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Abstract. A major computational task in applied topology is the com-
putation of persistence diagrams. This is done by matrix reduction, which
simply refers to apply Gaussian elimination to the boundary matrix of a
cell complex over a finite field. While the worst-case complexity is known
to be cubic, we are posing the question about the expected complexity of
matrix reduction when drawing a simplicial complex from a fixed random
model uniformly at random. We provide extended experimental evidence
that the expected complexities are different for various random models,
and we prove that the expected complexity is an order of magnitude
smaller than the worst case for one particular model.
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1 Introduction

This topic is motivated by persistent homology, an evolving research field of
applied topology. It studies general data sets by tracking their topological prop-
erties across scales, and summarizes the information in a planar point plot called
the persistence diagram [2, 5].

Matrix reduction forms the computational core of persistent homology. The
goal is to apply column addition to the boundary matrix of a cell complex to
arrive at an echelon form, out of which the persistence diagram can be read
off. Compared to usual Gaussian elimination, there are some minor restrictions
which we refer to in Section 2.

The well-known cubical worst-case bit complexity of matrix reduction can
also be realized by boundary matrices of simplicial complexes – the initial spar-
sity of the matrix does not improve the worst-case bound [4]. On the other hand,
the empirical performance of matrix reduction to realistic data sets scales much
better than what the worst case predicts, as proved by countless applications of
persistence to real-world data.
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The apparent gap between theory and practice is usually explained by the
fact that creating worst-case examples requires a careful design of the input
complex with artificial features that simply do not occur in realistic data. It
seems natural to restrict the input set to a subset of complexes which share
structural properties with data sets of interest. Unfortunately, not much progress
has been made so far; for instance, the worst-case complexity of matrix reduction
for Vietoris-Rips or Cech complexes [2] over n points is completely open.

Average-case complexity can provide further insight of how common “bad”
examples are in matrix reduction. Fixing a random process to generate input
complexes, we pose the question of what is the expected number of operations
performed if an element from the model is chosen uniformly at random. While
expected structural properties of simplicial complexes (e.g., its expected Betti
number) have been studied [3, 1], the algorithmic direction seems to be unex-
plored. More generally, we were not able to find any prior work on the (worst-case
or expected) complexity of Gaussian elimination for special cases of input classes.

Our results. Our first result is an extensive experimental study on the empir-
ical performance of matrix reduction for various standard models of random
simplicial complexes, which we briefly describe in Section 3. Fig. 1 shows the
number of bit operations in the matrix in dependence of the number of rows
and columns. We used linear regression on the log-log-scale to approximate the
plots by polynomial functions. Generally, we observe the expected result that
more structure in the input model (geometric or combinatorial) yields a better
algorithmic performance.

Our second result is a theorem stating that for a particular random model,
producing a matrix with m rows and

(
m
3

)
columns, and a slight variant of the

standard matrix reduction algorithm, the expected number of bit operations is
O(m4+ε), where ε > 0 can be chosen arbitrarily small. This is in contrast to the
naive O(m5) worst-case bound and is the first example (up to our knowledge)
where a better complexity bound can be derived for a restricted input set, even
though it refers to the average case instead of the worst case.

A more extensive treatment of this work can be found in [6, Ch.4].

2 Matrix reduction

For brevity, we restrict our attention to simplicial complexes of dimension 2,
although all concepts can be generalized. Let v, e, f denote the number of 0-,
1-, and 2-dimensional simplices, called vertices, edges, and faces. The boundary
matrix is an (e× f)-matrix where each row represents an edge and each column
represents a triangle, and the entry (i, j) is 1 if edge i is in the boundary of
triangle j, and 0 otherwise. We consider the matrix coefficients to be elements
of Z2 throughout. We store the columns of the boundary matrix in a sparse
representation, that is, as a dynamic array of non-zero row indices.

We call the pivot of a non-zero column in a matrix the largest row index that
is not zero. The goal is to transform the matrix so that no two columns share
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Fig. 1. Experimental performance of matrix reduction for various random models.

the same pivot. However, some special rules apply in the context of persistent
homology: No swap of two rows or two columns is allowed, and only left-to-right
column additions maybe performed. This comes from the fact that in persistent
homology, the boundary matrix does not represent only one simplicial complex
but rather a filtration, that is, a nested sequence of complexes defined by the
prefixes of the matrix. This means that the order of simplices is important.

The standard reduction algorithm processes columns from left to right. On
each column, it checks if its pivot appears in a previous column c′ and adds c′ to
c in that case. This is repeated until the column vanishes or has a novel pivot.
The number of bit operations needed in this process is shown in Fig. 1.

3 Random models

We used 4 models in our experiments. In all of them, we fix the number of vertices
v and create a complete complex with e =

(
v
2

)
edges and f =

(
v
3

)
triangles. They

only differ in the order in which the edges and triangles are added:

– Lower star filtrations: Using a total order on the vertices, every edge can be
written as a pair of vertices, every triangle as a triple of vertices. Then, rows
and columns are ordered lexicographically.

– Rips filtrations: For each vertex, we pick a random point in the unit square
in R2. The order order is then determined by sorting the edges by increasing
length. The triangles are inserted in lexicographic order with respect to the
chosen edge order.

– Erdős-Rényi filtrations: A random order is chosen for the edges, and the
triangles are inserted in lexicographic order with respect to the edge order.

– Shuffled filtrations: Both edges and triangles are inserted in a random order
(chosen independently of each other).

Lower-star filtrations (of sub-complexes) and Rips filtrations (of non-uniform
point sets) are standard techniques for applying persistent homology to real-
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world data; hence these models are not too far from realistic scenarios. The de-
crease of structure between the orders of edges and triangles leads to an increase
in complexity as Fig. 1 shows. In [6, Ch.4], we also measured other properties
such as number of column additions, size of the reduced matrix etc.

4 A first theoretical result.

We introduce a further random model: Consider a cell complex with one vertex,
m edges and f :=

(
m
3

)
triangles (note that f is much larger than in the previ-

ous models). Order the edges and triangles in random order. Alternatively, the
boundary matrix consists of all distinct columns with exactly 3 non-zero entries,
randomly shuffled.

Standard reduction applied to this boundary matrix takes O(m5) time in
the worst case. In order to derive an improved expected bound, we introduce a
variant of the standard reduction: if we encounter a column c with the same pivot
as a previously reduced column c′, we swap the contents of c and c′ and continue
the reduction. The idea is that c′ might be re-used for later column additions,
so reducing its size will save operations. Although this variant violates the rule
of not swapping columns, the resulting reduction yields the same persistence
diagram. This leads to the following result (see [6, Thm.4.8] for a proof):

Theorem 1. Let ε > 0 be any constant and m be the number of edges. The bit
complexity of the modified reduction algorithm is O(m4+ε) in expectation.

5 Outlook

We made little progress so far extending our theoretical result to other models.
The core problem seems to be the increased level of dependence between the
columns during the reduction, making it difficult to bound the expected size
of a column while the algorithm progresses. We are searching for techniques to
analyze such stochastic processes.
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