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Abstract

We address the problemafot isolationfor polynomial systems: for an affine, zero-dimensional
polynomial system o equations inN variables, we describe an algorithm to encapsulate all
complex solutions into disjoint regions, each containing precisely one sol{gi#dledisolating
regiong. Our approach also computes the multiplicity of each solution. The maieltyag a
new approach to certify that a set of computed regions is indeed isol#tindpased on an adap-
tive root separation bound obtained from combining information abauapiproximate location
of roots and resultant calculus. Here we use simple subdivision metlisdgomine the number
of roots within certain regions. The resultant calculus only takes plaagegpoivee fields to avoid
the disadvantageous coefficient growth in symbolic methods, withotifiseng the exactness
of the output. The presented approach is complete for uni- and bivayisttems, and in general
applies in higher dimensions as well, possibly after a coordinate change.

1 Introduction

Finding the roots of a zero dimensional polynomial systeafisndamental problem of numerous
applications spread over several important areas, suclgelraic geometry, computer graphics
and computer aided geometric design. In particular, thegdesf robust and certified algorithms
demands for efficient methods that determine isolatingoregfor all roots of polynomial systems.
Such methods should also be capable to handle non-simke roo

This work is driven by the question: How can fast but unrdéatoot solving techniques be
combined with symbolic computations in an efficient way,lstltat the overall result can be cer-
tified? We see our main contribution in providing a novel ifiegtion scheme in this context. Its
main idea is to follow two threads of computation in paral@bth threads only deliver incomplete
information, but their combination is sufficient to certtfye result of the method.

The first thread is inspired by elimination methods suckiakivariate resultant@andGroebner
bases Both are well-studied tools to obtain the solution set ofstem with respect to a projection
direction. However, both methods lead to polynomials wigmnlarge bitsizes (for intermediate
results as well as for the final result), which causes a samrgback regarding the performance.
Therefore, our method computes the multivariate resulpaith some hidden variable) only in
several prime fieldZ, and completely avoids Chinese Remaindering. In particalhsymbolic
computations are performed using single precision arittuf@. This method yields a lower bound
on the number of projected solutions. Although this boungeriy likely to match the exact number
in practice, this cannot be certified without further knasge.

The second thread follows dfxclusion and Subdivision methott keeps on subdividing re-
gions that may contain solutions (from now on, we call suameeted regionslusterg, whereas
regions that doubtlessly do not contain a solution are digzh As a simple exclusion method we
use interval arithmetic. Usually, this is combined with #@esion to ensure that a cluster contains
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precisely one simple root, but these criteria mostly failhia presence of multiple roots. Instead,
we introduce two new methods based on homotopy arguments fifBh ensures the presence of
at least one root inside a cluster, the second sums up thehuities of the roots inside a cluster.
Clearly, this cannot suffice to ensure that a cluster is iswa

Our algorithm merges both building blocks to certify thatsters are isolating. For simplicity,
we sketch the certification idea only for a univariate polyia f (the general case is discussed in
Section 2). Two real values are computed, obtained by the modular symbolic computation, and
UB, obtained by the distances between clusters, diametehgstérs, and their multiplicities. If the
clusters are not isolating,B (UB) defines a lower (upper) bound on the absolute value of the firs
non-vanishing subresultant coefficiésteg( f, f'), which is essentially the product of squared root
distances off . During the certificationl.B — c andUB — 0. OnceLB becomes larger thduB, it
is proven by contradiction that the clusters are isolating.

We see a strength of our certification method in its adapéserto the concrete instance: The
quality of the bound$.B and in particulat) B are mainly determined by the size |sfes(f, f')],
small values for it lead to faster certification. This ademtiehavior is a clear advantage compared
to theoretical a priori bounds on sié$, f’) or on the separation of distinct roots which have to
assume the worst-case.

Our new certification approach is embedded within a comlgierithmic description that takes
a zero-dimensional system as input, and starts the sulmivas a sufficiently large bounding box.
We decided for this setup for the sake of a comprehensivaigéen, although there is no need to
restrict to the proposed subdivision strategy. For insgawe propose that for an efficient realization
of our ideas, a fast numerical solver (e.g, based on homatmgihods; see the section on related
work) is first applied to approximate the solutions of thetegrs and our certification process comes
in afterwards only to validate the outcome of the solver. Wé&tch the workflow of such a hybrid
solver in the conclusion.

The presented method is complete fox 2-systems and applies, in general, also to higher
dimensional systems. It requires the multivariate restiabe expressible by a Macaulay matrix.
In unfortunate cases, this is not possible, even under gitiegetransformations.

Related Work. Since polynomial root solving is such an important problenseveral fields,
plenty of distinct approaches exist and many textbooks adicdted to this subject. See, for in-
stance, [9, 22, 27, 29] for introductions to symbolic apptas such as (sparse) resultants, Groebner
bases, and methods based on eigenvalue computationgati@ral univariate representation

Homotopy methodsumerically track the continuous path of the known complelations of
some trivial and appropriate polynomial system during atioowwus deformation into the input
system. Such methods, although very robust, lack the catidin of their output in general. We
recommend [26] for a more comprehensive overview.

Subdivision methoddescribe a further class of common tools. Algorithm of thiatiprofit
from their efficiency and plainness. Most Implementatioresiesing one of the numerous software
packages for efficient interval arithmetic [2, 18, 20], sasHntBis, ALIAS, IntLab or MPFI. Alter-
native variants, using the Bernstein basis and convexipgties of their coefficients, have been
addressed [19]. However, all these approaches lack tdyctrir results — in general, an approach
stops when a certain subdivision depth is reached or ea@nregntains a simple root, which can,
for instance, be certified by the interval Newton test [2G;.$el]. So far, in case of multiple roots,
all proposed methods have to go below a certain a-priori ta@se root separation bound in order
to certify that a region is isolating. As a result of the baalgy of these bounds in the average
case, subdivision methods turn out to be impractical fon@tiEand complete approach.

*In case of a univariate polynomidl For the general case, we considereg; (rj,rj)|, whererj is the elimination
polynomial ofF = 0 with respect t@; andk; := deg gcc@rj,r’j).



Also specializations of the general problem have been sitely studied. The probably most
prominent one is univariate polynomial solving. In part&uthis is an integral building block in
elimination methods, where the (univariate) eliminatiotypomial has to be considered, and lifting
the solutions to higher dimensions usually leads to furtimdrariate systems.

Certified algorithms for real root isolation are mainly siviglon solvers based on Descartes’
Rule of Signs or Sturm sequences, see [3, 10, 29] for modgnmaphes. For the complex case we
refer to [16, 21, 23, 24, 25].

Other special cases of polynomial systems appear in reabed@ geometry. Recent imple-
mentations for computing the topology of algebraic cunvitisee make use of elimination meth-
ods [11, 13] or subdivision [1, 7]. Already this low dimens#b application shows the mentioned
drawbacks of the distinct approaches: subdivision failgite a certified result in degenerate cases
whereas elimination methods suffer from costly symbolicpatations.

Outline. We sketch our algorithm in Section 2. Therein, we refer toSketions 3-6 for the
details of its submethods. Section 7 finally concludes osults.

2 Our approach

We fix the following notation throughout the paper: our ingystem is given by polynomials
fi € Z[z,...,zy] of total degreesl, i=1,...,N, andD = |‘|i’\‘=1di defines their product. Then these
polynomials induce a functioR : CN — CN that maps a poinp € CN to (f1(p),..., fn(p)). By
assumptionF has only finitely many isolated solutions (or roots),lfet V (F) denote them. For
j=21...,N,letrm: CN - C,(z,...,2n) — z; denote the canonical projection map with respect to
z;. Likewise, I := () is the set ok;j-coordinates of solutions ¢f.

GivenF, our algorithm computes disjoiigolating clusters ¢,...,Cs c CN, that s, each cluster
Ci contains precisely one root & andl” C J7_;C;. In general, we will use the terelusterfor a
connected subset GMN.

Transformation phase (Section 3.1): As a first step, the algorithm ensures segeratricity
conditiond which further steps rely on. Matricé, . .., My with M;j € Z[zj]fi x4 (for somelj) are
computed whose determinamisc Z|z;] satisfy the following properties;; describes the projected
solutions ofF with respect to the coordinagg, in shortV (rj) = I'j, and multiplicities are preserved
under projection. Moreover, each must be of degre®; this ensures tha has no solution at
infinity, that is, all solutions of its homogenization arentained inCN, considered as an affine
chart of PN. All these properties are tried to be ensured only using fav@uithmetic (i.e., without
computing the ;j’s exactly). If this fails, the algorithm starts over withransformation of by a
linear projective change of coordinates.

The actual isolation algorithm depends on the following@éhsubroutines.

Guess_K; (Section 3.2): Foj € {1,...,N}, it computes an upper boukdfor k; := deggcdrj,r’),
which also yields a lower boundj on the cardinalitym; = D —k;j of I'j. This is done by comput-
ing the index of the first non-vanishing principal subremsuttcoefficient of | andrj in a modular
domainZp, where the prime is newly chosen in each call.

Subdivide (Section 4): Returns a set of disjoint clusters that coveraalts of F, and each
contains at least one root (we call clusters known to cordtirast one roatero-clusters This
is done by subdivision iftN = R?N to exclude regions without roots, combined with a critetion
identify zero-clusters. Repeated callssafbdivide shrink the zero-clusters, and if a zero-cluster
is not isolating, it will split into several parts after sgféintly many steps.

for N = 1, the phase can be skipped



Mult_of clusters (Section 5): For the zero-cluste@sreturned bySubdivide, the number
K (C) of roots ofF inside each cluster is computed, counted with multipli¢itgtice thatu(C) > 2
does not imply that is non-isolating, since multiple roots can occur). The radtslightly perturbs
F into F such that roots remain in their zero-clusters, and suchataot of multiplicity u turns
into u simple roots nearby. The number of roots inside a zero-@lustthan counted by further
subdividing the cluster.

Main routine: Our main root isolation routine passes through two phasést, Ehe syn-
chronization phas¢Section 6.1) call§uess_k; repeatedly for each projection direction to obtain
a lower boundn; onm;, Though it is very likely to coincide witim;, rrfJ might improve in further
calls. In parallel, it callSubdivide repeatedly to get smaller and smaller zero-clusters. .,Cy.
For each direction it examines;(|JCi), which decomposes into connected components, called
projected clustersOnce the number of projected clusters undecoincides withm'. for eachj,
Mult_of_clusters is called forCy,...,Cs (this also yields multiplicities of projected clustersjda
the algorithm switches to theertification phasgdescribed next.

The clusterLs,...,Cy are isolating under the condition thﬂ§ =m;, or equivalentlykﬁ =k;j,
for eachj. Thecertification phas€Section 6.2) tries to verify this. It computes the vallid;,
that is, the product of the primes usedduess_k; so far, andJB; which is determined by the
diameters and multiplicities of projected clusters, areldistances between them.kgf> kj, LB
(UB)) is a lower (upper) bound fdsreg, (r,—,rg)|. The algorithm again callSuess_k; repeatedly,
which maked B; arbitrary large, and in parallel, it calBubdivide which letsUB; converge to
zero. Either[.Bj > UB;j at some point which algorithmically proves by contradiottbatk] = k;.

Or, a call ofGuess _k; improves the upper bound d, or a call ofSubdivide makes a projected
cluster split into two parts. Both cases disprth& kj and thus, clusters were not isolating yet; the
algorithm then switches back to the synchronization phase.

3 Symbolic tools

3.1 Transformation phase Multivariate Resultant *

Crucial for our method is the knowledge of univariate polyriasrs,...,ry such that the roots of
rj are precisely the;—coordinates of points ifi. Eachrj is represented as the determinant of a
matrix M;j in the coefficients offy, ..., fy. Also, eaclr; should have degrelg, which ensures that
all D solutions of the homogenized system o¥&rlie in the considered affine chart.

It is possible that such;’s (more precisely, th;’s) only exist after a projective coordinate
transformation, and in degenerate instances our methdudt egn fail completely to compute such
Mj's. We closely follow the ideas described in [9,3.5], using multivariate resultants and the
“hidden variable” approach. Here, we just mention the magtd from the theory; see [9, 12] for
further explanations. We first introduce the (affine) maitiate resultant:

Definition 1. For a system of n polynomialdy,..., fn) in n— 1 variables,resy, . f,) is an irre-
ducible polynomial in the coefficients of thésf The resultant vanishes if and only if the homoge-
nized system has a solution ot

To apply the multivariate resultant in our problem wiNrequations irN variables, we consider
one variablezj as a parameter, that means, the system has coefficieftg;in Then, reg :=
reﬁzjflwa), j=1,...,N, defines a polynomial ig;. From the definition, it follows that its roots are
precisely thezj-coordinates wherE = 0 has a solution.

*for N = 1, the whole section can be skipped



Theorem 2. Letdegres) =D forall j =1,...,N. Then F has precisely D roots itN, counted
with multiplicity®. For each(zy,...,z\) €T, zj is a root ofres and the multiplicity of zis the sum
of the multiplicities of the points in its fiber.

Proof. The degree of each ress bounded byD (cf. [12]). If any solutions is not finite, at least
one reg must have a “root at infinity”, thus its degree drops by atteag, which show$1). The
second claim follows directly from the definition of the mtriate resultant and the last from the
previous, noting that the resultant is continuous in thefiments of the system, and that a slight
perturbation of the system yieldssimple solutions with distina;-coordinates. O

In our algorithm, we exploit that regan be represented, at least generically and up to a constant
as the determinant of a coefficient matrix(d, . .., fn) by a theorem due to Macaulay [17].

Theorem 3. There exist matrices Mand M; whose entries are polynomials in the coefficients of
detM;

the systentfs,..., fy) and in 7, such thates = G-
J

Mj does not containjz

For the definition ofM; and Mj, see [9]. Theorem 3 implies that if for our concrete system
detM? € C does not vanish, them := detM; equals regup to a constant. At several places in our
algorithm we need to upper bound the coefficients;ofUsing the Hadamard bound d#;, one
obtains the following estimation:

Lemma 4. The bitsize of the coefficients of eaglisrat mosio := n(1 +logn) +log(dn+1), where
T is the maximal bitsize of any coefficient(df, ..., fy), n= (Z,i\hl‘:jf‘) and d= maxd.

Proof. The dimension ol; equals(z,{ﬂf‘) < n(cf. [9]). Moreover, each entry &l; is a univariate
polynomial whose coefficients have bitsize at nmsind whose degree is boundeddyJsing [3,
Prop. 8.12], the determinant polynomiglhas thus a bitsize bounded by O

We next describe the transformation phase of the algoritAthcomputations are performed
modulo a prime numbep. Let - denote the operation that maps integers to their modulagema
in Zp. This map extends to integer polynomials and integer netiiic the obvious way.

Choose a random primgand compute ovef.,, for eachj =1,...,N, deﬂW} € Zpand deM;j €
Zplzj]. If any determinant dé¥l! vanishes, or for any, degdetM;) # D, transform(fy,..., fy) via
a random linear projective change of coordinates and startwith the transformed system.

We remark that the transformation phase might loop forenerase that déﬂj vanishes for the
input system, and for all its linear projective transforimas.

For special cases of polynomial systems, tigsexplicitly known as determinant of a matrix,
not just as a quotient. The most prominent cade is 2, where theSylvester matrixan be used,;
Theorem 3 and consideration i is not needed. Special cases with> 2 are discussed in [28].

A perhaps unpleasant feature of the transformation is thatiafinite solutions of the original
system are computed. It is possible to rule out them in a pastessing step after the algorithm.
For that, we consider a finite region that contains all finitets of the original coordinate system.
For instance, it is possible to consider the e, 292N with o from Lemma 4.

8$The multiplicity of a rootf e CN of F is defined as the dimension of the localizatior($#y, ..., zv]/(f1,..., fn) at&
considered as @-vector space (cf.[3, p.148])



3.2 Guesskj: Modular computation

We turn to the metho@uess_k; that computes an upper bouh’plon kj = deg gccﬂrj,r’j). Since

dedr;) = D (guaranteed by the transformation phage); k’ constitutes a lower bount; onmy;,
the number of distinct roots @f. To computek’, we exploit the relation (e.g. [3, Prop. 4.25])

kj :=deggcdrj,rj) = min{i > 0| sres(rj,r}) # 0},

where sreg f,g) denotes thé-th principal subresultant coefficient éfandg.

By definition, sregrj,r}) can again be expressed as determinant in the coefficientsTiiere-
fore, its computation is possible in a modular doni@jnfor a primep. DefiningA; as the leading
coefficient ofrj, we obtain the following.

Proposition 5. Let j< {1,...,N}, and p a prime, that does not dividg or D - Aj, the leading
coefficient of f. Then, fori=0,...,D we getsres(ﬁ,ﬁ) = sreg(rj,r).

Lemma 6. Let py,..., ps be distinct prime numbers that do not divida ,Dand

ki := min min{i > 0| sres(r},r}) # 0},
(=1,...s

where- is the modular operation with respect tg.prhen, l’fz kj, and thus | has at least m::
D — k; distinct complex roots. Moreover, for each {0, ... k| — 1},

S
sres(r,r}) = OV sresi(r.r})| > 1 pr

The second part of Lemma 6 constitutes a lower bound for #eecddinon-vanishing principal
subresultants coefficients. We will exploit this lower bdun the certification phase (Section 6.2).
We explain our metho@uessk; next. For anyj € {1,...,N} it outputs a pair consisting of an

upper bound<§p> for kj, and the primep that has been used to obtain this bound.

Choose a primg not considered so far, computp= detM;j andﬁ, with respect top, until
degrj = D and deg} =D — 1. Computekj(p) = min{i > 0 sreg(rj,r}) # 0} = deggcdrj, r}), and
return the pail(kgp), p).

Note thatGuess_k; performs all computations in the domdfrp, no exact evaluation afj is
necessary. The price we pay is that we have to cope with thertaiaty whethelk’j = kj holds
or not. This guess must be checked at the end of the overaltisign. However, we claim that a
wrong guess is very unlikely sindg = k{ will hold as soon as a primp is chosen that does not
divide sreg (r,r}).

4 Subdivide Subdivision

We apply a subdivision scheme @ = R?N to identify clusters containing roots &. Writing
eachzj :=xj +i-y; andfj = gj +i-hj, F can be interpreted as a functibn R?N — R?N that maps
a pointp= (x1,y1,...,Xn, Yn) € RN to (g1(p),hi(p),...,an(p), hn(p)). For a boxA = [ag,by] x
[c1,d1]... % [an,bn] % [cn, dn], let OF (A) be the result of evaluating at A in interval arithmetic,



e.g., by the use of the recursive Horner scheme or centeseeMaduation (also denoted as modified
affine arithmetic [14]). By the properties of interval arthtic [20], we get IniF|5) C OF (A). We
call a boxA hot, if OF (A) contains the origin. Clearly, non-hot boxes do not containraot of .

We start with an initial box containing all rootdn each iteration, every hot bdkis subdivided
into 22N even parts, which replace the old bBxAll new boxes are tested to be hot, non-hot boxes
are removed. In each state the hot boxes can be grouped iximelaonnected regions, called
hot clusters In each iteration, a hot cluster either splits into smdiletrclusters, dies (i.e., vanishes
completely), or persists, that means, it remains conneafted the subdivision step. However, it is
not clear whether a hot clusters indeed contains a root. \\Weede method to ensure the presence
of at least one root inside a hot cluster next.

Theorem 7. Let D CN be an open, connected subset. If there exists a polDpsuch that
IF(p)| < mgp := minyc4p |[F(y)|, then F has a root in D.

Proof. Consider the parameterized functiBn= F —tF(p) fort € [0, 1]. Then the roots of con-
tinuously depend ohandF; has a root, namelp, within D. When passing frorf; to F = Fy this
root continuously transforms into a rop'tof F. If p’ is outsideD, then there must existta € [0, 1]
such that, has a roop* ondD. But, 0= |R,(p*)| = |[F(p*) —toF (p)| > ||F(p*)| — [toF (p)|| >
myp — |[F(p)| > 0, thusp' is also located iD. O

Definition 8.~ Let C~be a hot cluster consisting of hot boxas.B., Bs. We definé\(C) as the union
of all boxesB;, ..., B; that are adjacent to C. We define

£(C):= min [F(p;))]
j=1...;s
wherep; denotes the midpoint ofjBFurthermore

5(C):= min IOF(B)| >0,

if 3C C dA(C) andd(C) := 0, otherwise.

Notice thatoC C dA(C) exactly holds iff none of the boxds; has a
common point with the boundary of the initial box. In thisusition we
get mineac|F(y)| > 6(C) > 0. Hence, by Theorem 7, we can conclug
that a clusteC contains a root of if £(C) < 6(C). For a sequence of all
clustersCy that approximates a ro@t it is clear thats(Cyx) — 0 as well
as 0(Cx) — 0 while k — . This does not imply that we reach a stat
such that(Cy) < 8(Cy). But for some fixed' there is &” > k' such that

£(Cur) < 8(Ci)

Corollary 9. Let C and C be two hot clusters and 8e a descendant cluster of C, that i$,cCC.
If £(C") < &(C) then C contains a root of f.

To illustrate how Corollary 9 is applied, consider the pietwn the right. Assume that the
clusterC splits during the subdivision, and yields two hot sub-@usA, B. If £(A) < &(C), then
C must contain a root. However, it does not imply thaalso contains a root, it only follows that
AUB contains a root.

Ye.g., one can use the bpx29, 27N with o as in Lemma 4



We introduce a data structure that will help to identify thus that
are certified to contain a root &f. For that, we maintain a tre¢’, called
cluster tree where each node: in .7 corresponds to a hot clust€rand
a nodevy is a child ofvc if C' c Cis a hot cluster of the next iteratio
step. The root of7 corresponds to the initial box. Moreover, each no(
in the tree maintains & and ane-value that are initialized according tg
Definition 8. Whiled does not change, new descendent nodes can gi
rise to bettere-values which are propagated to all their ancestors. Once
€ < ¢ for a node, the corresponding cluster is known to contairoalvg Theorem 7. We tag such
a node and all its ancestors witlzaroflag. We call these node®ro-nodesand the corresponding
clusterszero-clustersit may also happen that all descendent nodes of a mdieout. In this case
the subtree which is rooted atis completely removed fron?”. Hence, the leaves o¥ are in
one-to-one correspondents to the hot clusters in the dustddivision state.

Proposition 10. A hot cluster that contains a root of F will eventually be aaeluster in the
cluster tree. A hot cluster that does not contain a root of H @¥entually be removed from the
cluster tree.

Moreover, we maintain a subtre®’. We start with the root node of and grow.7” as follows.
Add all children of a leaf of7’ as soon as all of them are zero-nodes. By construction, évese
of .7’ correspond to a set of disjoint zero-clusters, which coa#noots of F. We call this set the
currentminimal zero-cluster overlagMZCQ).

Proposition 11. The MZCO constitutes a set of isolating clusters for F after suffidigmany
subdivisions.

A call of the methodsubdivide triggers another subdivision step, updatés.Z’ and finally
returns the currerminimal zero-cluster overlay

5 Mult_of_clusters Perturbation

The multiplicity of a rooté € CN of F is defined as the dimension of the localization of the ring
Clz,...,2n]/(f1,..., fn) at &, considered as &—vector space (cf.[3, p.148]). A more intuitive
description states thdtis a root of multiplicity u if there exists a neighborhoadl(é) c CN such
that almost any sufficiently small perturbationfohas exactly distinct, simple roots it (£).

We next discussult_of _clusters that computes the sum of the multiplicities of all roots
inside eaclC € ¥, where% is a MZCO as returned by the meth8dbdivide. We first choose
a perturbation vectow € QN such thatvC € ¥ : |u| < 6(C). The following Lemma ensures that
roots can not leave their cluster when perturbingby

Lemma 12. Let C be some hot cluster ande R?N with 0 < |u| < &(C), then the number of roots
of F + u equals the number of roots of F in C.

Proof. Consider the parameterized functiBn= F +tuv and proceed as in Theorem 7. O

We also ensure that is chosen such that all roots Bfare simple. One possibility is to check
whether reff1,f}) # 0 over someZ,, p a random primé. In case of a failure we simply choose
anotherv and perform the modular computation with some other prinig we succeed.

IIFor the definition and the computation of the resultanwith respect td- we refer to Section 3.



Oncev is chosen, we know that all roots Bf are simple. In particular, we know th&thas
preciselyD simple roots. This is guaranteed by the fact thaand therefor&, has only finite roots,
see also Section 3.1. Hence, we can apply a variant of ouinssibd scheme td- as follows:

For a given MZCO¥% := {Cy,...,Cs} for F the methodMult_of clusters computes- for
some proper perturbation vectore Q%N. Now the subdivision method as discussed in Section 4
is applied toF with initial clustersCy, ...,Cs inducing a forest of cluster trees. The subdivision
is continued until the MZCO defined by the forest preciselgtamsD clusters. The number of
zero-clusters in tht1ZCOwith rootC; then gives the number(C;) of roots ofF in the clustelC;,
counted with multiplicities.

Note that the methoHdult_of clusters can be modified such that it uses a separate perturba-
tion vectory; for each clusteC; € . That is, eachy; fulfills |vi| < 6(Ci) and all roots ofF + v
within C; are simple.

Improved Perturbation Vectors: So far, we sketched a method to compute a global, randomly
chosen perturbation vector. Although it is already guaranteed tHathas only simple roots, an
unfortunate choice af leads to a bad root separation, and hence to a high subdiwdsjoth forf-.

To overcome this problem, we next propose an alternativeoagh. For eacll; € %, it computes
a perturbation vectaw; independently. It makes use of a criterion to guaranteeathaixis-aligned
box contains at most one root, which is simple. We introdwreesnotation first. It is well known
(see [3, Prop. 4.94] for a proof) that the Jacohlan= (J fj/azk)lgj,ng of F até has full rank if

& is a simple root of. For its real counter part

99 99;
(o 9
O% 0¥/ 1<j k<N
it holds that deDr ) = det(Jg )? [15, p.27], thus it follows:

Lemma 13. F has a simple root af € CN iff F (&) = 0 anddetDg)(&) = (det(Jg)(&))? # 0.

Forn > 1, Rolle’s theorem is not directly applicable to functiohs R" — R", thusF might
have two roots without a root of d& ) in between. But we can use another criterion that exploits
the behavior of interval arithmetic. We consider the malrixand denote its row vectors by

e (B0) (2 om)
! 0%’ 0Yi ) 1<jen’ ! 0%’ 0Yi ) 1<jen

Then for any® := (pa,..., PN, 01, ---,0N) € (RZN)ZN, we defineVl(®) as the Al x 2N—matrix
whose rows are the vecto® (pj) andH;(q;), j=1,...,N.

)ZN

Lemma 14. Let BC R®N be an axis-aligned box and D(R?N)“" — R?N defined by D) :=

det(M(®)). Then
1. If0¢ OD(B?V), then B contains at most one root of F, which is simple.

2. If B contains exactly one root of F (counted with multipyitand B is sufficiently small, then
0¢ OD(BMN).

Proof. We consider the cad¢ = 1 whereF : C — C is a univariate polynomial. Then the general
case follows in a complete analog mann€rcan be written a& (x+iy) = f(x,y) +ig(x,y) with



polynomialsf,g € Z[x,y]. If B C R? contains a multiple roa of F, thenD(a,a) = D¢ (a) = 0, thus
we can restrict to the case whé@eontains two distinct roota, b. We denotéa, b] the line segment
connectinga andb. From Rolle’s theorem in several real variables, applietheopolynomialsf
andg, it follows the existence of points, g € [a, b] with

Gigg;) a-b)= (g;ﬁgi) (a-b)=0.

Thus, (fx(p), fy(p))' and (g«(p),gy(p))! are perpendicular ta— b, which is only possible if they
are linearly dependent. As a consequence we must get

fx(p) fy(p)) _
det(gx(q) gi(q)> =0

Hence, it follows that @ CJD(B?). In contrast, i has only one simple roate B then detDg | p) #
0. D is continuous, thus if we choo&small enough, this guarantees that QID(B?). O

Note the subtle difference of Lemma 14 compared with theitoh 0¢ OdetDg (B) which
does not guarantee the presence of at most one r&ftiitis needed that the values in each row of
the matrix are chosen independently of each other.

Using Lemma 14 we compute for each clustes ¢ a corresponding perturbation vectas.
Compared to the modular approach, this leads to a betteratipafor the roots of = F + v¢
within C. For a boxB we define its expanded bdX" as the box with the same centerBsand
thrice as large side length. We call a tgimple if 0 ¢ CD((B*)2V), andnon-simpleotherwise.

Copy all boxes ofC that are non-simple into a new subdivision queue. Startisigdag, and
keep only non-simple boxes in the queue. In addition, evalu (B) for each box in the queue,
letU c CN be the union of these interval vectors. Stop the subdivia®soon a&?N \ U contains
a vectorv with |v| € [0,0(C)]. Setuc := v and return.

Why does the above algorithm terminate? Notice thaDget 0 describes a hypersurface
V(det(Dg)) in CN, thus the function values dF onV (det(Dg)) also describe a hypersurface in
CN. It follows that after finitely many subdivision steps, tr@mplement of the uniobl of interval
vectorsCIF (B) must contain a vectorwith |v| € [0,5(C)].

Lemma 15. For a cluster C, lec be chosen as by the algorithm above, ther-= F + uc has only
simple roots within C and all these roots are separated byast s, where s denotes the minimal
side length of all boxes considered during the subdivision.

Proof. Note first thatDF = DF, thus (non-)simple boxes remain (non-)simple when swiigho
F. From the choice ofic, it follows that eaché € C with F(&) = uc is contained in one of the
simple boxes. Hence, all roots Bfwithin C are simple as well. Now consider two roatd of F,
then both of them are contained in simple boBesndB; respectively. As none of the boxBg or
B, contains two roots we get thBf # B, andBy, B, are not adjacent. O

We remark another application of Lemma 14, although it isdiggctly needed for our appli-
cation. Observe that the methbdtllt_of_clustersrelies on the fact that all clusters are considered
simultaneously, because it stops as soon as the total nwhbertified clusters equal3.

With a slight modification it is possible to describe a locatsion ofMult_of_clustersthat com-
putes the number of roots, counted with multiplicity, witla given cluste€. It computes a\C as



before, and subdivideS with respect to the evaluation functidiac. Also, a cluster tree is main-
tained forC to identify zero-clusters, as before. For each zero-duGe- C in the subdivision,

a boxB of minimal size is computed that completely contains thistr. If 0¢ OD(B?N), the
zero-cluster contains precisely one simple root, we calhifple cluster|f a cluster is simple, all its
subclusters are simple as well. If no such B&an be computed, further subdivision is necessary.
The algorithm stops if each element of the current MCZO ipém

6 The main routine

6.1 Synchronization phaseProjection

In Section 3.2, we explained a methegess k| to obtain a lower bound; onmj, the number of
distinct roots ofrj. In Section 4, we presented a methgcbdivide to compute a set of disjoint
clusters inCN, containing all roots oF, and each set contains at least one solution (we called such
clusterszero-clusters In the synchronization phase, both subroutines are aosdktio make their
outcome coherent. For that, we introduce the notion pfagected cluster Recall that, for all

j € {1,...,N}, the roots ofrj coincide withl"j. Therefore, for a zero-clust& c CN, 15;(C) c C

is a connected region that contains at least one ropt aVhen projecting all clusters returned by
Subdivide, some clusters might overlap in the projection. We theeettafine

Definition 16. Let% = {C;,...,Cs} be a set of zero-clusters returned$ybdivide. Theprojected
clustersunder 11, are the maximal connected componentgJef 11 (C). Themultiplicity ¢(R) of
a projected cluster R is defined as

HR= Y o),
Ce?,m(C)CR

whereu(C) is the multiplicity of the cluster C.
By the properties ofj (Theorem 2), it follows

Lemma 17. Let R be a projected cluster undeg. Then R contains exactly(R) roots of r;,
counted with multiplicity. In particular, the set of projed clusters covers all roots of and each
projected cluster contains at least one root.

During the subdivision, the clusters @ become arbitrary small, and the same holds for their
projections. Thus, after sufficiently many calls ©ifbdivide, the returned clusters will induce
exactlym; projected clusters undes;.

Lemma 18. Let% = {Cy,...,Cs} be a set of zero clusters returned $ybdivide, such that, for
each |, there are mprojected clusters under;. Then each clusteri@ontains exactly one root.

Proof. If a clusterC; contains two solutions, they differ in at least one variajleand sof; has
more tharm; distinct solutions, a contradiction. O

Our algorithm, however, does not apply Lemma 18 directiycsicomputing then;’s is too
costly. Instead, the synchronization method both compaites/er boundﬁj onm;, and performs
subdivision inCN, until there are precisel;dj projected clusters with respect zp for eachj =
1,...,N. In the subsequent certification phase, it will be verifiedfétsified) thatnfj = m; holds.

Here is the detailed description of the synchronizatiorsphd he algorithm stores for eagla
current guess rjn initially set to 0, and a numbéerB;, initially set to one (the latter will be used in
the certification). Also, it initially callSubdivide and stores the returned set irgo



Repeat the following steps: For eack 1,...,N, compute the projected clusters #6underrr,
let c; denote their number. iff; = c; for all j, call Mult_of_clusters for eachC € ¢, compute
the multiplicity of each projected cluster according to Diion 16, and pass to the certification

phase. Otherwise, lgtbe such thatn, # cj. If mj < ¢;, call Guess kj, let (kgp)7 p) be the result.

Setm; to max{m;, D — k%p)}, setLB; to LB; - p, and proceed with the next iteration.ntf, > c;, call
Subdivide, set¥ to its output, and proceed with the next iteration.

Both mj andc; are lower bounds fom;, and after sufficiently many calls @fuess_k; or
Subdivide, respectively, both will be set to;. However, the algorithm might jump to the cer-
tification phase earlier, whes) = n'{] # m;. As we will see, the certification phase will then falsify
rﬂj =mj, and increase at least one of the valogs. . ,cn, M, ..., my.

6.2 Certification phase:Separation bounds

As Lemma 18 states, the clusters computed by the synchtmmizzhase contain precisely one root
of F under the condition tha‘dj =mj, or equivalentl;kﬁ = kj, for eachj. For the sake of simpler
notation in this subsection, we will fix one projection véiz;, and sek :=k;, k' :=kj, m:=m,
' :=m;, andr :=rj. Note thatD := degr). Also, we will denote the projected clusters foby
Ri,...,Ry. Our goalis to prove (or disprové) = k.

Our certification scheme uses two dynamically changingesil := LBj andU B := UB; with
the following properties:

e If K >k, it holds that.B < |sreg(r,r’)| <UB.

e If k=K, further calls ofGuess_k; improve LB. More precisely, a sequence of calls of
Guess_K; leads to value&B that diverge tot-oo.

e If k=K, further calls ofSubdivide improveUB. More precisely, a sequence of calls of
Subdivide leads to valueb B that converge to 0.

The idea for the certification is to cathess_k; andSubdivide simultaneously (or alternat-
ing), until LB > UB which proves thak’ = k. If a call of Guess_k; decrease¥/, or if any call of
Subdivide leads to a split of some clustBy, the guess is falsified. In this case, the algorithm has
to return to the synchronization phase to produce a new daeks

How do we obtain such bound8 andUB? ForLB, the answer is simple. Recall that Lemma 6
provides a lower bound for each non-vanishisiges(r,r’)| with | <k’ =kj, namely the product of
the primes considered so far Byess_kj. The algorithm keeps track of this product by the variable
LBj, compare the description of the synchronization phasearylesach call ofiuess_kj makes
LB larger, and the product diverges-ao.

We turn toU B, for which we exploit our knowledge about the clusters,aind the multiplicity
of each. More precisely, for each such clugkewe know the numbeg (R) of roots ofr insideR,
counted with multiplicity (compare Lemma 17). To derive @aptive upper bound fasreg(r,r’)
we study the possible values of the root produat.of

Definition 19. Given m clusters R,...,Ry forr, a setW = {{n,...,¥n} C U1 R with
n > is called avalid root distribution (v.r.d.) of orden, if the number of elements of V inside R
is at least one, and at mogf := (R;). We also define the product



The roots ofr obviously define a v.r.d. of orden. We need some additional notation: For two
clustersR; andR; of r, not necessarily distinct, defirdgj to be the maximal distance between a
pointinR; to a point inR; (for i = j, dij is the diameter oR)).

Proposition 20. LetW := {{, ..., Yy } be a v.r.d. of order fa Then RW) < [M1<icj<m d,2J
Moreover, we can relate v.r.d.’s of ordes- 1 with v.r.d.’s of ordem as follows.

Lemma 21. Given m clusters R,...,Ry for r, and two v.r.ds¥(" := {L[,ll, L Wn}, WD =
{1,...,Pn:1} of order n and nt 1, respectively. Then@ (1)) < [32 (W) with

B = max {I'LdIJ max{dij, 1}Hi 1}

Proof. Notice thatP(W(™V)) can be written as the product B{W™) and[]; |y — Yny1|% Leta,
i=1,...,m, denote the number of elements amamg. .., Y, inside the clusteR;. By definition,
1<c <y foralli. Further, leg be such thaf, 1 € Ry. Then, the additional factgn; |y — t,UnH\Z
can be upper bounded by

2
ﬁ(d;jj)z N ﬁ(dqjd;jj_l)z < (ﬁdqjmax{l,dqj}ﬂj—l> O

Theorem 22. Define

UB:=29(-1 . ¢P/e. g2 max( B, 1}2K -1 df,
1<i<j<m

with o as in Lemma 4. If k K, thensreg(r,r’) < UB.

Proof. Combining [10, Prop. 3.7] with [3, Prop. 4.27], we obtain fbbowing equation for srgs
sreg(r,r’) = A20K- ﬂ mult(@1) - P(®),

where® := {@,...,@n} are the roots of, mult(q) is the multiplicity of @, andA is the leading
coefficient ofr.

We bound each factor separate2P—K—1 < 20(2D-1) j5 ohvious, as 2 is an upper bound
for A (cf. Lemma 4). Fo]; mult(@), note that this is a product @ — k numbers that sum up to

D. One can show that such a product is boundg%k)[}k, and by maximizing(%)x, one easily

verifies that its maximum ig®/e.

For the last factor, reorder the roatsof r such thatg lies in clusterR;, for i =1,...,m, the
otherm— m roots lie in arbitrary clusters. Sinc® is a v.r.d. of ordem, &M := {(pl, < Gh}
is a v.r.d. of ordemn for eachm’ < n < m. Applying Lemma 21 ifh— ) t|mes we obtain that
P(®) < BAM-Mp(dM)). Now the claim follows by Proposition 20, and by the fact tB&Ef™ ™) =
BZ(kLk) — BZBZ(k’fkfl) < BZmaX{]_?B}Z(k’fkfl) < BZmaX{]_’B}Z(k’fl)_ O]

Indeed, the bound as defined in Theorem 22 has the propdréies/e demanded fasB. As
just shown, it is an upper bound fgsreg(r,r')|, if k < k. Moreover,3, as defined in Lemma 21
becomes smaller when the clusters get smallek =k, the diametersl; all tend to zero, when
Subdivide is repeatedly called. As each possible valu@ @ontains at least one diamethras a
factor,UB tends to zero, since all other quantities are non-incrgasin



We next describe the certification phase. From the synchation phase, the algorithm knows
current guesselsfj, and valued Bj, for eachj = 1,...,N. Also, it has stored a set of clustef§
which induce precisele projected clusters undeg, and the multiplicity of each projected cluster.

For eachj = 1,...,N, call simultaneously (or alternatelghess k; andSubdivide. When

Guess_kj returns(k}p), p), update the valuesY, andLB; accordingly, as in the synchronization
phase. Ifim; increases, the guess was wrong; switch back to the syndat@n phase. After each
call of Subdivide, updatez” and the projected clusters undgr If the number of projected clusters
has been increased, the guess was wrong; switch back to ikhreypization phase. Otherwise,
computeJ B as in Theorem 22. IEBj > UB;, itis certified thaim; = m;; proceed with the next
When allj’s have been considered, return the isolating clustérs

In case of a wrong guessdj, the certification phase not just falsifim§ = mj, but also increases
eithern; itself, or the number of projected clusters undgr Consequently, the certification phase
is never called twice for the same gues@®, ..., my ). Since the guess can only increase finitely
often, this shows that the algorithm eventually terminatel®wever, we remark again that it is
rather unlikely that the algorithm switches back to the $yonization phase at all, as we expect in
practice that already the first call 6liess_k; will yield k; as result.

Remark.The boundJ B = UBj used by the algorithm certainly has room for optimizations.
hint at an alternative bound, based on the following result.

Lemma 23. For a setZ of projected clusters R. ..., Ry and maximal distancesg;cbetween Rand
R;j, consider
M (%) = maxA 201, |—| |—| Ui - |—| di?i(nifl) |—I dir}inj
i 1<I<n i 1<i<|<n
where the maximum is taken over all / @nn < D) and all possible valuesuy >1,i=1,...,m,
andl=1,...,n such thaty;n =nandy, uj = u(R). Ifk <K, M(Z) constitutes an upper bound
of |sreg(r,r")|.

The estimation follows by considering a valid root disttibn W of ordern such that within
eachR; there are exactly; elements ot which we assign multiplicitiegs;. We omit a more
detailed proof for brevity.

For an improvedJB, each factor of the product is upper-bounded. The fagkqr, 1, can
easily be bounded bip/n)". The factor involving thel;;'s leads to a quadratic convex optimization
problem in the variables; whose matrix becomes diagonal dominant for sufficientlylschasters.
Obviously, such atB is computationally more involved compared to Theorem 22tHeisharper
upper bound might amortize this additional cost.

7 Conclusion and further work

We have described a novel certification scheme that allowsttiify a collection of regions itV

as isolating for the solutions of a zero-dimensional polyie system oveEN. Our approach com-
bines the advantages of subdivision and modular symbofigpetation. The output is certified by
homotopy arguments and bounds on subresultants. We emelthat an exact evaluation of resul-
tants or Groebner bases is not necessary, that is, we orflyrpemodular computations without
lifting the elimination polynomials t&. Thus, all (intermediate) results are kept handy during the
computation. At the same time, the performance of the peghosethod adaptively depends on



several magnitudes in the algorithm, such as the separatiosots and the size of sigérj,rj),
instead of using worst-case bounds for them. To the bestrdfrmawledge, only theoretical worst
case bounds have been studied [5, 6, 8] so far. With respegrhtical efficiency, these bounds
are not applicable which results from the fact that, in dliaiion, the worst case scenario has to
be taken into account. We consider our method as the firsbapprto introduce an adaptive root
separation bound. On the one hand our method processesittérdnrmation given by the integer
coefficients of the polynomial system by the use of modulanmatation, and on the other hand,
our bound directly depends on the actual geometric sitaaficen by the roots of the system.

Our exposition in this paper is comprehensive in its essdndedoes not mention all optimiza-
tions that an actual implementation should take care ofifistance, we expect that a more careful
choice of the bount B, as suggested at the end of Section 6.2, speeds up the atidifiphase.
Recently, it was shown [23] that, for isolating the complerts of a univariate polynomial of de-
greeN and bitsizel, a subdivision approach based on centered box evaluatiguites effective.

In the corresponding paper, the authors introduce a methibetlcCEVAL that uses centered box
evaluation as an exclusion predicate. They showed that itid wf the subdivision tree does not
exceedO((NlogN)?) boxes at each subdivision. Applying a different approactettify the exis-
tence of exactly one root within a region, it was also provet the overall method requires only
O(N*L2) bit operations which matches the costs of most effectiveexadt methods for real root
isolation. For higher dimensional systems no such resuitsaailable yet, but we are convinced
that the techniques from the one dimensional case also &pfilg more general setting. Our future
research will concentrate on such an analysis.

For an efficient implementation we propose to use fast nuwraemethods tdind approxima-
tions of the roots. As these methods do not provide any gteearfor their output we consider the
role our subdivision methods as crucial in ordecéstify that a region contains (a certain number
of) roots. We see a hybrid approach combining a fast numesateer with our method: Therein,
the numerical solver serves as a fast tool to achieve goawripmations of the solutions. From our
subroutinesSubdivideand Mult_of_clusters based on subdivision, we determine the exact number
of roots within each of the obtained regions and check whethesolutions are captured. If this
test fails, the numerical method is restarted with incrdasghmetic precision arithmetic. With our
certification phasegit is possible to verify that the regions are isolating. $hassuming that the
numerical method determines arbitrary good approximatidfrall solutions for some sufficiently
large precision, this shows the feasibility of a hybrid died method to isolate all roots.

We further remark that all proposed methods are perfectieddor parallel computations.
For the modular computations this is due to the fact that ndhderms are avoided and that it is
possible to run a large number of distinct modular comporatin parallel. The latter holds for
the subdivision routines as well, since distinct clustens lse examined independently. We plan to
implement and benchmark our algorithm to answer the questlether these advantages lead to
measurable effects also in practice.

Our algorithm requires the solution set of the input systelretzero-dimensional. Furthermore,
its resultants must be computable over a prime figldWe achieve this by representing resultants
as determinants of Macaulay matrices, but foe> 3 this might fail in unfortunate cases. This
constitutes the only obstacle for our algorithm to be comepfer higher dimensions. A natural
guestion is whether our ideas also apply to non zero-dimeassystems, and whether a variation
of the proposed method can guarantee to solve the systeifrcesak.
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