
Certified Complex Root Isolation via Adaptive Root Separation
Bounds

M ICHAEL SAGRALOFF1∗, M ICHAEL KERBER2, M ICHAEL HEMMER3

1,2,3 Max-Planck-Institut f̈ur Informatik, Saarbr̈ucken, Germany
[msagralo|mkerber|hemmer]@mpi-inf.mpg.de

Abstract

We address the problem ofroot isolationfor polynomial systems: for an affine, zero-dimensional
polynomial system ofN equations inN variables, we describe an algorithm to encapsulate all
complex solutions into disjoint regions, each containing precisely one solution (calledisolating
regions). Our approach also computes the multiplicity of each solution. The main novelty is a
new approach to certify that a set of computed regions is indeed isolating.It is based on an adap-
tive root separation bound obtained from combining information about the approximate location
of roots and resultant calculus. Here we use simple subdivision method todetermine the number
of roots within certain regions. The resultant calculus only takes place over prime fields to avoid
the disadvantageous coefficient growth in symbolic methods, without sacrificing the exactness
of the output. The presented approach is complete for uni- and bivariatesystems, and in general
applies in higher dimensions as well, possibly after a coordinate change.

1 Introduction

Finding the roots of a zero dimensional polynomial system isa fundamental problem of numerous
applications spread over several important areas, such as algebraic geometry, computer graphics
and computer aided geometric design. In particular, the design of robust and certified algorithms
demands for efficient methods that determine isolating regions for all roots of polynomial systems.
Such methods should also be capable to handle non-simple roots.

This work is driven by the question: How can fast but unreliable root solving techniques be
combined with symbolic computations in an efficient way, such that the overall result can be cer-
tified? We see our main contribution in providing a novel certification scheme in this context. Its
main idea is to follow two threads of computation in parallel. Both threads only deliver incomplete
information, but their combination is sufficient to certifythe result of the method.

The first thread is inspired by elimination methods such asMultivariate resultantsandGroebner
bases. Both are well-studied tools to obtain the solution set of a system with respect to a projection
direction. However, both methods lead to polynomials with very large bitsizes (for intermediate
results as well as for the final result), which causes a severedrawback regarding the performance.
Therefore, our method computes the multivariate resultant(with some hidden variable) only in
several prime fieldsZp and completely avoids Chinese Remaindering. In particular, all symbolic
computations are performed using single precision arithmetic [4]. This method yields a lower bound
on the number of projected solutions. Although this bound isvery likely to match the exact number
in practice, this cannot be certified without further knowledge.

The second thread follows anExclusion and Subdivision method. It keeps on subdividing re-
gions that may contain solutions (from now on, we call such connected regionsclusters), whereas
regions that doubtlessly do not contain a solution are discarded. As a simple exclusion method we
use interval arithmetic. Usually, this is combined with a criterion to ensure that a cluster contains

∗Correspondence to: Michael Sagraloff, Max-Planck-Institut für Informatik, Departement 1: Algorithms and Complex-
ity, Campus E1 4, 66123 Saarbrücken, Germany; Tel: +49 681 9325 106, Fax: +49 681 9325 199

precisely one simple root, but these criteria mostly fail inthe presence of multiple roots. Instead,
we introduce two new methods based on homotopy arguments. The first ensures the presence of
at least one root inside a cluster, the second sums up the multiplicities of the roots inside a cluster.
Clearly, this cannot suffice to ensure that a cluster is isolating.

Our algorithm merges both building blocks to certify that clusters are isolating. For simplicity,
we sketch the certification idea only for a univariate polynomial f (the general case is discussed in
Section 2). Two real values are computed:LB, obtained by the modular symbolic computation, and
UB, obtained by the distances between clusters, diameters of clusters, and their multiplicities. If the
clusters are not isolating,LB (UB) defines a lower (upper) bound on the absolute value of the first
non-vanishing subresultant coefficient∗ sresk(f , f ′), which is essentially the product of squared root
distances off . During the certification,LB→ ∞ andUB→ 0. OnceLB becomes larger thanUB, it
is proven by contradiction that the clusters are isolating.

We see a strength of our certification method in its adaptiveness to the concrete instance: The
quality of the boundsLB and in particularUB are mainly determined by the size of|sresk(f , f ′)|,
small values for it lead to faster certification. This adaptive behavior is a clear advantage compared
to theoretical a priori bounds on sresk(f , f ′) or on the separation of distinct roots which have to
assume the worst-case.

Our new certification approach is embedded within a completealgorithmic description that takes
a zero-dimensional system as input, and starts the subdivision on a sufficiently large bounding box.
We decided for this setup for the sake of a comprehensive description, although there is no need to
restrict to the proposed subdivision strategy. For instance, we propose that for an efficient realization
of our ideas, a fast numerical solver (e.g, based on homotopymethods; see the section on related
work) is first applied to approximate the solutions of the system, and our certification process comes
in afterwards only to validate the outcome of the solver. We sketch the workflow of such a hybrid
solver in the conclusion.

The presented method is complete for 2× 2-systems and applies, in general, also to higher
dimensional systems. It requires the multivariate resultant to be expressible by a Macaulay matrix.
In unfortunate cases, this is not possible, even under projective transformations.

Related Work.Since polynomial root solving is such an important problem in several fields,
plenty of distinct approaches exist and many textbooks are dedicated to this subject. See, for in-
stance, [9, 22, 27, 29] for introductions to symbolic approaches such as (sparse) resultants, Groebner
bases, and methods based on eigenvalue computations or onrational univariate representation.

Homotopy methodsnumerically track the continuous path of the known complex solutions of
some trivial and appropriate polynomial system during a continuous deformation into the input
system. Such methods, although very robust, lack the certification of their output in general. We
recommend [26] for a more comprehensive overview.

Subdivision methodsdescribe a further class of common tools. Algorithm of that kind profit
from their efficiency and plainness. Most Implementations are using one of the numerous software
packages for efficient interval arithmetic [2, 18, 20], suchas IntBis, ALIAS, IntLab or MPFI. Alter-
native variants, using the Bernstein basis and convexity properties of their coefficients, have been
addressed [19]. However, all these approaches lack to certify their results – in general, an approach
stops when a certain subdivision depth is reached or each region contains a simple root, which can,
for instance, be certified by the interval Newton test [26, Sec. 6.1]. So far, in case of multiple roots,
all proposed methods have to go below a certain a-priori worst case root separation bound in order
to certify that a region is isolating. As a result of the bad quality of these bounds in the average
case, subdivision methods turn out to be impractical for an exact and complete approach.

∗In case of a univariate polynomialf . For the general case, we consider|sresk j (r j , r ′j)|, wherer j is the elimination
polynomial ofF = 0 with respect tozj andk j := deggcd(r j , r ′j).

Also specializations of the general problem have been extensively studied. The probably most
prominent one is univariate polynomial solving. In particular, this is an integral building block in
elimination methods, where the (univariate) elimination polynomial has to be considered, and lifting
the solutions to higher dimensions usually leads to furtherunivariate systems.

Certified algorithms for real root isolation are mainly subdivision solvers based on Descartes’
Rule of Signs or Sturm sequences, see [3, 10, 29] for modern approaches. For the complex case we
refer to [16, 21, 23, 24, 25].

Other special cases of polynomial systems appear in real algebraic geometry. Recent imple-
mentations for computing the topology of algebraic curves either make use of elimination meth-
ods [11, 13] or subdivision [1, 7]. Already this low dimensional application shows the mentioned
drawbacks of the distinct approaches: subdivision fails togive a certified result in degenerate cases
whereas elimination methods suffer from costly symbolic computations.

Outline. We sketch our algorithm in Section 2. Therein, we refer to theSections 3-6 for the
details of its submethods. Section 7 finally concludes our results.

2 Our approach

We fix the following notation throughout the paper: our inputsystem is given by polynomials
fi ∈ Z[z1, . . . ,zN] of total degreesdi , i = 1, . . . ,N, andD = ∏N

i=1di defines their product. Then these
polynomials induce a functionF : CN → CN that maps a pointp ∈ CN to (f1(p), . . . , fN(p)). By
assumption,F has only finitely many isolated solutions (or roots), letΓ = V(F) denote them. For
j = 1, . . . ,N, let π j : CN → C,(z1, . . . ,zN) 7→ zj denote the canonical projection map with respect to
zj . Likewise,Γ j := π j(Γ) is the set ofzj -coordinates of solutions ofF .

GivenF , our algorithm computes disjointisolating clusters C1, . . . ,Cs⊂CN, that is, each cluster
Ci contains precisely one root ofF andΓ ⊂

⋃s
i=1Ci . In general, we will use the termclusterfor a

connected subset ofCN.
Transformation phase (Section 3.1): As a first step, the algorithm ensures severalgenericity

conditions† which further steps rely on. MatricesM1, . . . ,MN with M j ∈ Z[zj]
ℓ j×ℓ j (for someℓ j) are

computed whose determinantsr j ∈ Z[zj] satisfy the following properties:r j describes the projected
solutions ofF with respect to the coordinatezj , in shortV(r j) = Γ j , and multiplicities are preserved
under projection. Moreover, eachr j must be of degreeD; this ensures thatF has no solution at
infinity, that is, all solutions of its homogenization are contained inCN, considered as an affine
chart ofPN. All these properties are tried to be ensured only using modular arithmetic (i.e., without
computing ther j ’s exactly). If this fails, the algorithm starts over with a transformation ofF by a
linear projective change of coordinates.

The actual isolation algorithm depends on the following three subroutines.
Guess k j (Section 3.2): Forj ∈{1, . . . ,N}, it computes an upper boundk′j for k j := deggcd(r j , r ′j),

which also yields a lower boundm′
j on the cardinalitymj = D−k j of Γ j . This is done by comput-

ing the index of the first non-vanishing principal subresultant coefficient ofr j andr ′j in a modular
domainZp, where the primep is newly chosen in each call.

Subdivide (Section 4): Returns a set of disjoint clusters that cover all roots of F , and each
contains at least one root (we call clusters known to containat least one rootzero-clusters). This
is done by subdivision inCN ∼= R2N to exclude regions without roots, combined with a criterionto
identify zero-clusters. Repeated calls ofSubdivide shrink the zero-clusters, and if a zero-cluster
is not isolating, it will split into several parts after sufficiently many steps.

†for N = 1, the phase can be skipped

Mult of clusters (Section 5): For the zero-clustersC returned bySubdivide, the number
µ(C) of roots ofF inside each cluster is computed, counted with multiplicity(notice thatµ(C) ≥ 2
does not imply thatC is non-isolating, since multiple roots can occur). The method slightly perturbs
F into F̃ such that roots remain in their zero-clusters, and such thata root of multiplicity µ turns
into µ simple roots nearby. The number of roots inside a zero-cluster is than counted by further
subdividing the cluster.

Main routine: Our main root isolation routine passes through two phases. First, thesyn-
chronization phase(Section 6.1) callsGuess k j repeatedly for each projection direction to obtain
a lower boundm′

j on mj , Though it is very likely to coincide withmj , m′
j might improve in further

calls. In parallel, it callsSubdivide repeatedly to get smaller and smaller zero-clustersC1, . . . ,Cs′ .
For each direction it examinesπ j(

⋃

Ci), which decomposes into connected components, called
projected clusters. Once the number of projected clusters underπ j coincides withm′

j for each j,
Mult of clusters is called forC1, . . . ,Cs (this also yields multiplicities of projected clusters), and
the algorithm switches to thecertification phase, described next.

The clustersC1, . . . ,Cs′ are isolating under the condition thatm′
j = mj , or equivalentlyk′j = k j ,

for each j. Thecertification phase(Section 6.2) tries to verify this. It computes the valuesLB j ,
that is, the product of the primes used inGuess k j so far, andUB j which is determined by the
diameters and multiplicities of projected clusters, and the distances between them. Ifk′j > k j , LB j

(UB j) is a lower (upper) bound for|sresk j (r j , r ′j)|. The algorithm again callsGuess k j repeatedly,
which makesLB j arbitrary large, and in parallel, it callsSubdivide which letsUB j converge to
zero. Either,LB j > UB j at some point which algorithmically proves by contradiction thatk′j = k j .
Or, a call ofGuess k j improves the upper bound onk j , or a call ofSubdivide makes a projected
cluster split into two parts. Both cases disprovek′j = k j and thus, clusters were not isolating yet; the
algorithm then switches back to the synchronization phase.

3 Symbolic tools

3.1 Transformation phase: Multivariate Resultant ‡

Crucial for our method is the knowledge of univariate polynomials r1, . . . , rN such that the roots of
r j are precisely thezj−coordinates of points inΓ. Eachr j is represented as the determinant of a
matrix M j in the coefficients off1, . . . , fN. Also, eachr j should have degreeD, which ensures that
all D solutions of the homogenized system overPN lie in the considered affine chart.

It is possible that suchr j ’s (more precisely, theM j ’s) only exist after a projective coordinate
transformation, and in degenerate instances our method might even fail completely to compute such
M j ’s. We closely follow the ideas described in [9,§ 3.5], using multivariate resultants and the
“hidden variable” approach. Here, we just mention the main facts from the theory; see [9, 12] for
further explanations. We first introduce the (affine) multivariate resultant:

Definition 1. For a system of n polynomials(f1, . . . , fn) in n−1 variables,res(f1,..., fn) is an irre-
ducible polynomial in the coefficients of the fi ’s. The resultant vanishes if and only if the homoge-
nized system has a solution overPn.

To apply the multivariate resultant in our problem withN equations inN variables, we consider
one variablezj as a parameter, that means, the system has coefficients inZ[zj]. Then, resj :=
res

zj

(f1,..., fN)
, j = 1, . . . ,N, defines a polynomial inzj . From the definition, it follows that its roots are

precisely thezj -coordinates whereF = 0 has a solution.

‡for N = 1, the whole section can be skipped

Theorem 2. Let deg(resj) = D for all j = 1, . . . ,N. Then F has precisely D roots inCN, counted
with multiplicity§. For each(z1, . . . ,zN) ∈ Γ, zj is a root ofresj and the multiplicity of zj is the sum
of the multiplicities of the points in its fiber.

Proof. The degree of each resj is bounded byD (cf. [12]). If any solutions is not finite, at least
one resj must have a “root at infinity”, thus its degree drops by at least one, which shows(1). The
second claim follows directly from the definition of the multivariate resultant and the last from the
previous, noting that the resultant is continuous in the coefficients of the system, and that a slight
perturbation of the system yieldsD simple solutions with distinctzj -coordinates.

In our algorithm, we exploit that resj can be represented, at least generically and up to a constant,
as the determinant of a coefficient matrix of(f1, . . . , fN) by a theorem due to Macaulay [17].

Theorem 3. There exist matrices Mj and M′
j whose entries are polynomials in the coefficients of

the system(f1, . . . , fN) and in zj , such thatresj =
detM j

detM′
j
. M′

j does not contain zj .

For the definition ofM j andM′
j , see [9]. Theorem 3 implies that if for our concrete system

detM′
j ∈ C does not vanish, thenr j := detM j equals resj up to a constant. At several places in our

algorithm we need to upper bound the coefficients ofr j . Using the Hadamard bound onM j , one
obtains the following estimation:

Lemma 4. The bitsize of the coefficients of each rj is at mostσ := n(τ + logn)+ log(dn+1), where

τ is the maximal bitsize of any coefficient of(f1, . . . , fN), n=
(∑N

i=0 di
N−1

)

and d= maxdi .

Proof. The dimension ofM j equals
(∑i 6= j di

N−1

)

< n (cf. [9]). Moreover, each entry ofM j is a univariate
polynomial whose coefficients have bitsize at mostτ, and whose degree is bounded byd. Using [3,
Prop. 8.12], the determinant polynomialr j has thus a bitsize bounded byσ .

We next describe the transformation phase of the algorithm.All computations are performed
modulo a prime numberp. Let · denote the operation that maps integers to their modular image
in Zp. This map extends to integer polynomials and integer matrices in the obvious way.

Choose a random primep and compute overZp, for eachj = 1, . . . ,N, detM′
j ∈Zp and detM j ∈

Zp[zj]. If any determinant detM′
j vanishes, or for anyj, deg(detM j) 6= D, transform(f1, . . . , fN) via

a random linear projective change of coordinates and start over with the transformed system.

We remark that the transformation phase might loop forever,in case that detM′
j vanishes for the

input system, and for all its linear projective transformations.
For special cases of polynomial systems, resj is explicitly known as determinant of a matrix,

not just as a quotient. The most prominent case isN = 2, where theSylvester matrixcan be used;
Theorem 3 and consideration ofM′

j is not needed. Special cases withN > 2 are discussed in [28].
A perhaps unpleasant feature of the transformation is that also infinite solutions of the original

system are computed. It is possible to rule out them in a post-processing step after the algorithm.
For that, we consider a finite region that contains all finite roots of the original coordinate system.
For instance, it is possible to consider the box[−2σ ,2σ]2N with σ from Lemma 4.

§The multiplicity of a rootξ ∈ CN of F is defined as the dimension of the localization ofC[z1, . . . ,zN]/(f1, . . . , fN) at ξ
considered as aC-vector space (cf.[3, p.148])

3.2 Guessk j : Modular computation

We turn to the methodGuess k j that computes an upper boundk′j on k j = deggcd(r j , r ′j). Since
deg(r j) = D (guaranteed by the transformation phase),D−k′j constitutes a lower boundm′

j on mj ,
the number of distinct roots ofr j . To computek′j , we exploit the relation (e.g. [3, Prop. 4.25])

k j := deggcd(r j , r
′
j) = min{i ≥ 0 | sresi(r j , r

′
j) 6= 0},

where sresi(f ,g) denotes thei-th principal subresultant coefficient off andg.
By definition, sresi(r j , r ′j) can again be expressed as determinant in the coefficients ofr j . There-

fore, its computation is possible in a modular domainZp for a primep. Definingλ j as the leading
coefficient ofr j , we obtain the following.

Proposition 5. Let j ∈ {1, . . . ,N}, and p a prime, that does not divideλ j or D · λ j , the leading
coefficient of r′j . Then, for i= 0, . . . ,D we getsresi(r j , r ′j) = sresi(r j , r ′j).

Lemma 6. Let p1, . . . , ps be distinct prime numbers that do not divide Dλ j , and

k′j := min
ℓ=1,...,s

min{i ≥ 0 | sresi(r j , r ′j) 6= 0},

where· is the modular operation with respect to pℓ. Then, k′j ≥ k j , and thus rj has at least m′j :=
D−k′j distinct complex roots. Moreover, for each i∈ {0, . . . ,k′j −1},

sresi(r j , r
′
j) = 0∨|sresi(r j , r

′
j)| ≥

s

∏
ℓ=1

pℓ.

The second part of Lemma 6 constitutes a lower bound for the size of non-vanishing principal
subresultants coefficients. We will exploit this lower bound in the certification phase (Section 6.2).
We explain our methodGuessk j next. For anyj ∈ {1, . . . ,N} it outputs a pair consisting of an

upper boundk(p)
j for k j , and the primep that has been used to obtain this bound.

Choose a primep not considered so far, computer j = detM j and r ′j , with respect top, until

degr j = D and degr ′j = D−1. Computek(p)
j = min{i ≥ 0 | sresi(r j , r ′j) 6= 0} = deggcd(r j , r ′j), and

return the pair(k(p)
j , p).

Note thatGuess k j performs all computations in the domainZp, no exact evaluation ofr j is
necessary. The price we pay is that we have to cope with the uncertainty whetherk′j = k j holds
or not. This guess must be checked at the end of the overall algorithm. However, we claim that a
wrong guess is very unlikely sincek j = k′j will hold as soon as a primep is chosen that does not
divide sresk j (r j , r ′j).

4 Subdivide: Subdivision

We apply a subdivision scheme onCN ∼= R2N to identify clusters containing roots ofF . Writing
eachzj := x j + i ·y j and f j = g j + i ·h j , F can be interpreted as a functionF : R2N → R2N that maps
a pointp = (x1,y1, . . . ,xN,yN) ∈ R2N to (g1(p),h1(p), . . . ,gN(p),hN(p)). For a boxA = [a1,b1]×
[c1,d1] . . .× [aN,bN]× [cN,dN], let �F(A) be the result of evaluatingF at A in interval arithmetic,

e.g., by the use of the recursive Horner scheme or centered box evaluation (also denoted as modified
affine arithmetic [14]). By the properties of interval arithmetic [20], we get Im(F|A) ⊂ �F(A). We
call a boxA hot, if �F(A) contains the origin. Clearly, non-hot boxes do not contain any root ofF .

We start with an initial box containing all roots.¶ In each iteration, every hot boxB is subdivided
into 22N even parts, which replace the old boxB. All new boxes are tested to be hot, non-hot boxes
are removed. In each state the hot boxes can be grouped into maximal connected regions, called
hot clusters. In each iteration, a hot cluster either splits into smallerhot clusters, dies (i.e., vanishes
completely), or persists, that means, it remains connectedafter the subdivision step. However, it is
not clear whether a hot clusters indeed contains a root. We derive a method to ensure the presence
of at least one root inside a hot cluster next.

Theorem 7. Let D⊂ CN be an open, connected subset. If there exists a point p∈ D such that
|F(p)| < m∂D := minγ∈∂D |F(γ)|, then F has a root in D.

Proof. Consider the parameterized functionFt = F − tF(p) for t ∈ [0,1]. Then the roots ofFt con-
tinuously depend ont andF1 has a root, namelyp, within D. When passing fromF1 to F = F0 this
root continuously transforms into a rootp′ of F . If p′ is outsideD, then there must exist at0 ∈ [0,1]
such thatFt0 has a rootp∗ on ∂D. But, 0= |Ft0(p∗)| = |F(p∗)− t0F(p)| ≥ ||F(p∗)|− |t0F(p)|| ≥
m∂D −|F(p)| > 0, thusp′ is also located inD.

Definition 8. Let C be a hot cluster consisting of hot boxes B1, . . . ,Bs. We define∆(C) as the union
of all boxesB̃1, . . . , B̃r that are adjacent to C. We define

ε(C) := min
j=1....,s

∣

∣F(ρ j))
∣

∣

whereρ j denotes the midpoint of Bj . Furthermore

δ (C) := min
l=1,...,r

∣

∣�F(B̃l)
∣

∣> 0,

if ∂C⊂ ∂∆(C) andδ (C) := 0, otherwise.

Notice that∂C ⊂ ∂∆(C) exactly holds iff none of the boxesB j has a
common point with the boundary of the initial box. In this situation we
get minγ∈∂C |F(γ)| ≥ δ (C) > 0. Hence, by Theorem 7, we can conclude
that a clusterC contains a root ofF if ε(C) < δ (C). For a sequence of
clustersCk that approximates a rootξ it is clear thatε(Ck) → 0 as well
asδ (Ck) → 0 while k → ∞. This does not imply that we reach a state
such thatε(Ck) < δ (Ck). But for some fixedk′ there is ak′′ ≥ k′ such that
ε(Ck′′) < δ (Ck′)

Corollary 9. Let C′ and C be two hot clusters and C′ be a descendant cluster of C, that is, C′ ⊂C.
If ε(C′) < δ (C) then C contains a root of f .

To illustrate how Corollary 9 is applied, consider the picture on the right. Assume that the
clusterC splits during the subdivision, and yields two hot sub-clustersA, B. If ε(A) < δ (C), then
C must contain a root. However, it does not imply thatA also contains a root, it only follows that
A∪B contains a root.

¶e.g., one can use the box[−2σ ,2σ]2N with σ as in Lemma 4

We introduce a data structure that will help to identify clusters that
are certified to contain a root ofF . For that, we maintain a treeT , called
cluster tree, where each nodevC in T corresponds to a hot clusterC and
a nodevC′ is a child ofvC if C′ ⊂ C is a hot cluster of the next iteration
step. The root ofT corresponds to the initial box. Moreover, each node
in the tree maintains aδ and anε-value that are initialized according to
Definition 8. Whileδ does not change, new descendent nodes can give
rise to betterε-values which are propagated to all their ancestors. Once
ε < δ for a node, the corresponding cluster is known to contain a root by Theorem 7. We tag such
a node and all its ancestors with azeroflag. We call these nodeszero-nodes, and the corresponding
clusterszero-clusters. It may also happen that all descendent nodes of a nodev die out. In this case
the subtree which is rooted atv is completely removed fromT . Hence, the leaves ofT are in
one-to-one correspondents to the hot clusters in the current subdivision state.

Proposition 10. A hot cluster that contains a root of F will eventually be a zero-cluster in the
cluster tree. A hot cluster that does not contain a root of F will eventually be removed from the
cluster tree.

Moreover, we maintain a subtreeT ′. We start with the root node ofT and growT ′ as follows.
Add all children of a leaf ofT ′ as soon as all of them are zero-nodes. By construction, the leaves
of T ′ correspond to a set of disjoint zero-clusters, which coversall roots ofF . We call this set the
currentminimal zero-cluster overlay(MZCO).

Proposition 11. The MZCO constitutes a set of isolating clusters for F after sufficiently many
subdivisions.

A call of the methodSubdivide triggers another subdivision step, updatesT , T ′ and finally
returns the currentminimal zero-cluster overlay.

5 Mult of clusters: Perturbation

The multiplicity of a rootξ ∈ CN of F is defined as the dimension of the localization of the ring
C[z1, . . . ,zN]/(f1, . . . , fN) at ξ , considered as aC−vector space (cf.[3, p.148]). A more intuitive
description states thatξ is a root of multiplicityµ if there exists a neighborhoodU(ξ) ⊂ CN such
that almost any sufficiently small perturbation ofF has exactlyµ distinct, simple roots inU(ξ).

We next discussMult of clusters that computes the sum of the multiplicities of all roots
inside eachC ∈ C , whereC is a MZCO as returned by the methodSubdivide. We first choose
a perturbation vectorυ ∈ Q2N such that∀C ∈ C : |υ | < δ (C). The following Lemma ensures that
roots can not leave their cluster when perturbing byυ .

Lemma 12. Let C be some hot cluster andυ ∈ R2N with 0 < |υ | < δ (C), then the number of roots
of F +υ equals the number of roots of F in C.

Proof. Consider the parameterized functionFt = F + tυ and proceed as in Theorem 7.

We also ensure thatυ is chosen such that all roots ofF̃ are simple. One possibility is to check
whether res(r̃1, r̃ ′1) 6= 0 over someZp, p a random prime.‖ In case of a failure we simply choose
anotherυ and perform the modular computation with some other prime until we succeed.

‖For the definition and the computation of the resultant ˜r1 with respect toF̃ we refer to Section 3.

Onceυ is chosen, we know that all roots ofF̃ are simple. In particular, we know thatF̃ has
preciselyD simple roots. This is guaranteed by the fact thatF , and thereforẽF , has only finite roots,
see also Section 3.1. Hence, we can apply a variant of our subdivision scheme tõF as follows:

For a given MZCOC := {C1, . . . ,Cs} for F the methodMult of clusters computesF̃ for
some proper perturbation vectorυ ∈ Q2N. Now the subdivision method as discussed in Section 4
is applied toF̃ with initial clustersC1, . . . ,Cs inducing a forest of cluster trees. The subdivision
is continued until the MZCO defined by the forest precisely containsD clusters. The number of
zero-clusters in theMZCOwith rootCi then gives the numberµ(Ci) of roots ofF in the clusterCi ,
counted with multiplicities.

Note that the methodMult of clusters can be modified such that it uses a separate perturba-
tion vectorυi for each clusterCi ∈ C . That is, eachυi fulfills |υi | < δ (Ci) and all roots ofF + vi

within Ci are simple.
Improved Perturbation Vectors: So far, we sketched a method to compute a global, randomly

chosen perturbation vectorυ . Although it is already guaranteed thatF̃ has only simple roots, an
unfortunate choice ofυ leads to a bad root separation, and hence to a high subdivision depth forF̃ .
To overcome this problem, we next propose an alternative approach. For eachCi ∈ C , it computes
a perturbation vectorυi independently. It makes use of a criterion to guarantee thatan axis-aligned
box contains at most one root, which is simple. We introduce some notation first. It is well known
(see [3, Prop. 4.94] for a proof) that the JacobianJF := (∂ f j/∂zk)1≤ j,k≤N of F at ξ has full rank if
ξ is a simple root ofF . For its real counter part

DF :=

(∂g j
∂xk

∂g j
∂yk

∂h j
∂xk

∂h j
∂yk

)

1≤ j,k≤N

it holds that det(DF) = det(JF)2 [15, p.27], thus it follows:

Lemma 13. F has a simple root atξ ∈ CN iff F (ξ) = 0 anddet(DF)(ξ) = (det(JF)(ξ))2 6= 0.

For n > 1, Rolle’s theorem is not directly applicable to functionsϕ : Rn 7→ Rn, thusF might
have two roots without a root of det(DF) in between. But we can use another criterion that exploits
the behavior of interval arithmetic. We consider the matrixDF and denote its row vectors by

G j :=

(

∂g j

∂xi
,

∂g j

∂yi

)

1≤ j≤N
, H j :=

(

∂h j

∂xi
,

∂h j

∂yi

)

1≤ j≤N

Then for anyΦ := (p1, . . . , pN,q1, . . . ,qN) ∈
(

R2N
)2N

, we defineM(Φ) as the 2N×2N−matrix
whose rows are the vectorsG j(p j) andH j(q j), j = 1, . . . ,N.

Lemma 14. Let B⊂ R2N be an axis-aligned box and D:
(

R2N
)2N

→ R2N defined by D(Φ) :=
det(M(Φ)). Then

1. If 0 /∈ �D(B2N), then B contains at most one root of F, which is simple.

2. If B contains exactly one root of F (counted with multiplicity) and B is sufficiently small, then
0 /∈ �D(B2N).

Proof. We consider the caseN = 1 whereF : C → C is a univariate polynomial. Then the general
case follows in a complete analog manner.F can be written asF(x+ iy) = f (x,y)+ ig(x,y) with

polynomialsf ,g∈Z[x,y]. If B⊂R2 contains a multiple roota of F , thenD(a,a) = DF(a) = 0, thus
we can restrict to the case whereB contains two distinct rootsa,b. We denote[a,b] the line segment
connectinga andb. From Rolle’s theorem in several real variables, applied tothe polynomialsf
andg, it follows the existence of pointsp,q∈ [a,b] with

(

fx(p)
fy(p)

)

· (a−b) =

(

gx(q)
gy(q)

)

· (a−b) = 0.

Thus,(fx(p), fy(p))t and(gx(p),gy(p))t are perpendicular toa−b, which is only possible if they
are linearly dependent. As a consequence we must get

det

(

fx(p) fy(p)
gx(q) gy(q)

)

= 0

Hence, it follows that 0∈�D(B2). In contrast, ifB has only one simple roota∈B then det(DF |p) 6=
0. D is continuous, thus if we chooseB small enough, this guarantees that 0/∈ �D(B2).

Note the subtle difference of Lemma 14 compared with the criterion 0 /∈ �detDF(B) which
does not guarantee the presence of at most one root inB; it is needed that the values in each row of
the matrix are chosen independently of each other.

Using Lemma 14 we compute for each clusterC ∈ C a corresponding perturbation vectorυC.
Compared to the modular approach, this leads to a better separation for the roots ofF̃ := F + vC

within C. For a boxB we define its expanded boxB+ as the box with the same center asB, and
thrice as large side length. We call a boxsimple, if 0 /∈ �D((B+)2N), andnon-simpleotherwise.

Copy all boxes ofC that are non-simple into a new subdivision queue. Start subdividing, and
keep only non-simple boxes in the queue. In addition, evaluate �F(B) for each box in the queue,
let U ⊂ CN be the union of these interval vectors. Stop the subdivisionas soon asR2N \U contains
a vectorv with |v| ∈ [0,δ (C)]. SetυC := v and return.

Why does the above algorithm terminate? Notice that detDF = 0 describes a hypersurface
V(det(DF)) in CN, thus the function values ofF on V(det(DF)) also describe a hypersurface in
CN. It follows that after finitely many subdivision steps, the complement of the unionU of interval
vectors�F(B) must contain a vectorv with |v| ∈ [0,δ (C)].

Lemma 15. For a cluster C, letυC be chosen as by the algorithm above, thenF̃ := F +υC has only
simple roots within C and all these roots are separated by at least s, where s denotes the minimal
side length of all boxes considered during the subdivision.

Proof. Note first thatDF̃ = DF , thus (non-)simple boxes remain (non-)simple when switching to
F̃ . From the choice ofυC, it follows that eachξ ∈ C with F(ξ) = υC is contained in one of the
simple boxes. Hence, all roots ofF̃ within C are simple as well. Now consider two rootsa,b of F̃ ,
then both of them are contained in simple boxesB1 andB2 respectively. As none of the boxes̄B1 or
B̄2 contains two roots we get thatB1 6= B2 andB1,B2 are not adjacent.

We remark another application of Lemma 14, although it is notdirectly needed for our appli-
cation. Observe that the methodMult of clustersrelies on the fact that all clusters are considered
simultaneously, because it stops as soon as the total numberof certified clusters equalsD.

With a slight modification it is possible to describe a local version ofMult of clustersthat com-
putes the number of roots, counted with multiplicity, within a given clusterC. It computes a∆C as

before, and subdividesC with respect to the evaluation functionF∆C. Also, a cluster tree is main-
tained forC to identify zero-clusters, as before. For each zero-cluster C0 ⊂ C in the subdivision,
a boxB of minimal size is computed that completely contains this cluster. If 0/∈ �D(B2N), the
zero-cluster contains precisely one simple root, we call itsimple cluster. If a cluster is simple, all its
subclusters are simple as well. If no such boxB can be computed, further subdivision is necessary.
The algorithm stops if each element of the current MCZO is simple.

6 The main routine

6.1 Synchronization phase: Projection

In Section 3.2, we explained a methodGuess k j to obtain a lower boundm′
j on mj , the number of

distinct roots ofr j . In Section 4, we presented a methodSubdivide to compute a set of disjoint
clusters inCN, containing all roots ofF , and each set contains at least one solution (we called such
clusterszero-clusters). In the synchronization phase, both subroutines are combined to make their
outcome coherent. For that, we introduce the notion of aprojected cluster. Recall that, for all
j ∈ {1, . . . ,N}, the roots ofr j coincide withΓ j . Therefore, for a zero-clusterC ⊂ CN, π j(C) ⊂ C

is a connected region that contains at least one root ofr j . When projecting all clusters returned by
Subdivide, some clusters might overlap in the projection. We therefore define

Definition 16. LetC = {C1, . . . ,Cs} be a set of zero-clusters returned bySubdivide. Theprojected
clustersunderπ j are the maximal connected components of

⋃

C∈C π j(C). Themultiplicity µ(R) of
a projected cluster R is defined as

µ(R) = ∑
C∈C ,π j (C)⊂R

µ(C),

whereµ(C) is the multiplicity of the cluster C.

By the properties ofr j (Theorem 2), it follows

Lemma 17. Let R be a projected cluster underπ j . Then R contains exactlyµ(R) roots of rj ,
counted with multiplicity. In particular, the set of projected clusters covers all roots of rj and each
projected cluster contains at least one root.

During the subdivision, the clusters inCN become arbitrary small, and the same holds for their
projections. Thus, after sufficiently many calls ofSubdivide, the returned clusters will induce
exactlymj projected clusters underπ j .

Lemma 18. Let C = {C1, . . . ,Cs} be a set of zero clusters returned bySubdivide, such that, for
each j, there are mj projected clusters underπ j . Then each cluster Ci contains exactly one root.

Proof. If a clusterCi contains two solutions, they differ in at least one variablezj , and so,r j has
more thanmj distinct solutions, a contradiction.

Our algorithm, however, does not apply Lemma 18 directly, since computing themj ’s is too
costly. Instead, the synchronization method both computesa lower boundm′

j on mj , and performs
subdivision inCN, until there are preciselym′

j projected clusters with respect tozj for each j =
1, . . . ,N. In the subsequent certification phase, it will be verified (or falsified) thatm′

j = mj holds.
Here is the detailed description of the synchronization phase. The algorithm stores for eachj a

current guess m′j , initially set to 0, and a numberLB j , initially set to one (the latter will be used in
the certification). Also, it initially callsSubdivide and stores the returned set intoC .

Repeat the following steps: For eachj = 1, . . . ,N, compute the projected clusters forC underπ j ,
let c j denote their number. Ifm′

j = c j for all j, call Mult of clusters for eachC ∈ C , compute
the multiplicity of each projected cluster according to Definition 16, and pass to the certification

phase. Otherwise, letj be such thatm′
j 6= c j . If m′

j < c j , call Guess k j , let (k(p)
j , p) be the result.

Setm′
j to max{m′

j ,D−k(p)
j }, setLB j to LB j · p, and proceed with the next iteration. Ifm′

j > c j , call
Subdivide, setC to its output, and proceed with the next iteration.

Both m′
j and c j are lower bounds formj , and after sufficiently many calls ofGuess k j or

Subdivide, respectively, both will be set tomj . However, the algorithm might jump to the cer-
tification phase earlier, whenc j = m′

j 6= mj . As we will see, the certification phase will then falsify
m′

j = mj , and increase at least one of the valuesc1, . . . ,cN,m′
1, . . . ,m

′
N.

6.2 Certification phase:Separation bounds

As Lemma 18 states, the clusters computed by the synchronization phase contain precisely one root
of F under the condition thatm′

j = mj , or equivalentlyk′j = k j , for eachj. For the sake of simpler
notation in this subsection, we will fix one projection variablezj , and setk := k j , k′ := k j , m := mj ,
m′ := m′

j , andr := r j . Note thatD := deg(r). Also, we will denote the projected clusters forr by
R1, . . . ,Rm′ . Our goal is to prove (or disprove)k′ = k.

Our certification scheme uses two dynamically changing valuesLB := LB j andUB :=UB j with
the following properties:

• If k′ > k, it holds thatLB≤ |sresk(r, r ′)| ≤UB.

• If k = k′, further calls ofGuess k j improve LB. More precisely, a sequence of calls of
Guess k j leads to valuesLB that diverge to+∞.

• If k = k′, further calls ofSubdivide improveUB. More precisely, a sequence of calls of
Subdivide leads to valuesUB that converge to 0.

The idea for the certification is to callGuess k j andSubdivide simultaneously (or alternat-
ing), until LB > UB which proves thatk′ = k. If a call of Guess k j decreasesk′, or if any call of
Subdivide leads to a split of some clusterRi , the guess is falsified. In this case, the algorithm has
to return to the synchronization phase to produce a new guessfor k.

How do we obtain such boundsLB andUB? ForLB, the answer is simple. Recall that Lemma 6
provides a lower bound for each non-vanishing|sresl (r, r ′)| with l < k′ = k′j , namely the product of
the primes considered so far byGuess k j . The algorithm keeps track of this product by the variable
LB j , compare the description of the synchronization phase. Clearly, each call ofGuess k j makes
LB larger, and the product diverges to+∞.

We turn toUB, for which we exploit our knowledge about the clusters ofr, and the multiplicity
of each. More precisely, for each such clusterR, we know the numberµ(R) of roots ofr insideR,
counted with multiplicity (compare Lemma 17). To derive an adaptive upper bound for|sresk(r, r ′)|,
we study the possible values of the root product ofr.

Definition 19. Given m′ clusters R1, . . . ,Rm′ for r, a setΨ := {ψ1, . . . ,ψn} ⊂
⋃

i=1,...,m′ Ri with
n≥ m′ is called avalid root distribution (v.r.d.) of ordern, if the number of elements of V inside Ri

is at least one, and at mostµi := µ(Ri). We also define the product

P(Ψ) := ∏
1≤i< j≤n

(ψi −ψ j)
2.

The roots ofr obviously define a v.r.d. of orderm. We need some additional notation: For two
clustersRi andRj of r, not necessarily distinct, definedi j to be the maximal distance between a
point inRi to a point inRj (for i = j, di j is the diameter ofRi).

Proposition 20. Let Ψ := {ψ1, . . . ,ψm′} be a v.r.d. of order m′. Then P(Ψ) ≤ ∏1≤i< j≤m′ d2
i j .

Moreover, we can relate v.r.d.’s of ordern+1 with v.r.d.’s of ordern as follows.

Lemma 21. Given m′ clusters R1, . . . ,Rm′ for r, and two v.r.d.’sΨ(n) := {ψ1, . . . ,ψn}, Ψ(n+1) :=
{ψ1, . . . ,ψn+1} of order n and n+1, respectively. Then P(Ψ(n+1)) ≤ β 2P(Ψ(n)) with

β := max
i=1,...,m′

{
m′

∏
j=1

di j max{di j ,1}
µ j−1}

Proof. Notice thatP(Ψ(n+1)) can be written as the product ofP(Ψ(n)) and∏i |ψi −ψn+1|
2. Let ci ,

i = 1, . . . ,m′, denote the number of elements amongψ1, . . . ,ψn inside the clusterRi . By definition,
1≤ ci ≤ µi for all i. Further, letq be such thatψn+1 ∈Rq. Then, the additional factor∏i |ψi −ψn+1|

2

can be upper bounded by

m′

∏
j=1

(

d
c j
q j

)2
=

m′

∏
j=1

(

dq jd
c j−1
q j

)2
≤

(

m′

∏
j=1

dq j max{1,dq j}
µ j−1

)2

.

Theorem 22. Define

UB := 2σ(2D−1) ·eD/e ·β 2 ·max{β ,1}2(k′−1) ∏
1≤i< j≤m′

d2
i j ,

with σ as in Lemma 4. If k< k′, thensresk(r, r ′) ≤UB.

Proof. Combining [10, Prop. 3.7] with [3, Prop. 4.27], we obtain thefollowing equation for sresk:

sresk(r, r
′) = λ 2(D−k)−1 ∏

i=1,...,m

mult(φi) ·P(Φ),

whereΦ := {φ1, . . . ,φm} are the roots ofr, mult(φi) is the multiplicity ofφi , andλ is the leading
coefficient ofr.

We bound each factor separately.λ 2(D−k)−1 ≤ 2σ(2D−1) is obvious, as 2σ is an upper bound
for λ (cf. Lemma 4). For∏i mult(φi), note that this is a product ofD− k numbers that sum up to

D. One can show that such a product is bound by
(

D
D−k

)D−k
, and by maximizing

(

d
x

)x
, one easily

verifies that its maximum iseD/e.
For the last factor, reorder the rootsΦ of r such thatφi lies in clusterRi , for i = 1, . . . ,m′, the

other m−m′ roots lie in arbitrary clusters. SinceΦ is a v.r.d. of orderm, Φ(n) := {φ1, . . . ,φn}
is a v.r.d. of ordern for eachm′ ≤ n ≤ m. Applying Lemma 21 (m−m′) times, we obtain that
P(Φ)≤ β 2(m−m′)P(Φ(m′)). Now the claim follows by Proposition 20, and by the fact thatβ 2(m−m′) =

β 2(k′−k) = β 2β 2(k′−k−1) ≤ β 2max{1,β}2(k′−k−1) ≤ β 2max{1,β}2(k′−1).

Indeed, the bound as defined in Theorem 22 has the properties that we demanded forUB. As
just shown, it is an upper bound for|sresk(r, r ′)|, if k < k′. Moreover,β , as defined in Lemma 21
becomes smaller when the clusters get smaller. Ifk = k′, the diametersdii all tend to zero, when
Subdivide is repeatedly called. As each possible value ofβ contains at least one diameterdii as a
factor,UB tends to zero, since all other quantities are non-increasing.

We next describe the certification phase. From the synchronization phase, the algorithm knows
current guessesm′

j , and valuesLB j , for each j = 1, . . . ,N. Also, it has stored a set of clustersC ,
which induce preciselym′

j projected clusters underπ j , and the multiplicity of each projected cluster.

For eachj = 1, . . . ,N, call simultaneously (or alternately)Guess k j andSubdivide. When

Guess k j returns(k(p)
j , p), update the valuesm′

j andLB j accordingly, as in the synchronization
phase. Ifm′

j increases, the guess was wrong; switch back to the synchronization phase. After each
call ofSubdivide, updateC and the projected clusters underπ j . If the number of projected clusters
has been increased, the guess was wrong; switch back to the synchronization phase. Otherwise,
computeUB j as in Theorem 22. IfLB j > UB j , it is certified thatm′

j = mj ; proceed with the nextj.
When all j ’s have been considered, return the isolating clustersC .

In case of a wrong guessm′
j , the certification phase not just falsifiesm′

j = mj , but also increases
eitherm′

j itself, or the number of projected clusters underπ j . Consequently, the certification phase
is never called twice for the same guesses(m′

1, . . . ,m
′
N). Since the guess can only increase finitely

often, this shows that the algorithm eventually terminates. However, we remark again that it is
rather unlikely that the algorithm switches back to the synchronization phase at all, as we expect in
practice that already the first call ofGuess k j will yield k j as result.

Remark.The boundUB = UB j used by the algorithm certainly has room for optimizations.We
hint at an alternative bound, based on the following result.

Lemma 23. For a setR of projected clusters R1, . . . ,Rm′ and maximal distances di j between Ri and
Rj , consider

M(R) := maxλ 2n−1 ·∏
i

∏
1≤l≤ni

µi,l ·∏
i

dni(ni−1)
ii ∏

1≤i< j≤n

d
nin j
i j

where the maximum is taken over all n (m′ < n≤D) and all possible values ni ,µil ≥ 1, i = 1, . . . ,m′,
and l= 1, . . . ,ni such that∑i ni = n and∑l µil = µ(Ri). If k < k′, M(R) constitutes an upper bound
of |sresk(r, r ′)|.

The estimation follows by considering a valid root distribution Ψ(n) of ordern such that within
eachRi there are exactlyni elements ofΨ(n) which we assign multiplicitiesµil . We omit a more
detailed proof for brevity.

For an improvedUB, each factor of the product is upper-bounded. The factor∏i ∏l µi,l can
easily be bounded by(D/n)n. The factor involving thedi j ’s leads to a quadratic convex optimization
problem in the variablesni whose matrix becomes diagonal dominant for sufficiently small clusters.
Obviously, such anUB is computationally more involved compared to Theorem 22, but the sharper
upper bound might amortize this additional cost.

7 Conclusion and further work

We have described a novel certification scheme that allows tocertify a collection of regions inCN

as isolating for the solutions of a zero-dimensional polynomial system overCN. Our approach com-
bines the advantages of subdivision and modular symbolic computation. The output is certified by
homotopy arguments and bounds on subresultants. We emphasize that an exact evaluation of resul-
tants or Groebner bases is not necessary, that is, we only perform modular computations without
lifting the elimination polynomials toZ. Thus, all (intermediate) results are kept handy during the
computation. At the same time, the performance of the proposed method adaptively depends on

several magnitudes in the algorithm, such as the separationof roots and the size of sresk j (r j , r ′j),
instead of using worst-case bounds for them. To the best of our knowledge, only theoretical worst
case bounds have been studied [5, 6, 8] so far. With respect topractical efficiency, these bounds
are not applicable which results from the fact that, in all situation, the worst case scenario has to
be taken into account. We consider our method as the first approach to introduce an adaptive root
separation bound. On the one hand our method processes the exact information given by the integer
coefficients of the polynomial system by the use of modular computation, and on the other hand,
our bound directly depends on the actual geometric situation given by the roots of the system.

Our exposition in this paper is comprehensive in its essence, but does not mention all optimiza-
tions that an actual implementation should take care of. Forinstance, we expect that a more careful
choice of the boundUB j , as suggested at the end of Section 6.2, speeds up the certification phase.
Recently, it was shown [23] that, for isolating the complex roots of a univariate polynomial of de-
greeN and bitsizeL, a subdivision approach based on centered box evaluation isquite effective.
In the corresponding paper, the authors introduce a method called CEVAL that uses centered box
evaluation as an exclusion predicate. They showed that the width of the subdivision tree does not
exceedO((N logN)2) boxes at each subdivision. Applying a different approach tocertify the exis-
tence of exactly one root within a region, it was also proven that the overall method requires only
Õ(N4L2) bit operations which matches the costs of most effective andexact methods for real root
isolation. For higher dimensional systems no such results are available yet, but we are convinced
that the techniques from the one dimensional case also applyto the more general setting. Our future
research will concentrate on such an analysis.

For an efficient implementation we propose to use fast numerical methods tofind approxima-
tions of the roots. As these methods do not provide any guarantees for their output we consider the
role our subdivision methods as crucial in order tocertify that a region contains (a certain number
of) roots. We see a hybrid approach combining a fast numerical solver with our method: Therein,
the numerical solver serves as a fast tool to achieve good approximations of the solutions. From our
subroutinesSubdivideandMult of clusters, based on subdivision, we determine the exact number
of roots within each of the obtained regions and check whether all solutions are captured. If this
test fails, the numerical method is restarted with increased arithmetic precision arithmetic. With our
certification phase, it is possible to verify that the regions are isolating. Thus, assuming that the
numerical method determines arbitrary good approximations of all solutions for some sufficiently
large precision, this shows the feasibility of a hybrid certified method to isolate all roots.

We further remark that all proposed methods are perfectly suited for parallel computations.
For the modular computations this is due to the fact that unhandy terms are avoided and that it is
possible to run a large number of distinct modular computations in parallel. The latter holds for
the subdivision routines as well, since distinct clusters can be examined independently. We plan to
implement and benchmark our algorithm to answer the question whether these advantages lead to
measurable effects also in practice.

Our algorithm requires the solution set of the input system to be zero-dimensional. Furthermore,
its resultants must be computable over a prime fieldZp. We achieve this by representing resultants
as determinants of Macaulay matrices, but forN ≥ 3 this might fail in unfortunate cases. This
constitutes the only obstacle for our algorithm to be complete for higher dimensions. A natural
question is whether our ideas also apply to non zero-dimensional systems, and whether a variation
of the proposed method can guarantee to solve the system in all cases.

References and Notes
[1] L. Alberti, B. Mourrain, and J. Wintz. Topology and Arrangement Computation of Semi-Algebraic Planar Curves.

Computer Aided Geometric Design, 25(8):631–651, 2008.
[2] G. Alefeld and J. Herzberger.Introduction to Interval Computations. Computer Science and Applied Mathematics.

New York: Academic Press Inc., 1983.
[3] S. Basu, R. Pollack, and M.-F. Roy.Algorithms in Real Algebraic Geometry, volume 10 ofAlgorithms and Computa-

tion in Mathematics. Springer, 2nd edition, 2006.
[4] H. Brönnimann, I. Z. Emiris, V. Y. Pan, and S. Pion. Computing exact geometric predicates using modular arithmetic

with single precision. InSCG ’97: Proc. of the 13th Ann. Symp. on Computational Geometry, pages 174–182. ACM
press, 1997.

[5] W. D. Brownawell and Chee K. Yap. Lower bounds for zero-dimensional projections. InProc. Int’l Symp.
Symbolic and Algebraic Comp. (ISSAC’09), page To appear, 2009. KIAS, Seoul, Korea, Jul 28-31, 2007. DOI:
http://doi.acm.org/10.1145/1277548.1277562. In press, Journal of Symbolic Computation.

[6] M. Burr, S.W. Choi, B. Galehouse, and C. Yap. Complete subdivision algorithms, II: Isotopic meshing of singular al-
gebraic curves. InProc. Int’l Symp. Symbolic and Algebraic Computation (ISSAC’08), pages 87–94, 2008. Hagenberg,
Austria. Jul 20-23, 2008.

[7] Michael Burr, Sung Woo Choi, Benjamin Galehouse, and CheeK. Yap. Complete subdivision algorithms, II: Iso-
topic Meshing of Singular Algebraic Curves. InISSAC’08:Proc. of the 2008 Int. Symp. on Symbolic and Algebraic
Computation, pages 87–94. ACM press, 2008.

[8] Jin-San Cheng, Xiao-Shan Gao, and Chee K. Yap. Complete numerical isolation of real zeros in general triangular
systems. InProc. Int’l Symp. Symbolic and Algebraic Comp. (ISSAC’07), pages 92–99, 2007. Waterloo, Canada, Jul
29-Aug 1, 2007. DOI: http://doi.acm.org/10.1145/1277548.1277562. In press, Journal of Symbolic Computation.

[9] D. Cox, J. Little, and D. O’Shea.Using Algebraic Geometry. Springer, New-York, 1998.
[10] A. Eigenwillig. Real Root Isolation for Exact and Approximate Polynomials Using Descartes’ Rule of Signs. PhD

thesis, Saarland University, Saarbrücken, Germany, 2008.
[11] A. Eigenwillig, M. Kerber, and N. Wolpert. Fast and Exact Geometric Analysis of Real Algebraic Plane Curves. In

ISSAC’07: Proc. of the 2007 Int. Symp. on Symbolic and Algebraic Computation, pages 151–158. ACM press, 2007.
[12] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky.Disrcriminants, Resultants and Multidimensional Determinants.

Birkhauser, 1994.
[13] Laureano Gonzalez-Vega and Ioana Necula. Efficient Topology Determination of Implicitly Defined Algebraic Plane

Curves.Comput. Aided Geom. Des., 19(9):719–743, 2002.
[14] Irina Voiculescu Huahao Shou, Ralph Martin and et al. Affine arithmetic in matrix form for polynomial evaluation and

algebraic curve drawing.Progress in Natural Science, 12 (1):77–81, 2002.
[15] L. Kaup and B. Kaup.Holomorphic Functions of Several Variables. de Gruyter, 1983.
[16] S. Krishnan, M. Foskey, T. Culver, J. Keyser, and D. Manocha. PRECISE: efficient multiprecision evaluation of

algebraic roots and predicates for reliable geometric computation. In SCG ’01: Proc. of the 17th Ann. Symp. on
Computational Geometry, pages 274–283. ACM Press, 2001.

[17] F.S. Macaulay. On some Formula in Elimination.Proceedings of London Mathematical Society, pages 3–27, 1902.
[18] R. E. Moore.Methods and applications of interval analysis, volume 2 ofSIAM Studies in Applied Mathematics. SIAM,

1979.
[19] Bernard Mourrain and Jean-Pascal Pavone. Subdivisionmethods for solving polynomial equations. Technical report,

INRIA - Sophia Antipolis, 2005.
[20] A. Neumaier.Interval Methods for Systems of Equations. Cambridge University Pres, 1990.
[21] Victor Y. Pan. Sequential and parallel complexity of approximate evaluation of polynomial zeros.Computers Math.

Applic., 31(12):97–138, 1996.
[22] S. Petitjean. Algebraic Geometry and Computer Vision: Polynomial Systems, Real and Complex Roots.J. Math.

Imaging Vis., 10(3):191–220, 1999.
[23] Michael Sagraloff and Chee K. Yap. An efficient and exactsubdivision algorithm for isolating complex roots of a

polynomial and its complexity analysis. Draft, unpublished,2009.
[24] Arnold Scḧonhage. The fundamental theorem of algebra in terms of computational complexity.Manuscript, Depart-

ment of Mathematics, University of Tübingen, 1982.
[25] B. T. Smith. Error Bounds for Zeros of a Polynomial Based Upon Gerschgorin’s Theorems.J. ACM, 17(4):661–674,

1970.
[26] A. J. Sommese and C. W. Wampler.The Numerical Solution of Systems of Polynomials Arising inEngeneering and

Science. World Scientific, Singapore, 2005.
[27] B. Sturmfels. Solving systems of polynomial equations, volume 97 ofRegional conference series in mathematics.

AMS, Providence, RI, 2002.
[28] B. Sturmfels and A. Zelevinsky. Multigraded Resultantsof Sylvester Type.J. Algebra, 163(1):115–127, 1994.
[29] C. K. Yap. Fundamental Problems in Algorithmic Algebra. Oxford University Press, 2000.

