• Initial interval: Apply the Fujiwara root bound S from Theorem 2.3.7 for
g.

• Termination condition: leaves contains exactly e marked intervals and
m− e unmarked intervals with an odd number of sign variations.

• Post-processing step: Remove all unmarked intervals with an even number
of sign variations from leaves.

For the implementation, we use the algorithm Bitstream Backshear-Descartes,
that is an instance of Generic Bitstream Descartes with the same parameters as
Backshear-Descartes. Note that the degree of fαi

, which was already computed,
is necessary to apply the Bitstream Descartes method for fα (compare the remarks
at the end of Section 3.6).

With the outcome of Bitstream Backshear-Descartes, the approx field is
computed in the point sequence. For marked intervals, the event flag is set.
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Figure 5.4.3: Let e = 4 and m = 10. Marked nodes are squares, unmarked circles.
The algorithm terminates at this point (and throws away the unmarked interval
with variation 2).

Exploiting the edge set – continued The only missing part is the number of
incident arcs from the left and from the right for every point over αi. Again, the
incidence numbers for non-event points are (1, 1). For an event point, let v denote
its node in Gs. Then the number of arcs incident from the left is equal to

#{(w, v) ∈ E | w ∈ V }

and from the right:

#{(v,w) ∈ E | w ∈ V }
and finally, the vert-line objects are constructed.

Summary We recapitulate the single steps of the backshear phase: Constructing
the graph Gs is a purely combinatorial problem and does not imply any calculation
with algebraic numbers. The computation of the Index function for sheared event
points is performed with interval arithmetic. For unbounded arc, the computation
of τ only implies calculation with rational intermediate values qi, and the com-
putation of Index and Sign uses again interval arithmetic. The construction of
the vert-line objects for f finally is done mainly by iterating over the edge set of
Gs. The local degree sequence is computed only by computing greatest common
divisors of the coefficient polynomials of f , considered as polynomial in y. The iso-
lating intervals for the vert-line objects are computed with the Bitstream Descartes
method.

After all, the backshear phase computes the vert-line objects of f without any
further symbolic calculation with the αi’s or σi’s. Also, the backshear phase does
not report a failure in any step. This implies that Nongeneric Extension always
works, if the analysis phase succeeds. As we have seen, this happens at least if Sf
is C-generic.

Finally, we can argue that the whole extension phase terminates. Recall the
two substeps (Section 3.3):
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1. Try to apply Generic Extension. In case of success, return the vert-line
objects.

2. In case of a failure, repeat choosing a shear factor s and apply Nongeneric

Extension until it runs successfully. Return the vert-line objects.
By Theorem 5.1.2, there are only finitely many choices for s such that Sf is not C-
generic and these are the shear factors where Nongeneric Extension can possibly
fail.
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Chapter 6

AlciX – Algebraic Curves in
EXACUS

After having introduced the complete algorithm for the analysis of a curve in the
plane, we now turn to implementation questions. To summarise the complete
algorithm, we repeat its high-level structure in Section 6.1. So far, we left out
how basic operations should be implemented efficiently, and we will discuss several
solution for that in Section 6.2. In Section 6.3, we figure out which choice of basic
implementations is optimal with respect to the running time. Then, we analyse
which operations are most expensive in the algorithm, we compare the running
times with other approaches for topology computation and we give an idea how
complex the input curves may become such that the analysis is still feasible.

6.1 Review of the algorithm

We summarise the whole algorithm for constructing the vert-line objects.

Algorithm 6.1.1.
Input: Square free polynomial f ∈ Z[x, y]
Output: Vert-line objects (at least) for all critical x-values of f

1. Decompose f = cont(f)pp(f).
2. Projection phase: Call Algorithm 3.2.5 on pp(f).
3. Extension phase: Call Algorithm 3.3.1 on pp(f), this means

i. Try Generic Extension (Chapter 4)
ii. On failure, try Nongeneric Extension with some random shear factor s

(Chapter 5):
a. Try the analysis phase for the sheared curve (Section 5.3).

A. Sheared projection phase
B. Sheared extension phase

b. Backshear phase for the sheared curve (Section 5.4).
4. Set flags for vertical line components, considering cont(f).
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6.2 The implementation

This algorithm was implemented in C++ as part of the EXACUS library. There-
fore, the module AlciX (Algebraic curves in EXACUS) was created and consists
of about 8500 lines of code. We will also call our algorithm AlciX in this chapter.

We did not specify yet how several fundamental algorithms and data structures
in AlciX are realised. For some of them, there are different possible choices and
we implemented several alternatives to find the optimal one.

Fundamental data structures We need data types for the integers (coefficients
of the input polynomial), and for the rationals (boundaries of isolating intervals for
roots of polynomials). Both number types are independently provided by LEDA
(as Integer and Rational) and CORE (as BigInt and BigRat).
Other data structures are derived from the integers and rationals in the natural way.
For example, real algebraic numbers are represented as described in Section 2.4
using a polynomial and two rational numbers for the isolating interval.

Approximation of real algebraic numbers Whenever interval arithmetic is
used to calculate with real algebraic numbers, the boundaries of the isolating in-
terval are iteratively refined. Also, the Bitstream Descartes algorithm which is
frequently used in the algorithm works with approximations of real algebraic num-
bers. Thus we need an efficient method for approximations.

In Section 2.4, we already discussed Abbott’s method for the refinement of
roots. Another possible solution is the repeated bisection of the isolating interval.
Abbott’s method promises quadratic convergence at some point, thus we expect a
better performance compared to bisection. But it is not clear whether the com-
putational overhead in each refinement step dominates the total costs in practice.
The experiments will show that this is not the case and Abbott’s method is more
efficient in practice.

Interval arithmetic We use the interval data type from the boost library [BO]
for calculations with intervals.

(Sub)resultants and Sturm-Habicht sequences The computation of the
Sturm-Habicht sequence arises in the projection phase of the algorithm. Also, for
each considered shear factor, the Sturm-Habicht sequence of Sf and the resultant
Rev must be computed. For the computation of the Sturm-Habicht sequence, we
compute the corresponding subresultant sequence and change signs appropriately
afterwards.

The normal way for the computation of the subresultant sequence is to perform
the Euclidean algorithm but with certain scalar factors divided out in each iteration
step (compare Theorem 2.5.5). Algorithms for this “classical” method have become
textbook material [GCL92, §7.3],[Yap00, §3.5], [BPR03, §8.3.4]. Ducos [Du00]
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combines two improvement on the classical method which further reduce the swell-
up of intermediate coefficients. As stated in [LRS00], his solution seems to be
among the best known solutions for the computation of subresultant sequences
based on pseudo-division. We have implemented Ducos’ algorithm.

A different approach is based on the following idea: The coefficients of each sub-
resultant appear as minors of the hybrid Bezout matrix [DG04]. Thus the subresul-
tant sequence can be computed only by evaluating determinants. [ADG04] shows
that evaluating the determinant of the hybrid Bezout matrix with the Samuelson-
Berkowitz method suffices to obtain the principal subresultant coefficients as they
appear as a by-product of the computation. [Ke06] generalises that idea such
that the first s coefficients of each subresultant are computed by evaluating the
determinant of s matrices which are closely related to the hybrid Bezout matrix.
In the curve analysis, we only need the first two coefficients of each subresultant
(the principal and coprincipal subresultant coefficient), so only two determinant
computations are enough. We also implemented this variant.

Ducos’ algorithm performs O(n2) basic operations in Z[x] whereas the Bezout-
based approach takes O(n4) such operations. However, the latter is free of division
which turns out to be an advantage for domains with many parameters. The
experiments will show that Ducos’ algorithm is superior for bivariate polynomials.

Remark. We treat resultant and Sturm-Habicht computation as basically the same
problem because the last element of the Sturm-Habicht sequence is the resultant.
However, for the computation of the “extra” resultant Rev in the sheared projection
phase, it would also be possible to use a modular algorithm for the computation
[Co71]. This should lead to a significant improvement of the practical performance
for non-generic curves. We do not make use of the modular resultant algorithm in
AlciX so far.

Greatest common divisor of univariate polynomials The computation of
gcd’s is contained in many substeps, for instance:

• The content is the gcd of the coefficients.

• For the isolation of the real roots of resultants (Algorithm 2.4.7).

• Comparison of real algebraic numbers (Algorithm 2.4.8) and sign evaluation
of a polynomial at a real algebraic number (Algorithm 2.4.9).

As shown in Section 2.5, the gcd appears as the last non-vanishing subresultant
in the subresultant sequence. Therefore, we can use the algorithm from the last
paragraph for the computation of the gcd.

Another possibility is the usage of modular techniques: The gcd is computed
modulo small prime numbers, and the results are combined using the Chinese re-
mainder theorem, throwing away unlucky moduli. If the solution of the congruence
divides both input polynomials, it is the greatest common divisor, otherwise more
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prime numbers must be considered. That principle is also a well known technique
covered by textbooks – see [GCL92, §7.4] or [GG99, §§6.4–6.7] for details. As
the experiments in [GG99] show, it is very likely that the modular approach per-
forms much better than any non-modular algorithm. Our code contains a modular
method for computing gcds, using Victor Shoup’s NTL library [NTL] as well as a
non-modular method which is contained in EXACUS. The experiments will show
that the modular method is indeed far superior.

Real root isolation For the isolation of integer polynomials, we use the square
free factorisation together with the Descartes method in power basis, described in
Algorithm 2.4.7. An implementation is contained in the NumeriX package of the
EXACUS library.

For all variants of the Bitstream Descartes method (Bitstream Descartes, Bit-
stream m-k-Descartes, Bitstream Backshear-Descartes), Arno Eigenwillig has con-
tributed a realisation of a Bitstream Descartes tree that can be explored indi-
vidually by the application. This tree is the basis of the Generic Bitstream

Descartes Algorithm and all its derivations.

6.3 Experimental results

6.3.1 Our test examples

We introduce a test suite of 8 curves. As we want to cover a large bandwidth of
different algebraic properties, we try to include different features for each curve:

• rand 12 64 is a curve of total degree 12. Each coefficient is a randomly chosen
integer of bit length 64.

• rand 8 512 is a curve of total degree 8. Each coefficient is a randomly chosen
integer of bit length 512.

• 13 sings 9 is a curve of total degree 9 and maximal coefficient size 384. It
contains 13 (non-covertical) singularities.

• ten circles is the union of ten circles.

• covert sings 8 is a curve of total degree 8 and maximal coefficient size about
3054. It contains 3 covertical singularities at two x-coordinates.

• L4 circles is the union of four circles with respect to the L4 norm. The curve
already appeared as f5 in the appendix of [SW05].

• sing asym cont 7 is a curve of y-degree 7, total degree 15 and maximal coef-
ficient size 668. It contains a singularity of high multiplicity, vertical asymp-
totes and vertical line components.
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• cusps and flexes 9 is a curve of total degree 9 and maximal coefficient size
387, containing three vertical cusps and three vertical flexes.

Figure 6.3.1 displays graphs of the curves, plotted with MAPLE.

0

x

10

3

−1

2

y

−3

−1−2−3 32

1

−2

x

1

−2

3

−1

2

−3

32−2−3 −1

0

10

y

−5.0

x

7.50.0

−2.5

5.0

5.0

2.5

−5.0

2.5

7.5

0.0

−2.5

y

−1

x

2

3

1−1

1

y

−2

−3

3−3 2−2 0

0

2.0

−0.4

0.4

1.0

0.8

0.0y

1.5

1.6

0.0

−0.8

1.2

−1.2

−0.5

2.0

x

−2.0

−1.6

0.5 0 2

1

1

−1

−1−2

x

2

−2

y 0

3−1

y

−3

2

20

3

0

−3

−2

1−2

1

x

−1

−2

1.6

0.0

4

4.0

x

3.2

0.8

4.8

2

y

0

2.4

−0.8

−2.4

−1.6

Figure 6.3.1: The curves of the test suite.

6.3.2 The optimal configuration and its alternatives

We will show that AlciX performs best when

• the CORE library is used to realise the integers and rationals,

• real algebraic numbers are refined using Abbott’s quadratic refinement strat-
egy,

• subresultants are computed using Ducos algorithm,

• gcds are computed with the modular algorithm.

The following table shows the running times for different configurations: For the
first column, we used the configuration described above. For the second column,
we replaced the CORE number types by LEDA number types (with LEDA version
4.4.1). In the third column, we changed the configuration from above by using
bisection for refining real algebraic numbers. The fourth column gives the timings
when Bezout matrices are used for subresultant computations, and the last column
shows the effect of using a non-modular gcd algorithm. All timings are given in
seconds.
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Curve Optimal LEDA Bisect Bezout Non-mod

rand 12 64 2.65 15.6 6.75 5.88 2.63
rand 8 512 2.27 13.8 3.89 3.76 2.12
13 sings 9 6.03 47.5 19.8 8.81 396
ten circles 111 539 350 1313 1098

covert sings 8 240 1598 264 329 8118
L4 circles 18.9 116 119 97.8 588

sing asym cont 7 135 530 187 291 8273
cusps and flexes 9 8.37 62.1 15.0 11.2 371

The table shows that deviating from the configuration proposed above worsens
the the performance in a more or less dramatic way. From now, we will always use
the optimal configuration.

6.3.3 Comparison with related work

We compare the algorithm with the “insulate” algorithm by Wolpert and Seidel
[SW05] and “top” from Gonzalez-Vega and Necula [GN02]. We thank the au-
thors of both to make their implementations available. We remark first that the
significance of the presented timings is impaired by the following factors:

• The algorithms are implemented in different languages: Whereas AlciX runs
in C++, the other two methods are only available as MAPLE implemen-
tations. However, this different platforms cannot explain the enormous im-
provements that we will notice in the experiments.

• Also, we point out that AlciX computes more than the other algorithms: top
and insulate “only” return a graph with the topology of the curve, whereas
AlciX also provides geometric output.

• Finally, top has an additional parameter that sets the initial precision of
numerical calculations. Both a too low and too high initial precision impair
the performance of the algorithm, and an appropriate precision is hard to
find out a priori. We tested top with two initial precisions, 60 and 500.

We start with the 16 test curves from [GN02] (see Table 4 therein for the definition).
Among these curves, some examples already appeared in [Ho96]. For insulate and
top, MAPLE (version 10) was used on the same machine.
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Curve AlciX insulate top60 top500

f1 0.27 4.56 1.40 3.22
f2 0.01 0.14 0.12 0.21
f3 0.01 0.16 0.14 0.22
f4 0.04 0.18 0.09 0.14
f5 0.04 0.14 0.09 0.12
f6 0.23 1.78 0.54 1.27
f7 0.04 0.27 0.17 0.42
f8 0.04 1.66 0.24 0.47
f9 0.17 1.66 0.48 1.01
f10 0.17 0.66 0.33 0.79
f11 0.09 1.87 1.05 3.22
f12 0.54 19.36 25.55 37.33
f13 0.01 0.11 0.10 0.16
f14 0.30 2.76 1.15 3.32
f15 0.01 0.12 0.02 0.03
f16 0.10 0.46 0.20 0.33

We observe that AlciX analyses each curve under a second, and that it is
faster than both other algorithm in each example. We point at the dramatical
improvement for the curve f12.

Next, we compare running times for the 5 examples from the appendix in
[SW05].

Curve AlciX insulate top60 top500

f1 0.13 1.40 0.49 0.96
f2 0.04 0.17 0.10 0.14
f3 0.33 2.06 1.09 6.08
f4 0.60 7.20 2.38 8.22
f5 19.0 305 339 435

Again, our solution is faster, and for the complicated curve f5, it improves on
insulate by a factor 16.

Finally, we also tried to apply insulate and top to our test examples from
Section 6.3.1.

Curve AlciX insulate top60 top500

rand 12 64 2.65 19.5 63.7 252
rand 8 512 2.27 12.5 1648 8.22
13 sings 9 6.03 113 >4h 134
ten circles 111 639 406 1226

covert sings 8 240 990 >4h >4h
L4 circles 14.9 305 339 error

sing asym cont 7 135 error >4h 838
cusps and flexes 9 8.37 99.5 >4h 14.1
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Again, AlciX is the best alternative. Note that top is competitive in some
examples, but only because the initial precision is chosen appropriately.

6.3.4 A more detailed analysis of the algorithm

What are the expensive operations in AlciX? To examine this, we first classify
three types of calculations:

• Calculations to identify critical x-values of f or of some sheared curve Sf .
This happens in the projection phase, and in the sheared projection phase of
Nongeneric Extension. We call these calculations Proj-operations.

• Calculations for fa, where a is some critical or intermediate x-values of f
or Sf . This happens in Generic Extension, and in the sheared extension
phase of Nongeneric Extension. We call these calculations Ext-operations.

• The backshear phase of Nongeneric Extension.

The next table shows the timings for all Proj-calculations, Ext-calculations and for
the backshear phase. If the backshear phase was not applied during the algorithm,
the input curve clearly was sufficiently generic in the first place, and Generic

Extension succeeded. The column titled “#vl” gives the number of created vert-
lines. A large number of vert-line objects should increase the portion of the Ext-
calculations on the total running time.

Curve #vl Total Proj Ext Backshear

rand 12 64 8 2.65 1.80 (67%) 0.84 (32%) -
rand 8 512 4 2.27 1.83 (81%) 0.43 (19%) -
13 sings 9 35 6.03 3.60 (60%) 2.43 (40%) -
ten circles 33 111 77.2 (70%) 31.7 (29%) 0.75 (1%)

covert sings 8 10 240 232 (96%) 6.81 (3%) 1.20 (1%)
L4 circles 15 18.9 14.9 (79%) 3.3 (17%) 0.51 (3%)

sing asym cont 7 13 135 125 (93%) 9.38 (7%) 0.52(0%)
cusps and flexes 9 20 8.37 3.51 (42%) 4.85(58%) -

A first observation is that the backshear phase has a minor effect on the running
time. This agrees with our remarks at the end of Chapter 5 where we pointed out
that almost all substeps of the backshear procedure are either combinatorial or
approximate. So we can concentrate on the first two classes.

The Proj-calculatiions tend to be more expensive in the examples, but there
is also a counter-example in the last row, where the Ext-calculations take longer.
This is not surprising: The input curves contains features like vertical flex points
and vertical cusps, and in these cases, the algorithm has to check symbolically for
the existence of event points, as they have incidence numbers (1, 1) (Section 4.5).

We further decompose the Proj and Ext to identify the expensive steps of the
algorithm. In Proj, we distinguish the calculations of resultants and Sturm-Habicht
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sequences and the isolation of the real roots of resultants (this steps includes the
square-free-factorisation and the Descartes method). The next table shows how
the running time distributes over this two substeps:

Curve Proj Res. comp Res. isol

rand 12 64 1.80 1.67 (93%) 0.134 (7%)
rand 8 512 1.83 1.71 (93%) 0.120 (7%)
13 sings 9 3.60 2.69 (75%) 0.91 (25%)
ten circles 77.2 73.9 (96%) 1.88 (2%)

covert sings 8 232 123 (53%) 108 (46%)
L4 circles 14.9 13.9 (93%) 0.76 (5%)

sing asym cont 7 125 109 (87%) 15.3 (12%)
cusps and flexes 9 3.51 2.76 (78%) 0.75 (21%)

We observe that the computation of the resultants and Sturm-Habicht se-
quences takes more time than finding their roots. This result is surprising, be-
cause the isolation step computes and divides out greatest common divisors of the
resultant and its derivative, as explained in Section 3.2. We can see here how dra-
matically the modular gcd algorithm improves the performance. If we replace it
by a the non-modular algorithm, the last column would have the entries: 0.118,
0.054, 391, 991, 7989, 568, 8156, 364.

For Ext, we measure the time for three suboperations: The computation of the
numbers m (the number of real roots over some α) and k (the degree of the gcd of
fα and f ′

α. Second, the running time of all Bitstream m-k-Descartes instances
is measured. Finally, we measure the time to set the event flags of f and the
sheared event flags of Sf . There are more operation involved in the extension
phase, such as the computation at intermediate values or the computation of the
incidence numbers. However, these operations are negligible with respect to the
running time.

Curve Ext m-k-comp. m-k-Descartes ev. points

rand 12 64 0.84 0.16 (19%) 0.66 (79%) -
rand 8 512 0.43 0.22 (51%) 0.21 (49%) -
13 sings 9 2.43 1.40 (58%) 0.96 (40%) -
ten circles 31.7 12.35 (39%) 9.22 (29%) 10.1 (32%)

covert sings 8 6.81 3.0 (44%) 3.55 (52%) 0.23 (4%)
L4 circles 3.3 0.94 (28 %) 1.66 (50%) 0.63 (19%)

sing asym cont 7 9.38 1.49 (16%) 3.25 (35%) 4.57 (49%)
cusps and flexes 9 4.85 0.87 (18%) 0.51 (11%) 4.83 (71%)

It seems that the first two steps are equally expensive, although there are ex-
amples where the Bitstream Descartes is dominant. If the curve contains “compli-
cated” features like vertical cusps or vertical flex points, the symbolic event point
check also contributes considerably to the total running time.
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6.3.5 Feasibility bounds

What input curves are still practicable to analyse in a “reasonable” amount of
time? There are two natural parameters that influence the running time:

• The (total) degree of the input polynomial

• The size of the coefficients of the input polynomial

We created 15 dense polynomial with total degree n random coefficients of bit
length up to c. Then we analysed each of those curves. The following table shows
the running times of the median curve and the worst-case curve. We also list the
running time of the Proj-calculations.

Median worst case

(n, c) #vl Total Proj #vl Total Proj

(11,256) 4 8.2 7.6 6 8.5 7.62
(12,256) 6 16.6 14.9 12 19.8 15.1
(13,256) 6 30.3 27.7 10 32.4 27.7
(14,256) 4 51.8 49.2 8 56.2 49.5
(15,256) 6 90.0 85.1 10 99.8 85.9
(16,256) 6 147.7 142.4 8 155.4 142.1
(17,256) 6 239.0 229.0 10 242.2 228.8
(18,256) 6 375.4 360.7 14 406.2 361.5

For increasing coefficient size, we get

Median worst case

(n, c) #vl Total Proj #vl Total Proj

(11,256) 4 8.2 7.6 6 8.5 7.62
(11,512) 4 23.1 22.2 10 25.4 22.3
(11,1024) 6 66.9 63.1 14 71.7 63.7
(11,2048) 8 187.4 181.5 8 193.9 182.2
(11,4096) 4 564.4 546.0 8 582.4 547.4

However, these random curves seem not to be too realistic examples for real
applications – for instance, the median curve for (18, 256) only has 6 critical values,
although the resultant is of degree 18 · 17 = 306 and there would be room for that
many critical points for a curve of degree 18. This also explains the domination of
the Proj-calculations for these instances. Looking at Figure 6.3.2, these curves do
not look very complicated to analyse.

To generate more interesting curves, we proceed as follows: We fix a a posi-
tive integer n and create the polynomial of total degree n with indeterminates as
coefficients. Now we choose a further positive even integer m and consider the grid

G := {−m

2
+ 1, . . . ,

m

2
} × {−m

2
+ 1, . . . ,

m

2
}
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Figure 6.3.2: The graphs of the medians for (n, c) = (12, 256), (14, 256), (16, 256)
and (18, 256).

We iteratively choose a point p ∈ G and force the the curve to pass through this
point. Each such point gives a linear equation in the coefficients, and we stop when
the polynomial is uniquely determined (up to a scalar factor). By forcing the curve
to pass these real points, we expect to include more real arcs of the curve and thus
to produce more critical points.

The next tables shows the result of 15 randomly generated curve. The “bitsize”
column shows the bit length of the greatest coefficient of the polynomial:

Median worst case

(n,m) #vl bitsize Total Proj #vl bitsize Total Proj

(6,64) 14 275 0.27 0.08 14 295 0.39 0.09
(7,64) 18 376 0.92 0.39 20 422 1.31 0.48
(8,64) 18 541 3.37 1.94 18 559 4.20 2.10
(9,64) 18 695 11.33 7.26 32 732 14.81 7.65
(10,64) 28 868 35.84 22.82 38 1012 45.54 29.50
(11,64) 32 1101 99.81 70.19 44 1165 126.13 80.99
(12,64) 36 1388 269.64 204.11 52 1371 302.14 202.10

For increasing degree, also the size of the coefficients grows, as there are more
points to interpolate. We can observe that the running time is about tripled if
the degree is incremented. Also, the portion of the projection phase on the total
running time is smaller, because there are much more critical values to consider.
This can also be seen in Figure 6.3.3.

Remark. The running time of the analysis also depends on other factors. Lo-
cal features as vertical cusps and vertical flexes impair the total running time
since additional symbolic calculations are necessary, as seen in the example curve
cusps and flexes 9. However, the influence of those features is very hard to measure
systematically.
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Conclusion

This work contributes to the practical usability of the exact geometric analysis of
real algebraic plane curves in three ways.

1.) It reduces the cost of the extension phase by replacing algebraic computations
with more efficient approximate computations, without sacrificing exactness.
For that, the Bitstream Descartes method is adapted to the case of multiple
roots that appear naturally during the analysis. Sturm-Habicht sequences
deal with the exact calculations concerning algebraic numbers that are still
necessary. In most cases, a small number of such exact calculations suffices
for the analysis.

2.) It performs the analysis in the predefined coordinate system. Coordinate
changes can take place during the analysis, but the backshear phase brings
the curve back into the original coordinate system.

3.) It further improves the performance by its lazy strategy of checking generic
position: Depending on local features of the curve, different conditions are
imposed on different x-coordinates. This leads to a fuzzy definition of gener-
icity, which is less restrictive than C-genericity, and can be verified more
efficiently.

The described algorithm has been implemented as new module AlciX in the C++
library EXACUS. It outperforms the implementations of top [GN02] and insulate

[SW05] in all examples. We therefore claim that AlciX reflects the state-of-the-
art in the resultant-based analysis of algebraic curves. However, there is room for
improvements, the usage of modular methods for the computation of resultants was
already proposed in the text. Also, AlciX would benefit from further optimisations
of the computation of subresultants and Sturm-Habicht polynomials since these
computations are the dominant factor of the running time in most examples.
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Appendix A

Multiple tangent lines

The subject of this appendix is a proof of Lemma 5.1.2:

Lemma. There are only finitely many choices of s such that Ssf is not C-generic.

Recall that C-genericity imposes two conditions on f : f must be y-regular,
i.e. the leading coefficient of f considered as univariate polynomial in y must be a
constant, and each fα must not have more than one multiple root. We show first
that there are only finitely many shear factors that violate the first condition.

Lemma A.1.1. Let n be the total degree of f . There are at most n choices of s
such that Ssf is not y-regular.

Proof. The shearing transformation preserves degree, so also Ssf has total degree
n. Define

f :=

n∑

i=0

aix
iyn−i

to be the sum of all terms in f with total degree n. A shear with s (considered as
an indeterminate for the moment) yields

Ssf =

n∑

i=0

ai(x + sy)iyn−i =:

n∑

i=0

bi(s)xiyn−i

where bi(s) depends on the shear factor. In particular, it holds that the coefficient
of yn is given by

b0(s) = a0 + sa1 + s2a2 + . . . + snan

Not all ai’s are zero, so b0(s) is a non-zero polynomial in s. Now, if a concrete
shear factor s is chosen with b0(s) 6= 0, then Ssf is y-regular. In other words, only
a shear factor that is a root of b0(s) can spoil the y-regularity of Ssf . As there are
at most n such roots, this proves the statement.

We still have to prove that Ssf violates the second property of Definition 4.1.1
for only finitely many choices of s. We reduce the statement to a geometric property
of the curve f .
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Definition A.1.2. A line L(t) := (x(t), y(t)) ∈ C2 is called multiple critical line
of f if the polynomial f(x(t), y(t)) ∈ C[t] has more than one multiple root over C.
There are exactly three types of multiple critical lines:

1.) L passes through two singularities of f . We call these lines multiple singular
lines.

2.) L passes exactly one singularity of f and is a tangent of f for some regular
point. We call these lines singular-tangent lines.

3.) L passes no singularity of f and is tangent of f for (at least) two regular
points. We call these lines multiple tangent lines.

Figure A.1.1 shows examples for each case. The following statement is obvious.

L2

L3

L1

Figure A.1.1: A curve with three ellipsoid components. L1 is a singular-tangent
line, L2 is multiple singular lines and L3 is a multiple tangent line of the curve.

Proposition A.1.3. If L is a multiple critical line of f , then SsL is a multiple
critical line of Ssf (of the same type).

Look again at Figure A.1.1: If a shear factor is chosen such that the line
L2 becomes vertical, the sheared curve has two covertical singular points. If L1

becomes vertical, the sheared curve has a singular point covertical to some x-
extreme point of the sheared curve. If the line L3 becomes vertical, two x-extreme
points of the sheared curve are covertical. Thus, each multiple tangent line defines
a bad shear factor:

Lemma A.1.4. Let f be a curve, and s 6= 0 be a shear factor such that Ssf is
y-regular. If Ssf is not C-generic, then f has a multiple critical line with slope
−1

s .
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Proof. If Ssf is not C-generic but y-regular, there must be some α ∈ R such that
Ssfα has more than one multiple root. In other words, the line L(t) = (α, t) is a
multiple critical line of Ssf . Shearing back, it follows that (S−sL)(y) = (α−sy, y)
is a multiple critical line of f .

With that result, it is enough to prove that there are only finitiely many multiple
critical lines. We argue that each of the three classes of multiple critical lines is
finite. This is easy at least for the first class:

Lemma A.1.5. The number of multiple singular lines is finite.

Proof. The number of singularities is finite. For s singularities, there are at most(s
2

)
connecting lines.

For the remaining two classes, we use dual spaces ([BK81, pp.321+],[Wa50,
II.3,V.8],[Gi96, 16.6]). We will only give a intuition about this concept, but we
point out that this cannot replace a serious introduction in the theory of algebraic
curves, as given in the named textbooks.

The basic idea is that dualising a point p in the plane gives a line p∗ in the
plane and dualising a line L gives a point L∗, such that 1.) p∗∗ = p, L∗∗ = L and
2.) p lies on L if and only if L∗ lies on p∗. For the formal construction, one has to
embed the (affine) plane into the projective plane ([BK81, I.3],[Wa50, II.1],[Gi96,
9.1]) and define the dual of a point in the projective space.

The striking aspect of dualisation is that each statement about points, lines and
their relation has an equivalent dual statement. We illustrate the principle with
the easiest example. Consider the statement: There is a line passing through any
two points. Let p1 and p2 lie on L. This means that L∗ both lies on p∗1 and p∗2, in
other words L∗ is an intersection point of the two lines. Because each line is the
dual of some point and vice versa, we have the dual statement Two lines always
intersect in a point. Note that we live in projective space here, so even parallel
lines intersect.

Let f be an algebraic curve of degree n. For simplicity, we assume that f
does not contain any line as a component. The dual curve f∗ arises from f by
dualising all tangents of f . We have only defined tangents for regular points, but
one can extend the definition to singularities in an appropriate way (Figure A.1.2).
The degree of the dual curve is at most n(n − 1), and it cannot contain lines as
components.

We can prove next that the second class of multiple critical lines is finite.

Lemma A.1.6. The number of singular-tangent lines is finite.

Proof. Fix one singularity p. It is enough to show that only finitely many tangents
of f pass through the point p. Each tangent passing through p corresponds to a
point on the dual curve, and this dual point lies on the line p∗. In other words,
tangent of f through p correspond to intersections of p∗ with f∗. But a line can
only intersect a curve in finitely many points.
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Figure A.1.2: Tangents at singular points.

There is only one unproven statement left:

Lemma A.1.7. The number of multiple tangent lines is finite.

In the nineteenth century, it was shown that the number of multiple tangent
line is at most 1

2n(n − 2)(n2 − 9) ([Ja50, Cl64]). The result can also be found in
[Ha77, §4, Exercise.2.3]. Since a curve has only finitely many singular points, it
suffices to show:

Lemma A.1.8. Each multiple tangent line causes a distinct singular point of the
dual curve.

We argue geometrically, see [Wa73, §§19–21] for an algebraic proof: Consider
a multiple tangent line T which is tangential for two points p and q on the curve.
We chose branches of f locally around p and q (Figure A.1.3). Each point on those
branches has a unique tangent line, and dualising the set of tangents gives two
branches of the dual curve f∗. Clearly, they intersect at least in the point T ∗.
If the dual branches are different, the point T ∗ is a self-intersection and we are
done. It remains to argue that the branches cannot be equal. This follows from
the general algebraic theory, but there is also an elementary argument which we
present next. The idea is taken from a work of Horwitz [Ho89] which includes a
proof that a function has only finitely many multiple tangent lines in a compact
interval.

Definition A.1.9. Let p be a regular point on f with tangent T and let (pi) be a
sequence of regular points on f with tangents (Ti), all different from T . We define
the tangent intersection sequence of p and pi to be the sequence of intersection
points of Ti with T .

Lemma A.1.10. If (pi) converges to p, the tangent intersection sequence also
converges to p.

The direct proof of [Ho89, Lemma 1] can be transfered. The dual statement
says that, if a sequence (pi) converges to p, the sequence of slopes of the secants
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dualp q
T

T ∗

Figure A.1.3: The dual of the tangent T becomes a singular point if the dualised
branch at p and the dualised branch at q are not equal.

p T ∗
T p∗

dual

Figure A.1.4: On the left: Illustration of Lemma A.1.10. The encircled points
define the tangent intersection sequence of p with the indicated sequence of points
on the curve. On the right: The tangent intersection points correspond to secants
through T ∗ of the dual curve.

through pi and p converges to the slope of the tangent in p (Figure A.1.4). But
this follows from the (analytical) definition of the tangent.

With the previous Lemma, we can prove that the branches for p and q cannot
give the same dual branch. Assume for a contradiction that the dual branches for p
and q are the same. We consider sequence of points on that dual branch, converging
to T ∗. This sequence induces two sequences of points on f : One sequence (pi)
converging to p, one sequence (qi) converging to q, such that pi and qi share the
same tangent Ti. Because f does not contain a line, all Ti’s are different from T and
Lemma A.1.10 says that the tangent intersection sequence of p and pi converges
to p, and the tangent intersection sequence of q and qi converges to q. But both
sequences are the same because the involved tangent lines are equal. Contradiction.
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