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ABSTRACT
In an urban setting, such as the city of Beijing, after a taxi driver
drops the previous passenger, he/she needs to decide where to drive
to find the next — preferably lucrative — passenger. Different
drivers follow different strategies that are mostly based on personal
experiences. In this work, we analyze large amounts of GPS lo-
cation data of taxicabs to compute a high-level profit-maximizing
strategy for taxi drivers. Formally, we model the problem of finding
a passenger as a Markov Decision Process (MDP) whose parame-
ters are estimated from the GPS data. For this MDP, we compute
an optimal policy using dynamic programming. We show that the
proposed strategy captures meaningful rules for finding a passen-
ger and we demonstrate that taxi drivers whose behaviors agree
with our proposal generate more profit than average drivers.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Markov processes; I.6.5 [Simulation
and Modeling]: Model Development

General Terms
Experimentation, Algorithms

Keywords
taxi transportation system, GPS data analysis, Markov Decision
Process, optimal passenger-seeking strategy

1. INTRODUCTION
In a big city like Beijing, there are more than 10,000 taxis operat-

ing every day, and the majority of taxi passengers find their taxis by
standing beside the street and waiting for a vacant one to come by.
Hence, for taxicab drivers, every time after they drop their previous
passengers, they have to make a decision about where to search for
the next passenger. The objective of a driver is to maximize the
daily income – a natural strategy is to search within an “attractive”
area where the chance of finding a passenger is high. However,
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just finding any passenger is not sufficient: taxi drivers prefer long
trips, since they are more profitable. On the other hand, long trips
may force the driver into a remote area of the city where finding
the following passenger will be difficult. As every taxi driver faces
this problem several times per day, he/she develops a — perhaps
unconscious — strategy based on personal experience.

Contribution. We pose the question of whether a good strat-
egy for finding a passenger can be computed from data; such a
strategy could be used, for instance, as a basic guideline for an
inexperienced taxi driver. For that purpose, we model the prob-
lem of finding a lucrative passenger as a Markov Decision Process
(MDP). All parameters of the MDP are obtained by analyzing a
collection of GPS data of 1000 taxis over one month in Beijing,
China. We compute an optimal policy for the MDP using dynamic
programming; that policy can be represented as a directed acyclic
graph (DAG) where an edge from location a to location b repre-
sents a recommendation to drive from a to b when looking for a
passenger. In particular, a sink in the DAG is a locally optimal
area to find a pickup and the taxi should stay at this location. We
compute such policies for weekday daylight hours, weekday night
hours, and weekends, demonstrating that the policies are changing
in a meaningful way. We validate the computed policies using the
same GPS data: we identify instances where the search path of the
taxi drivers agrees with our proposed policy and show that such
instances generate more income than the average trip.

Comparison with related work. Using trajectory data, Yuan et
al. [8] learn the taxi parking areas and derive their waiting queue
length, picking-up probability and next trip length statistics to pro-
vide recommendations. Zheng et al. [9] use a non-homogeneous
Poisson process to model the taxi arriving rate at a given location
and derive the waiting time given the arriving rate. Both results fo-
cus on the problem of which “hotspot” the taxi driver should aim
for, ignoring pick-ups that happen outside of these locations. More-
over, they consider the passenger-finding problem as a one-shot
process, ignoring the sequential effect of driver behavior. Another
branch of research is to understand and compare strategies of taxi
drivers directly: Liu et al. [6] try to identify preferred locations of
successful drivers depending on the day. Li et al. [4] propose a
high-dimensional driving descriptor obtained by analyzing the be-
havior of drivers depending on time and location and compare it
with the income of the driver. In contrast to these approaches, we
do not propose a method for analyzing the behavior of different
drivers; instead, we “distill” a strategy combining all available data
without distinguishing between different drivers. In this way, we
can derive a good strategy even if no “smart” driver is present – for
instance, if all drivers act randomly, our approach would still find
out which (random) decisions were profitable, and combines them
into a coherent recommendation.



2. THE DATA
We analyze the trajectory data of 1000 taxis operating in the city

of Beijing, China, from May 1–31, 2009.1 For every taxi and every
day, the data consists of a sequence of GPS points; every point is a
triple (p, t,o), where p ∈ R2 is the location of the taxi, t is the time,
and o is the flag denoting whether the taxi had a passenger at that
time or not. If o = TRUE, we call the taxi occupied, and otherwise
vacant. The average sampling frequency of the data points is about
1 GPS point per minute which is fairly sparse compared to other
available GPS data.

We split the sequence of GPS points of a taxi into occupied and
vacant subsequences. More precisely, we define a cruise trip to be a
maximal consecutive subsequence of GPS points such that the taxi
is vacant in all except the last GPS point. Likewise, an occupied trip
is a maximal consecutive subsequence where the taxi is occupied
except for the last element. We define the length of a cruise or
occupied trip to be the Euclidean length of the polyline defined by
connecting consecutive elements of the trip. We call the location of
the last element of a cruise trip a pick-up location and the location
of the last element of an occupied trip a drop-off location. We call
the time difference between the first and last element of a cruise or
occupied trip its duration.

We preprocess the data by splitting it into cruise trips and occu-
pied trips, and remove all cruise trips that consist of only 2 GPS
points or with a duration of more than 2 hours. After that data
cleaning, we have about 540,000 cruise trajectories and roughly
same number of occupied trajectories.

Although the underlying street network of Bejing is available,
we refrain from mapping the GPS trajectories on the street network;
the reason is the relative sparsity and noise in the data which turns
this task non-trivial; we refer to [5] for a recent algorithm for that
problem operating on the same data set.

3. OUR MODEL
We describe the problem of finding a passenger in terms of a sin-

gle player game. This game has several parameters which we de-
termine by analyzing the (preprocessed) GPS data from Section 2.

Finding a passenger – the game. The game is played on a
directed graph G = (V,E) where every vertex represents a set of
possible pick-up locations. We emphasize that self-loops in G are
allowed. The goal of the game is to maximize the profit, initially
set to 0. The game is played in iterations, called rounds. In ev-
ery round, the player is located at a certain vertex v. Associated to
this vertex is a pick-up probability Ppu(v) ∈ [0,1]. With probability
Ppu(v), a pick-up will happen in this round; in this case, the player
will move to some other vertex in the graph (not necessarily ad-
jacent to v) according to a transfer probability distribution Ptr(v, ·)
associated to v. Let w be the destination vertex. The player re-
ceives a reward R(v,w) which is added to the profit and proceeds
to the next round located at w. If no pick-up happens, the player
decides on an action which is simply choosing an outgoing edge
from v, say to vertex w (note that w = v is possible). The player
pays the cruise cost c(v,w) (that is, subtracts it from the profit) and
proceeds to the next round located at w.

To play the described game, the player has to fix a policy A(v, ·)
for each vertex, which is a probability distribution over all end-
points of outgoing edges from v and denotes the probability that the
corresponding edge is used as action. If for every vertex v, there is
some vertex w with A(v,w) = 1, the policy is called deterministic;
in that case, we can represent A as a subgraph of G with exactly

1The data set is available on request at http://sensor.ee.
tsinghua.edu.cn/datasets.php

Figure 1: The street map of a part of Beijing. Pick-up locations
are drawn as dots, cluster centers as diamonds. Every pick-up
is colored according to the cluster that it belongs to.

one outgoing edge per vertex.
The game graph. Intuitively, every vertex of the graph repre-

sents a region of the city with geometrically related pick-up lo-
cations. Although finding such meaningful clusters has been ad-
dressed as a research problem in its own [3][2], we use a compa-
rably simple heuristic: we consider the set of all pick-up locations
(over all taxi drivers and days) and apply the mean-shift cluster-
ing technique from [1] with a bandwidth parameter of 2 km. This
results in a set of 195 cluster centers (Fig. 1), after removing clus-
ters with less than 200 pickups. The vertices of G represent these
cluster centers; we will from now on identify a cluster, its center,
and the corresponding vertex of G. By construction, every pick-up
location can be associated to a cluster. We extend this assignment
(partially) to GPS locations that are not pick-up locations: let c be
the nearest neighbor to a GPS point location p among all cluster
centers. If the Euclidean distance ‖p− c‖2 is less than 2 km, we
say that p belongs to c; otherwise, p remains unassigned. We define
a pruned cruise trip to be a cruise trip after removing all unassigned
GPS points. Now, we define the edge set E by the following proce-
dure: start with a complete graph on V and give every edge weight
0. If any pruned cruise trip has two consecutive GPS points such
that the first belongs to cluster c1 and the second belongs to cluster
c2, we increase the weight of (c1,c2) by one. Finally, for a cluster
c, let Σc denote the sum of the weights of all its outgoing edges; if
an edge (c,c′) has weight at least 0.05 ·Σc, we add the edge to E.
We also include all self-loops (v,v) to E, regardless of their weight.
Roughly speaking, we only allow actions which are observed in the
data frequently enough. We ignore the weights of the chosen edges
in the remainder of the paper.

The pick-up probability. For every cluster, we compute two
values: the number of pickups and the total cruise time. The for-
mer is simply the number of pick-up locations that belong to the
corresponding cluster. For the latter, we consider two consecutive
GPS points g1 and g2 of a pruned cruise trip and we let ∆ denote
the time difference between them. If g1 and g2 belong to the same
cluster, then ∆ is added to the total cruise time of that cluster. If g1
belongs to c and g2 belongs to another cluster, then ∆/2 is added to
the total cruise time of c.

Now, fix a cluster c and let P and C denote the number of pickups,
and the total cruise time, respectively. Moreover, let T be a global
parameter which denotes the average length of stay within a vertex.
It is not easy to specify T from the data, so we leave it as a free
parameter and choose it later in Section 4. Given P, C, and T , the
pick-up probability at c is given by

Ppu(c) := 1− exp
(
−PT

C

)
. (1)

Further parameters. The remaining parameters are derived
from the data in a straight-forward manner: For the transfer prob-



Figure 2: The flow chart for the computation of taxi fares.
This is a translation of the (Chinese) description on the
regulations of fare prices issued by the city of Beijing
http://www.beijing.gov.cn/ggfw/lyz/cxzn/t662370.htm.

ability distribution, we consider all occupied trips which start in a
cluster c. Let n denote the number of such trips. For a cluster c′ in
G, let m ≤ n be the number of occupied trips that started in c and
ended in c′. We set Ptr(c,c′) := m

n .
It remains to define the cruise costs and the reward for a pair

of clusters (c,c′). Let d denote the Euclidean distance between
the centers. We set the cruise cost to c(c,c′) := cfuel · d, where
cfuel = 0.8 is a constant reflecting the fuel cost per kilometer. For
the rewards, recall that the length of a trip is the length of the poly-
line induced by its GPS locations. Let ` denote the length of such
a trip and tstart denote its starting time. We compute the profit as
−cfuel`+ F(`, tstart), where the fare F is computed according to
Figure 2 – we ignore the fare caused by waiting time (i.e., we set
t = 0 in Fig. 2) because it seems impossible to get a reliable esti-
mate of the waiting time from our sparse trajectory data. We set
R(c,c′) to be the average profit of all occupied trips from c to c′.

4. RESULTS AND VALIDATION
Having fixed all parameters of our model in Section 3, the ques-

tion is what is the optimal policy for playing the game. We will
describe an algorithm to compute the optimal policy, present its so-
lution when applied to the given data set and present some evidence
that the computed policy is helpful in a real-life context.

Computation. We rephrase our game as a Markov Decision Pro-
cess (MDP) [7, §17.1]: The set of states are the vertices of the game
graph and the actions are determined by a policy A. The probability
of going from vertex v to vertex w in an iteration is given by

PA(v,w) = Ppu(v)Ptr(v,w)+(1−Ppu(v))A(v,w).

It remains to define the expected immediate reward IR when going
from v to w. Let Xpu denote the random variable denoting whether
a pick-up has happened, and Xv→w be the random variable denoting
whether a transition from v to w has happened. Then

IRA(v,w) = R(v,w)P(Xpu | Xv→w)− c(v,w)P(¬Xpu | Xv→w)

=
R(v,w)Ppu(v)Ptr(v,w)− c(v,w)(1−Ppu(v))A(v,w)

PA(v,w)

With this MDP formulation, we can find the optimal policy with
dynamic programming: Assign a value V (v) to every vertex v, ini-
tially set to zero. Also, let v→ v′ denote a deterministic policy
which always uses the edge (v,v′) when located in v (note that v= v′

is allowed). For every v, we set

π(v)← argmax
{v′∈V ′|(v,v′)∈E}

∑
w∈V

Pv→v′(v,w)(IRv→v′(v,w)+ γ ·V (w))

with γ < 1 a discount factor chosen to be 0.99 throughout our ex-
periments. Clearly, π(v) is the best choice of the player when lo-
cated at v. That means, π induces a deterministic policy (which we
also call π). We update V as

V (v)← ∑
w∈V

Pπ (v,w)(IRπ (v,w)+ γ ·V (w))

and repeat until π remains stable (we stop after 2000 iterations).
Results. Applying the approach above to all available data yields

an “average” policy that ignores the temporal aspect of the prob-
lem: of course, finding a passenger on a Monday morning is dif-
ferent from finding one on a Saturday night, and the best strategies
might differ significantly. To mind this differences, we have split
the data into three categories, (weekday) rushhour, consisting of all
data attained Mon-Fri 8am-8pm, (weekday) offpeak (Mon-Fri 8pm-
8am), and weekend (Sat and Sun). More precisely, we computed
the 195 clusters using all available data for an easier comparison
of the policies; any further parameter (edges of the graph, pick-up
probability etc.) is obtained only from the restricted data.

We visualize the computed policies in Fig. 3. Throughout the ex-
periments, we fix T (the parameter that controls the pick-up prob-
ability) to 5min. The optimal policy can be written as a directed
graph with exactly one outgoing edge per vertex; if this edge is a
self-loop, we call the vertex a sink. Except for self-loops, our com-
puted solutions are cycle-free,2 hence π can be represented as a
directed acyclic graph. Clearly, when following π starting at any
vertex, we end up in a sink; therefore, we can color the vertices
of the graph according to the sinks that they flow into. We extend
that coloring to the whole plane by assigning a point the color of
its nearest vertex (or in other words, we color the Voronoi region of
a vertex in the corresponding color). The plots in Fig. 3 show the
DAG together with the induced coloring.

In general, we observe the non-surprising fact that all policies
recommend to move towards the center when looking for a passen-
ger. An exception is the sink in the upper right corner which is the
major airport of the city (compare the street map in Fig. 3). We
see that our model recommends to go to the airport during nights
and weekends even when located in the north-east part of the city
center, while it recommends to stay in the center on weekdays.
This makes intuitive sense as one can find passengers more eas-
ily in that time and would like to avoid the cost of driving to the
airport. Other remarkable differences are the high attraction of the
central business district on weekdays compared to nights and week-
ends, and the increased attraction of the Zhongguancun area during
nights. The latter might appear counter-intuitive on a first sight
since that area is known for its IT-companies and markets which
are closed during the night. However, the area “competes” for taxis
against neighboring sites like Peking University which restricts its
basin of attraction during business hours; on the other hand, Zhong-
guancun accommodates more nightlife activities (restaurants, bars)
compared to its neighborhood sites which increases its relative at-
tractiveness during the night.

Validation. We provide some evidence that it is indeed benefi-
cial for drivers to follow our recommendation. For that, we define a
conservative predicate for whether cruise trips agree with our pol-
icy and compare the (immediate) reward of “optimal” cruise trips
with the reward of an average cruise trip.

Let us start with the test whether a cruise trip agrees with our
policy π: consider a pruned cruise trip (i.e., with all unassigned
GPS points removed). We represent the cruise trip as a sequence of
clusters (ci1 , . . . ,cim) meaning that the j-th GPS point lies in cluster

2This property should be intuitive and can also be proven to hold
in general in our setup; we skip the proof in this paper.



Figure 3: From left to right: A street map of Beijing with annotation of landmark areas for better orientation; the optimal policies
for T = 5min rushhour, offpeak, and weekend. In all plots, sinks are displayed as green dots, and regions are colored randomly.

Figure 4: (Normalized) distribution of offpeak trip-pairs (red)
and π-consistent offpeak trip-pairs (green) with respect to their
profitability (rushhour and weekend results are similar).

i j. Intuitively, the cruise trip agrees with π if ci j+1 = π(ci j ) for
all j = 1, . . . ,m− 1. However, this will rarely be the case, since
clusters represent regions of the city, and the taxi needs time to
traverse them, causing several GPS points in the same cluster. For
that reason, we use the following heuristic: if the pruned cruise
trip contains up to 5 consecutive repetitions of the same cluster, we
contract that subsequence to one element (e.g, (c1,c2,c2,c2,c3) is
transformed to (c1,c2,c3)). We call a cruise trip π-consistent if
after this contraction, ci j+1 = π(ci j ) holds everywhere. In our data
set, about 7% of all trajectories were π-consistent.

To compare π-consistent cruise trip with average cruise trips,
consider a trip consisting of a cruise trip and the immediately fol-
lowing occupied trip. Let `c denote the length of the cruise trip, `o
the length of the occupied trip, tstart its starting time, and ∆ the sum
of the duration of both trips. We define the profitability of a pair as

1
∆
(−cfuel(`c + `o)+F(`0, tstart))

(recall the definitions of cfuel and F from Section 3). We plot
the profitability of π-consistent and general trip pairs in Fig. 4
We see that π-consistent trips generally yield higher immediate
rewards than average cruise trips. We have to mention, however,
that our measurement does not consider the consequences of the
occupied trip (that is, how attractive is the drop-off location with
respect to the next pickup). Measuring these consequences from
the data seems difficult because of the small number of consecutive
π-consistent cruise trips.

5. CONCLUSION
We concentrated on the simplistic “waiving model” where pas-

senger wait at the street for a vacant taxi driving by. However,
our methodology is still applicable when the locations of currently
waiting passengers is known in advance (an assumption that is jus-
tified by the existence of mobile phone apps for calling a taxi);

still, a driver has to decide whether it is worth to pick up a pas-
senger depending on the distance to that passenger and, if known,
the drop-off location of the trip. The main difference is that the
policy is not static anymore, but depends on the currently waiting
passengers. The setup changes more drastically if we incorporate
the interaction between taxi drivers into the model which leads into
the realm of game theory.

Besides the application to taxi problems, our work can be seen
as an attempt to improve the performance of an individual acting
in an unknown environment by examining which actions of other
individuals were successful in a comparable setup. The results ob-
tained by our model provide meaningful high-level insights in the
underlying process, even though the data set under consideration
is sparse and noisy. We pose the question whether this approach
could find applications in other areas of mobility analysis.
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