Geometric realizations of ν -associahedra via brick polyhedra

Cesar Ceballos and Matthias Müller

¹TU Graz, Institute of Geometry, Kopernikusgasse 24, 8010 Graz, Austria.

Coxeter Groups (Type A_n **)**

We denote the i^{th} unit vector in \mathbb{R}^n by ϵ_i and define for $i \in [n]$:

- Simple roots: $\alpha_i := \epsilon_i \epsilon_{i+1}$
- Fundamental weights: $\omega_i := \sum_{j \le i} \epsilon_j$
- Generators: reflections along simple roots $s_i := s_{\alpha_i}$

Coxeter group W_{A_n} : symmetric group S_{n+1} generated by $S = \{s_1, ..., s_n\}$

Subword Complexes SC(Q, w) [5]

Goal of this presentation

Present a geometric realization of the ν -associahedron.

The ν -Subword Complex $SC(Q_{\nu}, w_{\nu})$ [3]

- d(p): lattice distance from p to the top-left corner
- labeling: label each lattice point of the Ferrers diagram by the transposition $s_{d(p)+1}$
- Q_{ν} : read transpositions: bottom to top, left to right
- w_{ν} : read transpositions of the complement of ν -tree

whose facets are $I \subseteq [n]$, such that $Q_{[n] \setminus I}$ is a reduced expression of w.

Subword complex for $Q = (s_1, s_2, s_1, s_2, s_1), w = s_1 s_2 s_1$.

Brick Polyhedra $\mathcal{B}(Q, w)$ [4]

For I facet of $\mathcal{SC}(Q, w), k \in [n]$:

• root function: $r(I,k) := \prod Q_{\{1,\dots,k-1\}\setminus I}(\alpha_{q_k})$ • root configuration: $R(I) = \{r(I,k) | 1 \le k \le n\}$ • weight function: $w(I,k) := \prod Q_{\{1,\dots,k-1\}\setminus I}(\omega_{q_k})$ • brick vector: $b(I) := -\sum_{k=1}^{n} w(I,k)$ • upper Bruhat cone: $C^+(w, \text{Dem}(Q)) = \bigcap_{I \text{ facet}} \text{cone } R(I)$ • brick polyhedron: $\mathcal{B}(Q, w) := \operatorname{conv}\{b(I) \mid I \text{ facet of } \mathcal{SC}(Q, w)\} + \mathcal{C}^+(w, \operatorname{Dem}(Q))$ • The brick polyhedron satisfies the local cone property: $cone^{(b(I))}(\mathcal{B}(Q, w)) = cone R(I).$

• ν -subword complex $\mathcal{SC}(Q_{\nu}, w_{\nu})$ is isomorphic to the ν -Tamari complex.

ν -Brick Polyhedron $\mathcal{B}(Q_{\nu}, w_{\nu})$

• ν -brick polyhedron $\mathcal{B}(Q_{\nu}, w_{\nu})$: brick polyhedron of ν -subword complex $\mathcal{SC}(Q_{\nu}, w_{\nu})$

Comparison of the ν -brick polyhedron and ν -associahedron for $\nu = ENEEN$.

Compatibility and ν **-Trees**

• northeast path ν : lattice path using north and east steps of unit length • *v*-incompatible nodes: lattice points inside Ferrers diagram such that

Main Therem [Ceballos - Müller, 2025]

The bounded faces of the ν -brick polyhedron $\mathcal{B}(Q_{\nu}, w_{\nu})$ give a geometric realization of the ν - associahedron.

Subword complex $\mathcal{SC}(Q, w)$: For a word $Q = (q_1, ..., q_n)$ in S and $w \in W_{A_n}$, simplicial complex whose facets are $I \subseteq [n]$, such that $Q_{[n]\setminus I}$ is a reduced expression of w.

• ν -tree: maximal set of ν -compatible points

 ν -Tamari Lattice [3] [6]

• rotation: change node q by q'

• *v*-Tamari latice: *v*-trees ordered by rotation

• ν -Tamari complex: simplicial complex of pairwise ν -compatible sets of points

The *v***-Associahedron [2]**

- ν -associahedron: polytopal complex dual to complex of interior faces of the ν -Tamari complex • vertices: ν -trees
 - edge graph: Hasse diagram of the ν -Tamari lattice

• canonical coordinates y(T): The entry $y_i(T)$ is the area (i.e. number of boxes to the left) of the path $P_i(T)$ connecting the root to the leftmost node of T at level i (increasing from top to bottom).

Canonical coordinates: y(T) = (3, 2, 3).

• **special case:** No consecutive north steps: projected points coincide with Ceballos's canonical realization [1].

Left: Projection of the bounded components, Right: ν -associahedron.

References

- [1] Ceballos. A canonical realization of the alt ν -associahedron. arXiv:2401.17204v1, 2024.
- [2] Ceballos, Padrol, and Sarmiento. Geometry of v-Tamari lattices in types A and B. Trans. Amer. Math. Soc., 371(4):2575–2622, 2019.
- [3] Ceballos, Padrol, and Sarmiento. The ν -Tamari lattice via ν -trees, ν -bracket vectors, and subword complexes. Electron. J. Combin., 27(1): Paper No. 1.14, 31, 2020.
- [4] Jahn and Stump. Bruhat intervals, subword complexes and brick polyhedra for finite Coxeter groups. Math. Z., 304(2):Paper No. 24, 32, 2023.
- [5] Knutson and Miller. Subword complexes in Coxeter groups. Adv. Math., 184(1):161–176, 2004.

[6] Préville-Ratelle and Viennot. The enumeration of generalized Tamari intervals. Trans. Amer. Math. Soc., 369(7):5219–5239, 2017.

Workshop: Lattice Theory

Banff International Research Station

