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“Real” Applications

Medical segmentation/registration
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I
Definition
Mapping / Map :
A smooth function between shapes / spaces

Examples
[R->R

flx) = x*




f:R? - R?
@) =2+




f:M—)IR{Z










R3 > R3
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2D Maps : Representation




2D Maps : Representation

Solution: Represent maps as linear
combination of basis functions

The set of all maps
{f (x): R? > R?)
IS too big to handle!
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2D Maps : Representation

fl'fZIfB' ""f‘n
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2D Maps : Representation

fl(xry)zx fz(x,y):y

(.X',y) = (2f1'f2)

>




2D Maps : Representation

fl(xry)zx fz(x,y):y

(x,y) = (fi + f2. f2)




2D Maps : Representation

fl(xry)zx fZ(xly) =y f3(x;y)

(x,y)=> 1+ f3, /21 f3)

>
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Mappings for deformations




Mappings for deformations
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Deformation as an interpolation problem

k

CIi\

7l

i

P

T,

f(p;) = Z c;fi(x)

C; ="

f(p;) = q;, Vi

2 ¢;,fi(pi) = q; Vi



-
Example: Thin Plate Spline

Solve the problem

92f\ " 02f \°  [92f\°
minETps(f)=ff (ﬁ) +2(axay) +(a—yz)

Bending energy

S.t. f(pl) — qi,Vi

General solution

f(p) = ¢+ €x + ¢,y + ) cib(llx = pill)
d(r) =r?logr



Hermite interpolation

Interpolate derivatives




Hermite interpolation

Interpolate derivatives




Hermite interpolation

Interpolate derivatives

f(p;) = q; Df(p;) = D;



Hermite interpolation

Interpolate derivatives

2 c.fi(pi) = q; 2 c;Vfi(p;) = D;



Example: Linear Blend Skinning

£ = ) wiG)(Tix + )

Weights S \f\ Affine

transformations




Example: Linear Blend Skinning

f() = ) wiG)(T;x +q)




Example: Linear Blend Skinning

f) = 2 wit)(Tix + qu) o A am

Lagrange property
wi(p;) = &;;
Hermite (derivative) property

VWl(p]) =0




Deformation as an boundary interpolation




Example: Barycentric Coordinates

[Weber et al ] | [Weber et. al] [Lietal]



Example: Barycentric Coordinates

w

a;(x)

Stages:

e Source shape

 Polygonal cage

e Coordinates




Example: Barycentric Coordinates
0 1.

g

Stages:

e Source shape

 Polygonal cage

e Coordinates

[«

0
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Example: Barycentric Coordinates

qi 'a:l-(x)

Stages:

e Source shape

| HER
\

 Polygonal cage

e Coordinates

e Manipulate cage

e Apply deformation

fx) a;(x)q;

R
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Mean-value coordinates
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Cauchy coordinates Harmonic coordinates




Example: Hermite Bary’ Coordinates

n ® ® /i

fx) =) a;(x)f;

=1
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Basis functions




What are good maps?

\ BljectIVIty Low distortion

o Lower
Bijective Bijective distortion



-
Globally Bijective VS. Locally Bijective

Globally ..........”

Bijective

Locally
Bijective

f is bijective f: U - f(U) is bijective
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Globally Bijective VS. Locally Bijective
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Globally Bijective VS. Locally Bijective

Globally Locally
Bijective Bijective

f is bijective f: U - f(U) is bijective




Globally Bijective VS. Locally Bijective

Globally Locally
Bijective Bijective

f is bijective f: U - f(U) is bijective




-
Globally Bijective VS. Locally Bijective

Globally Locally
Bijective Bijective
f is bijective f: U - f(U) is bijective

Still Bijective!




Globally Bijective VS. Locally Bijective

Globally Locally
Bijective Bijective

f is bijective f: U - f(U) is bijective




Globally Bijective VS. Locally Bijective

Globally Locally
Bijective Bijective

f is bijective f: U - f(U) is bijective




Globally Bijective VS. Locally Bijective

Globally Locally
Bijective Bijective

f is bijective f: U - f(U) is bijective




-
Globally Bijective VS. Locally Bijective

Globally Locally
Bijective Bijective
f is bijective f: U - f(U) is bijective

Not
Bijective!




-
Globally Bijective VS. Locally Bijective

Two
Pre-images

Not
Bijective!




-
Globally Bijective VS. Locally Bijective

Not
Bijective!




-
Globally Bijective VS. Locally Bijective

Only Locally
Bijective!




Locally Bijection — Non-example

iniaials




Locally Bijection — Non-example




Locally Bijection — Non-example




Locally Bijection — Non-example




Locally Bijection — Non-example




Locally Bijection — Non-example




Locally Bijection — Non-example




Locally Bijection — Non-example




Locally Bijection — Non-example




Locally Bijection — Sufficient condition
B u(x) f
[ - (“O) ]
The Jacobian:

[ 0xu(x) dyu(x)
[Jf(x) B (axv(x) ayv(x)>

N

~




Locally Bijection — Sufficient condition
[ F(x) = C’]‘gg) ]
The Jacobian:
d,u(x) od,u(x) Vu(x)
[‘7 f(x) = (axv(x) 6§v(x)> = (Vv(x))
The Condition:
[detjf(x) > (), ‘v’x]




-
Globally Bijective VS. Locally Bijective

Globally ..........”

Bijective

Locally
Bijective

f is bijective f: U - f(U) is bijective



-
Globally Bijective VS. Locally Bijective

Globally _ Locally

Bijective ? Bijective

f is bijective @ f:U - f(U) is bijective




-
Globally Bijective VS. Locally Bijective

Globally _ Locally

Bijective ? Bijective

f is bijective @ f:U - f(U) is bijective

Google: “Global inversion theorems”



What are good maps?

\ BljectIVIty Low distortion

o Lower
Bijective Bijective distortion



I
Distortion - Types

{ Conformal J [ Isometric J
distortion

distortion




I
Distortion - Types

Conformal l I lsometric l
distortion distortion

e

The distortion Is a function
of the Jacobian at a point

"’v.
- : i

. V.
i . . . 4
G53 .
. e
4 .




[Levy et al. 2002]
Distortion - LSCM
LSCM — Least Squares Conformal Map

We want the to be a
Jacobian similarity matrix
dyu dyu a —f
0,V 0,V B«
Oxt = OyV (caychy-Riemann
ayu = —d.v Equations



Distortion - LSCM

LSCM — Least Squares Conformal Map

We want the to be a
Jacobian similarity matrix

dyu dyu a —f
<6xv ayv> (,8 a)

DiscMm = (0,u — 6yv)2+(ayu + 0,v)°



I
Quick Notation Change

Jt  — A

dyu dyu a b
)
0,V 0,V c d
DiscMm = (0,u — ayv)2+(ayu + 0,v)?
(a — d)+(b + c)




[Liu et al. 2008]

Distortion — ASAP
ASAP— As Similar As Possible

DaSAP = 1A — Sall?

Jac:obianS \/\ Closest

Similarity

How to compute closest similarity?
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ASAP— As Similar As Possible

How to compute closest similarity?



Distortion — ASAP

ASAP- As Similar As Possible
How to compute closest similarity?

In 2D:
min||A — S|

s.t. § is similarity

_ a b a —f .
wlc o) -G




Distortion — ASAP

ASAP- As Similar As Possible
How to compute closest similarity?
In 2D:
min||A — S|

s.t. § is similarity

1(a+d c—b)

SZE b—c a+d



Distortion — ASAP

ASAP- As Similar As Possible
How to compute closest similarity?
In 2D:

1(a+d c—b)+1(a—d c+b)

A=5\p_¢ a+d b+c d-a



Distortion — ASAP

ASAP- As Similar As Possible
How to compute closest similarity?
In 2D:

Sa Sa
A=1(a+d c—b)+1(a—d c+b)
2 \b Similadity- d/ ' 2 \IAntiSimilaritg



Distortion — ASAP
ASAP— As Similar As Possible

| SsE |
I\/Ieasu/<e of ar\ws\@ arlt
Jacobian 059
SII‘IZ'II|aI‘It
” c+b)
b+c d—a

(a—d)*+ (b +c)?



Distortion — ASAP
ASAP— As Similar As Possible

| Ss& I3

LSCM = ASAP

”b+c —a



Distortion - ARAP
ARAP- As Rigid As Possible

DARAP = lIA — RallZ

Jac:obianS \/\ Closest

Rotation

How to compute closest Rotation?



Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U S 4l

] 0
(01 02) g > 0y
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Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U S 4l




Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U S 4l

|-



Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U S 4l

U and VV are not rotations!



Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U S RT

(b =)



Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U S RVT




Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U S RVT




Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U S RVT




Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U S RVT

A



Signed Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U S RVT



Signed Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U SR v

o 0
(01 _02) g, > 0,

Now U and V are rotations!



Signed Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U SR v

o 0
(01 _02) g, > 0,

Now U and V are rotations!
What if U and V both had reflections?



Signed Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U SR v

o 0
(01 _02) g, > 0,

Now U and V are rotations!
What if U and V both had reflections?

sign det M = sign(oy)



Singular values in 2D

Closed form expression
9f = d,u Oyu _ Vu
0,V 0yV Vv

Vu + v Vu+>v
a = > 'B= >

oy = llall + 1Al oy = llall = Il



Distortion - ARAP
ARAP- As Rigid As Possible

DARAP = lIA — RallZ

Jac:obianS \/\ Closest

Rotation

How to compute closest Rotation?



Distortion - ARAP
ARAP- As Rigid As Possible

DARAP = lIA — RallZ

Jac:obianS \/\ Closest

Rotation

A=USVT Ra=UVT

Proof: Using Lagrange multipliers



Distortion — ASAP
ASAP— As Similar As Possible

DaSAP = 1A — Sall?

Jac:obianS \/\ Closest

Similarity
A=Usv' Sa=aoUuv’

01 T Oy

O = >



Distortion - ARAP
ARAP- As Rigid As Possible

DARAP = lIA — RallZ

Jac:obianS \/\ Closest

Rotation

A=USVT Ra=UVT

Proof: Using Lagrange multipliers



Distortion - ARAP
ARAP- As Rigid As Possible

DARAP = [A —Rallz = |A—-UVT||7

= ||USVT —UVT||%
= UGS —DVTI3
=IS—D Iz

= (0, — 1)* + (0, — 1)?



Distortion - ASAP
ASAP— As Similar As Possible

DASAP = IIA = S4ll7
= ||USVT —GcUVT||4
= U —aDV"I7
= (0, — 0)* + (0, — 0)°

= (01 — 02)2



Distortion bias

Daspap(4) < Dpspp(24)

(0-1 — 0-2)2 (20-1 o 20—2)2



Conformal distortion

01
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