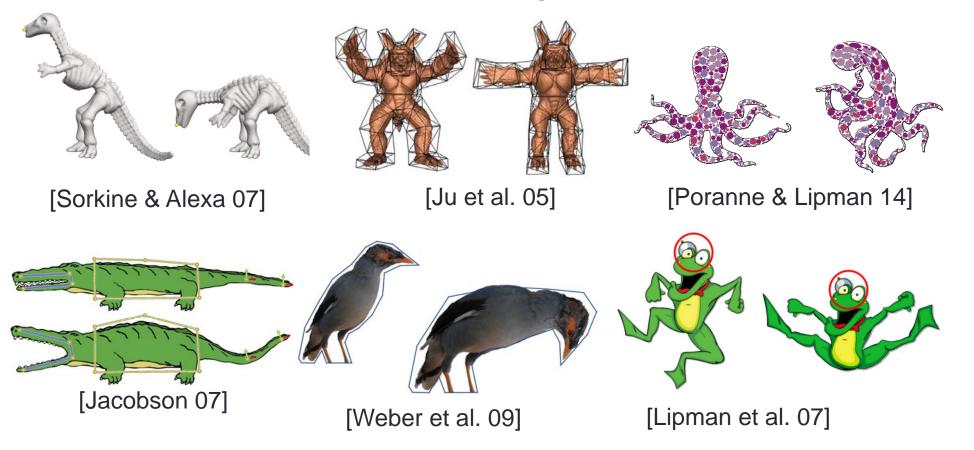
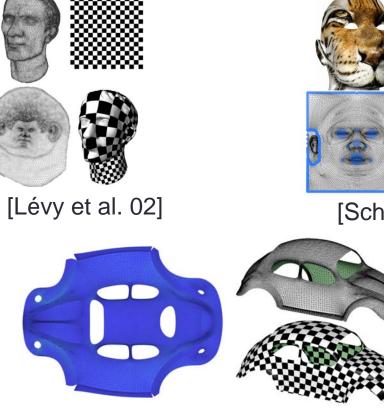
Roi Poranne and Shahar Kovalsky

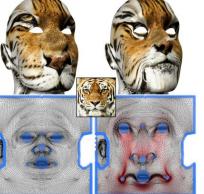
Modeling



Parameterization

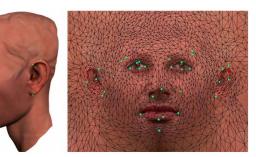


[Mullen et al. 08]



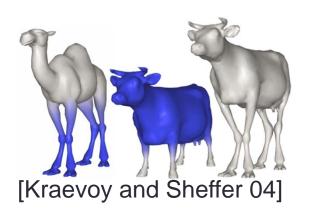
[Schuler et al. 13]

[Fu et al. 15]

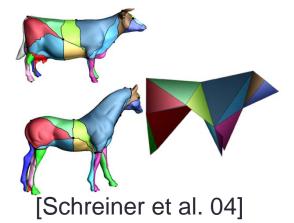


[Weber et al. 12]

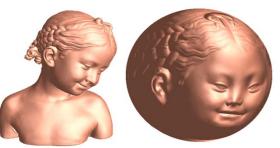
[Kim et al. 11]



[Ovsjanikov et al. 12]



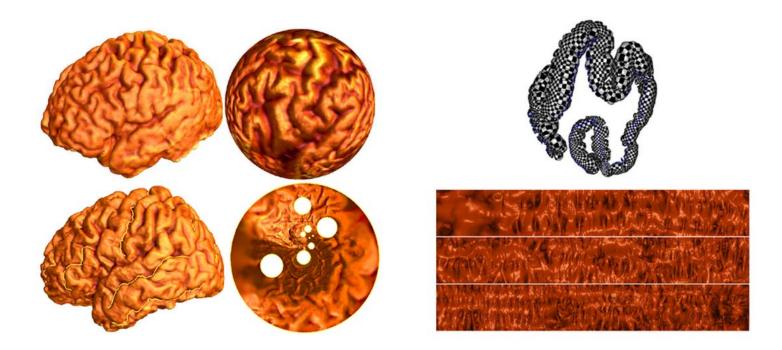
[Panozzo et al. 13]



[Jin et al. 08]

"Real" Applications

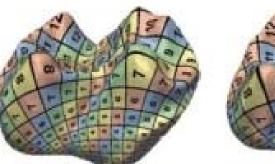
Brain/colon mapping

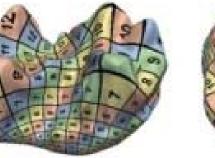


[Gu et al.]

"Real" Applications

Biological Morphology

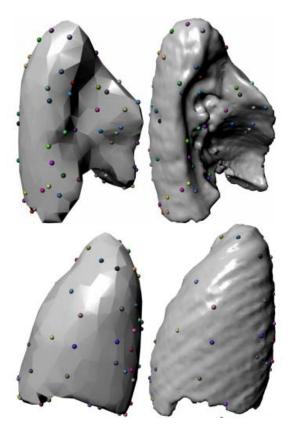


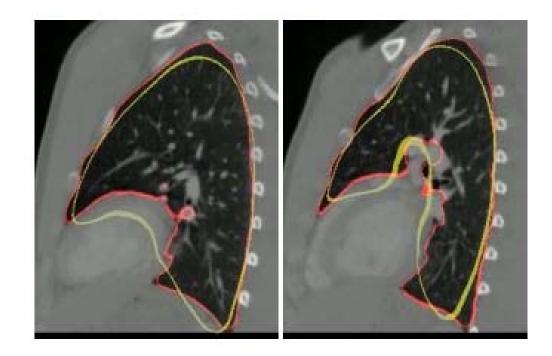


[Boyer et al. 2012]

"Real" Applications

Medical segmentation/registration





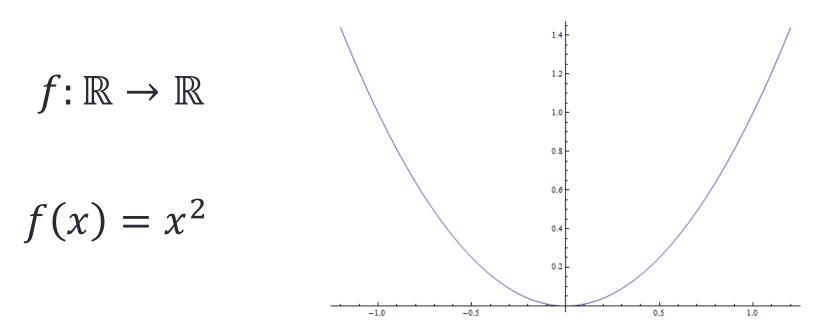
[Levi and Gotsman 12]

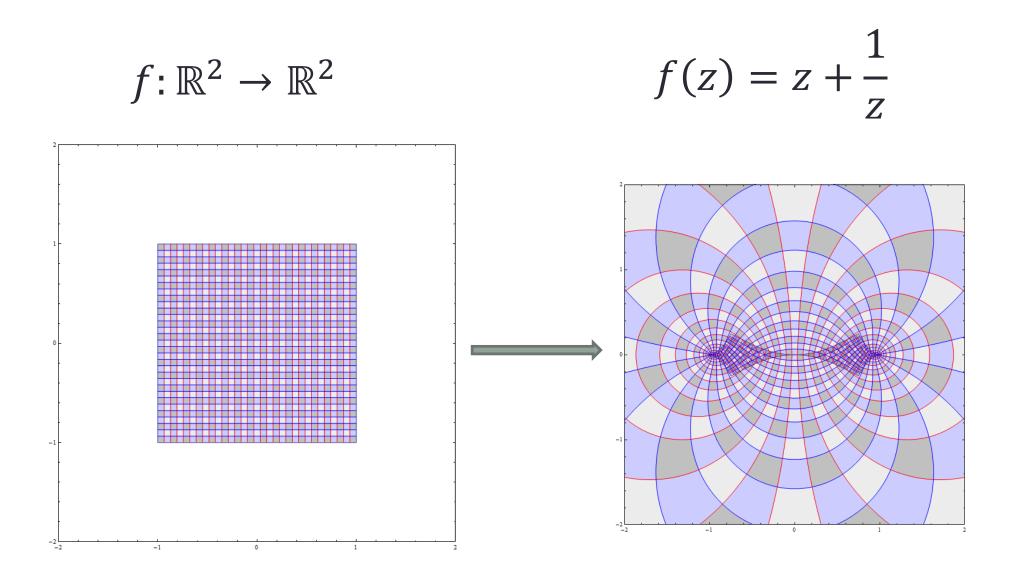
Definition

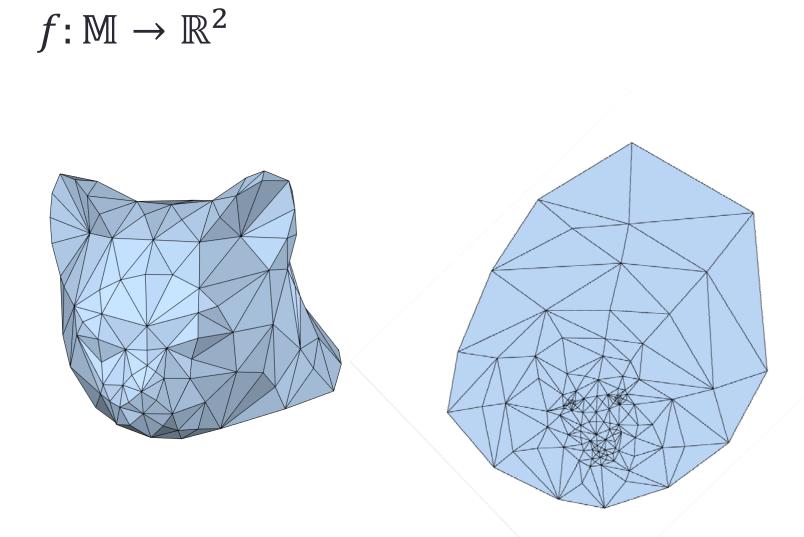
Mapping / Map :

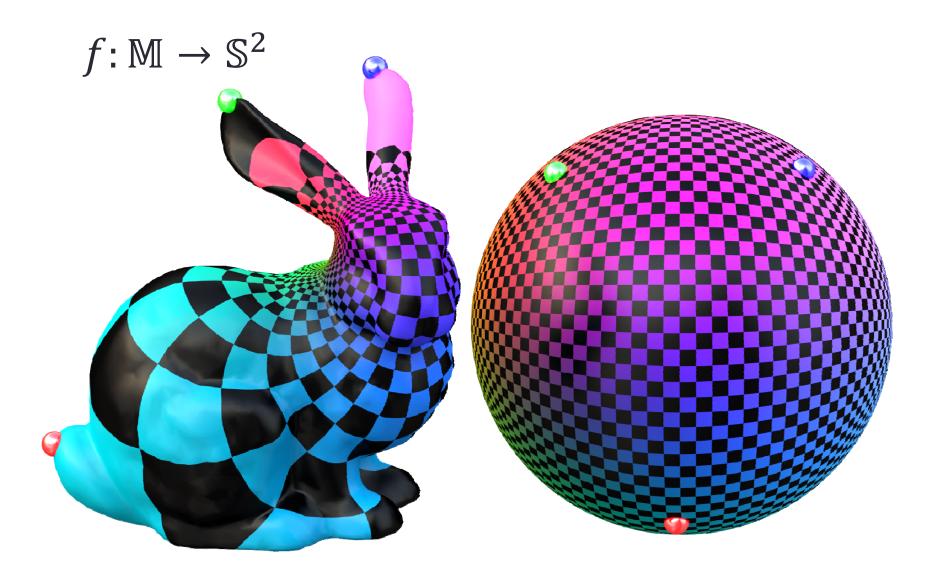
A smooth function between shapes / spaces

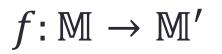
Examples



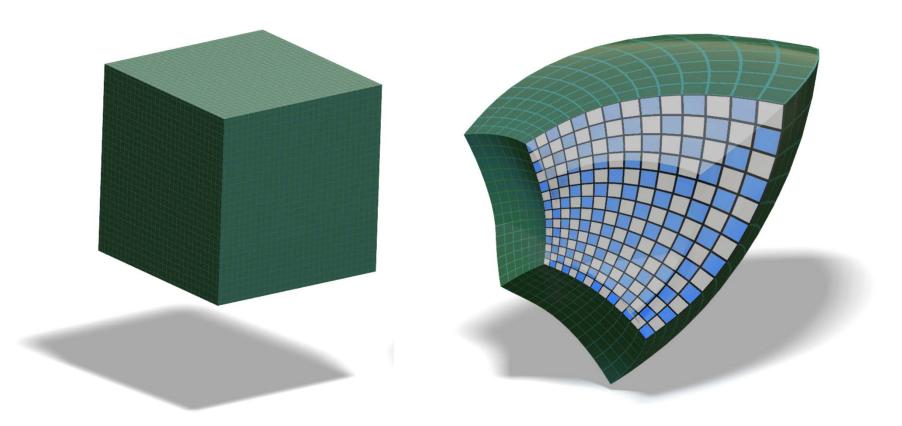








 $f\colon \mathbb{R}^3 \to \mathbb{R}^3$



$$f: \mathbb{R}^3 \to \mathbb{R}^3$$

All cases are based on the same concepts and use similar techniques

Our focus : 2D mappings

Outline

• Roi

- Representation
- Distortion of mappings
- Shahar
 - Optimization of mappings

$$\mathbf{f}(\mathbf{x}) = \begin{pmatrix} u(\mathbf{x}) \\ v(\mathbf{x}) \end{pmatrix}$$

Solution: Represent maps as linear combination of basis functions

The set of all maps $\{f(x): \mathbb{R}^2 \to \mathbb{R}^2\}$ is too big to handle!

 $\mathbf{f}(\mathbf{x}) = \begin{pmatrix} u(\mathbf{x}) \\ v(\mathbf{x}) \end{pmatrix}$

 $f_1, f_2, f_3, \dots, f_n$

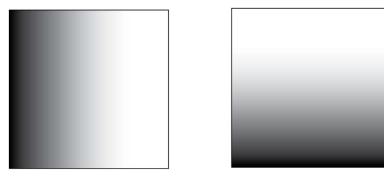
 $f_1, f_2, f_3, \dots, f_n$

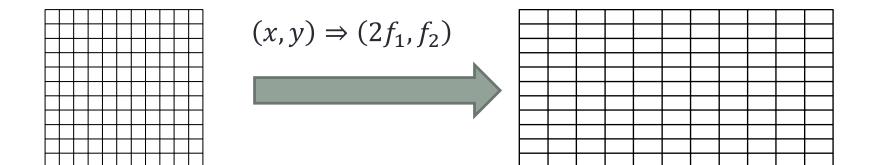
 $\mathbf{f}(\mathbf{x}) = \begin{pmatrix} u(\mathbf{x}) \\ v(\mathbf{x}) \end{pmatrix}$

 $f_1, f_2, f_3, \dots, f_n$

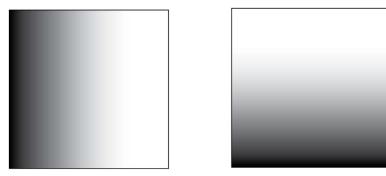
 $\mathbf{f}(\mathbf{x}) = \begin{pmatrix} u(\mathbf{x}) \\ v(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} \sum a_i f_i(\mathbf{x}) \\ \sum b_i f_i(\mathbf{x}) \end{pmatrix}$

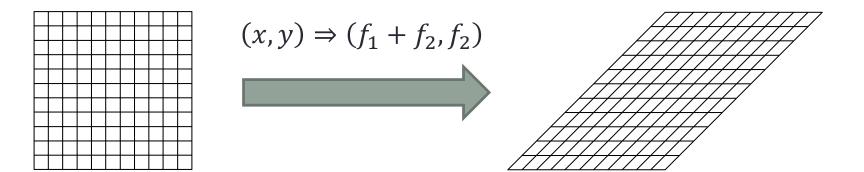
$$f_1(x, y) = x$$
 $f_2(x, y) = y$



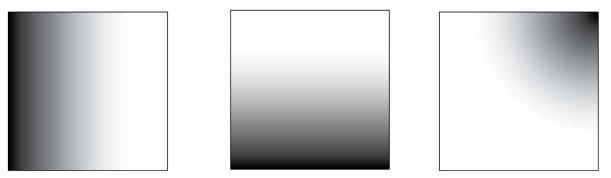


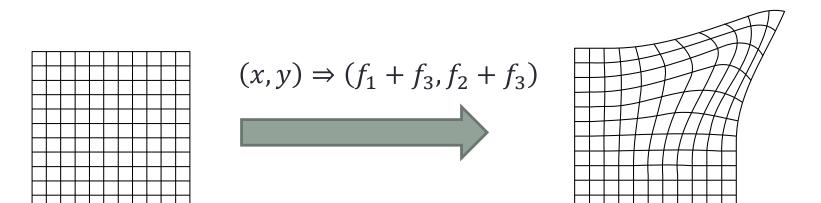
$$f_1(x, y) = x$$
 $f_2(x, y) = y$

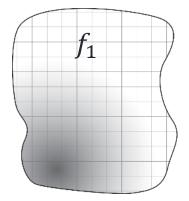


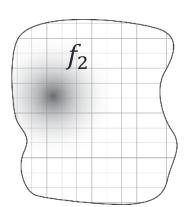


$$f_1(x,y) = x$$
 $f_2(x,y) = y$ $f_3(x,y)$

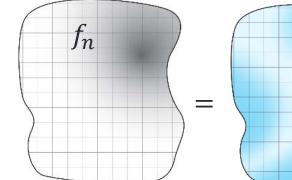


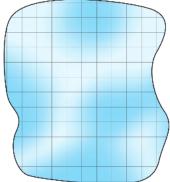


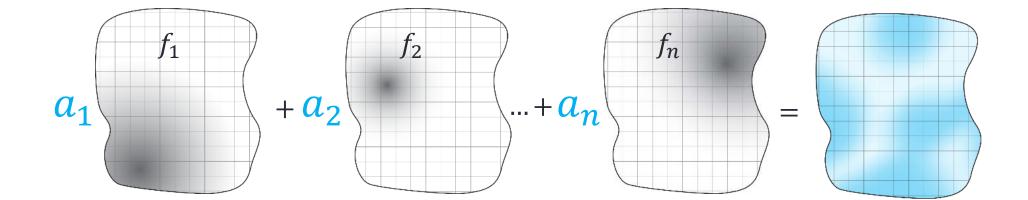


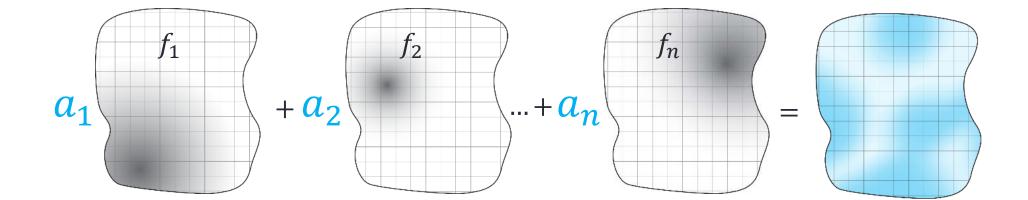


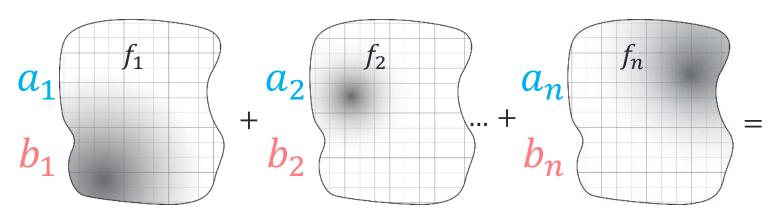
...

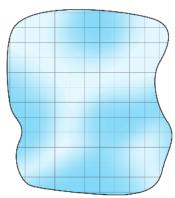


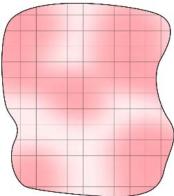


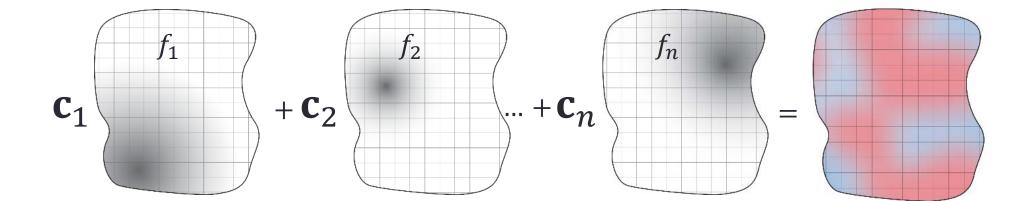










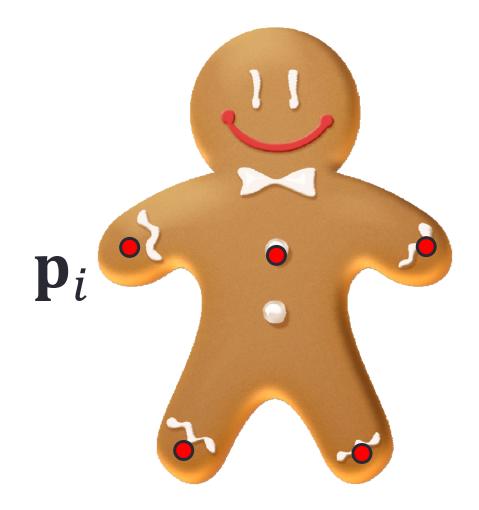


$$\mathbf{f}(\mathbf{x}) = \begin{pmatrix} \sum_{i=1}^{n} a_{i} f_{i}(\mathbf{x}) \\ \sum_{i=1}^{n} c_{i} f_{i}(\mathbf{x}) \\ b_{i} f_{i}(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \end{pmatrix}$$

$$\mathbf{f}(\mathbf{x}) = \begin{pmatrix} \sum a_i f_i(\mathbf{x}) \\ \sum b_i f_i(\mathbf{x}) \end{pmatrix} = \sum \mathbf{c}_i f_i(\mathbf{x}) = \begin{pmatrix} a_i f_i(\mathbf{x}) \\ a_i f_i(\mathbf{x}) \end{pmatrix}$$

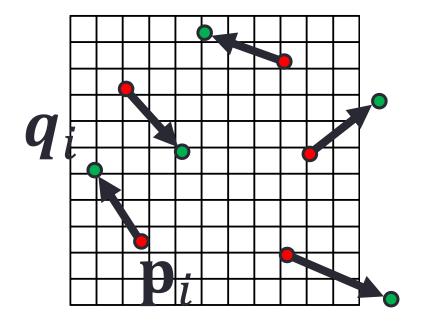
$$\mathbf{f}(\mathbf{x}) = \begin{pmatrix} \sum a_i f_i(\mathbf{x}) \\ \sum b_i f_i(\mathbf{x}) \end{pmatrix} = \sum \mathbf{c}_i f_i(\mathbf{x}) = \mathbf{c}_i f_i(\mathbf{x}) = \mathbf{c}_i f_i(\mathbf{x})$$

Mappings for deformations



Mappings for deformations

Deformation as an interpolation problem



 $\mathbf{f}(\mathbf{p}_i) = \sum \mathbf{c}_i f_i(\mathbf{x})$ **c**_{*i*} =? $\mathbf{f}(\mathbf{p}_i) = \mathbf{q}_i, \forall i$

$$\sum \mathbf{c}_i f_i(\mathbf{p}_i) = \mathbf{q}_i, \forall i$$

Example: Thin Plate Spline

Solve the problem

$$\min E_{\text{TPS}}(\mathbf{f}) = \iint \left[\left(\frac{\partial^2 \mathbf{f}}{\partial x^2} \right)^2 + 2 \left(\frac{\partial^2 \mathbf{f}}{\partial x \partial y} \right)^2 + \left(\frac{\partial^2 \mathbf{f}}{\partial y^2} \right)^2 \right]$$

Bending energy

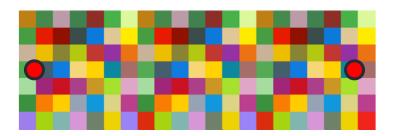
s.t. $\mathbf{f}(\mathbf{p}_i) = \mathbf{q}_i, \forall i$

General solution

$$\mathbf{f}(\mathbf{p}_i) = \mathbf{c}_0 + \mathbf{c}_x \mathbf{x} + \mathbf{c}_y \mathbf{y} + \sum_{i=1}^{n} \mathbf{c}_i \phi(\|\mathbf{x} - \mathbf{p}_i\|)$$
$$\phi(r) = r^2 \log r$$

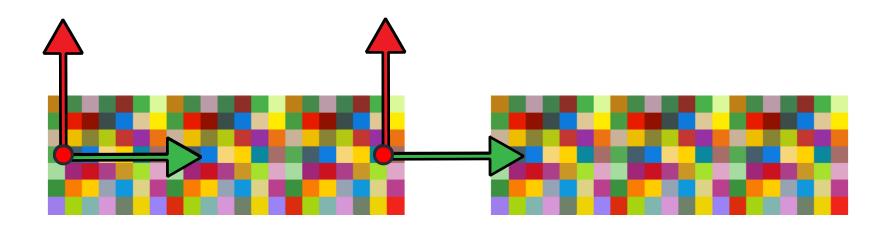
Hermite interpolation

Interpolate derivatives



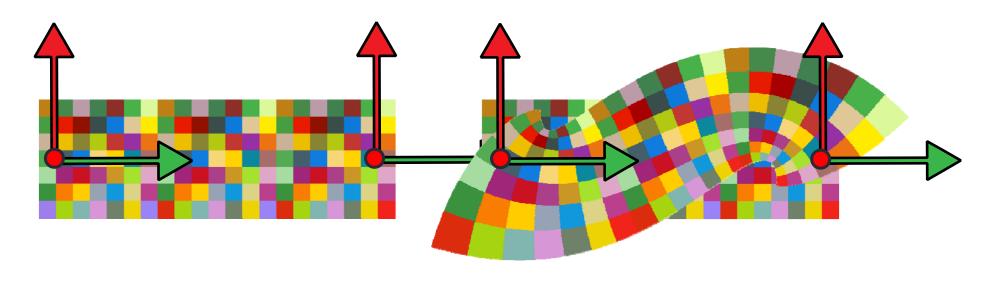
Hermite interpolation

Interpolate derivatives



Hermite interpolation

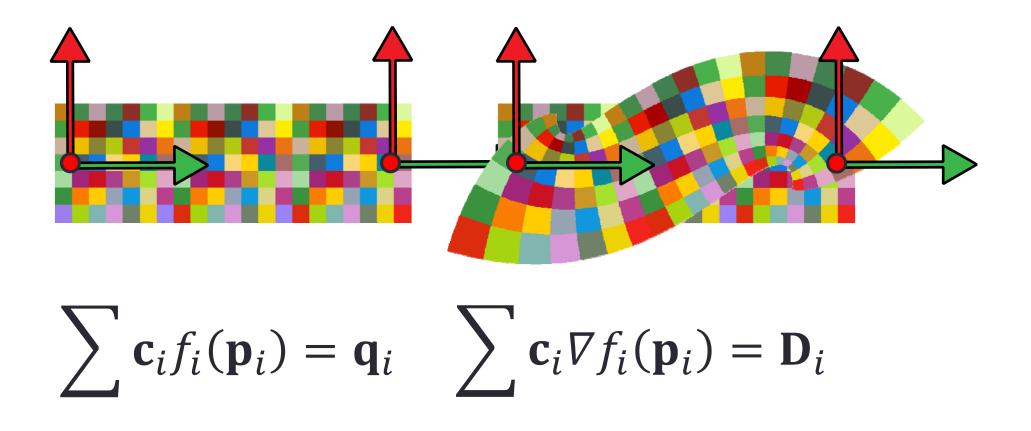
Interpolate derivatives



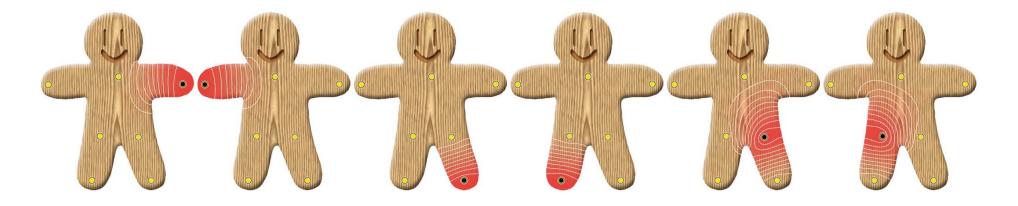
 $\mathbf{f}(\mathbf{p}_i) = \mathbf{q}_i \qquad \mathbf{D}\mathbf{f}(\mathbf{p}_i) = \mathbf{D}_i$

Hermite interpolation

Interpolate derivatives



Example: Linear Blend Skinning



$$\mathbf{f}(\mathbf{x}) = \sum_{i=1}^{N} w_i(\mathbf{x})(\mathbf{T}_i \mathbf{x} + \mathbf{q}_i)$$
Weights
Weights
Affine
transformations

Example: Linear Blend Skinning

$$\mathbf{f}(\mathbf{x}) = \sum w_i(\mathbf{x})(\mathbf{T}_i \mathbf{x} + \mathbf{q}_i)$$

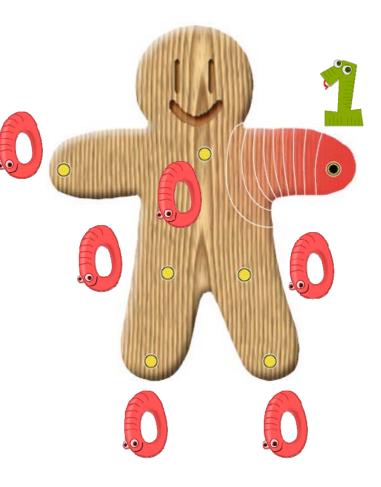
Example: Linear Blend Skinning

$$\mathbf{f}(\mathbf{x}) = \sum w_i(\mathbf{x})(\mathbf{T}_i \mathbf{x} + \mathbf{q}_i)$$

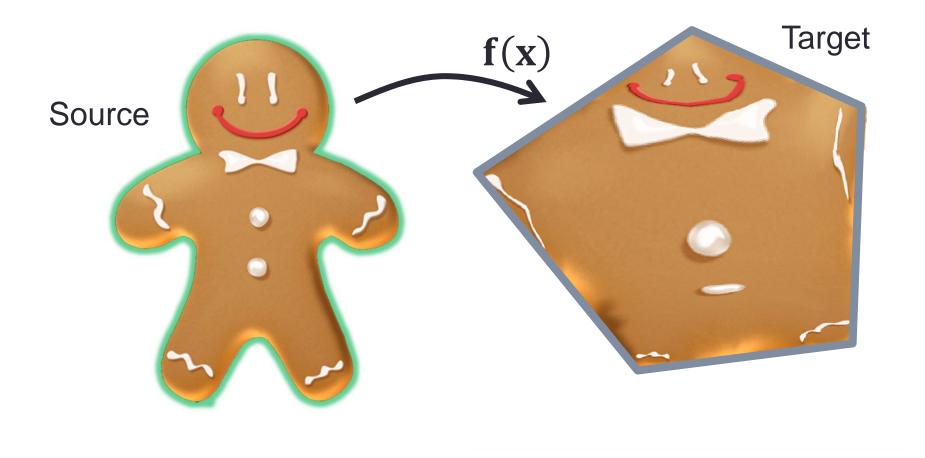
Lagrange property $w_i(\mathbf{p}_j) = \delta_{ij}$

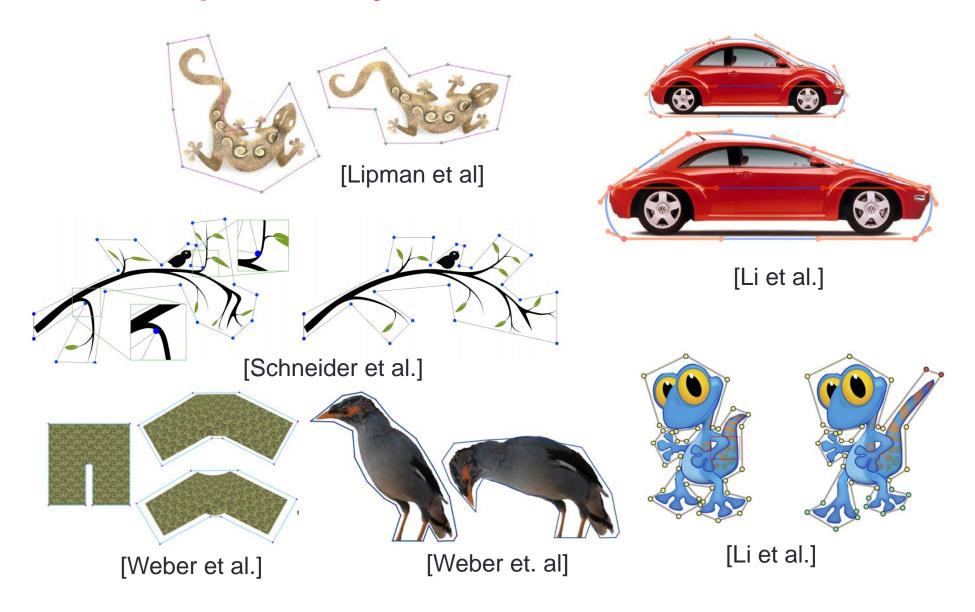
Hermite (derivative) property

$$\nabla w_i(\mathbf{p}_j) = \mathbf{0}$$



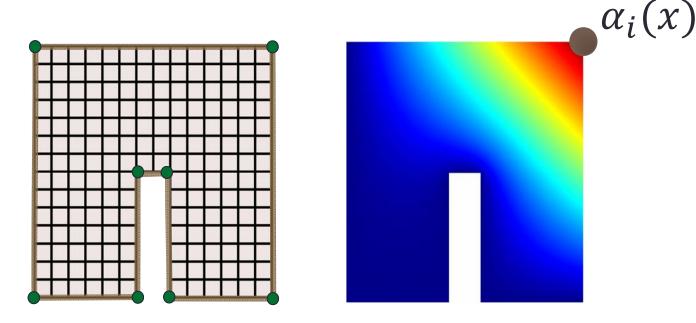
Deformation as an boundary interpolation





Stages:

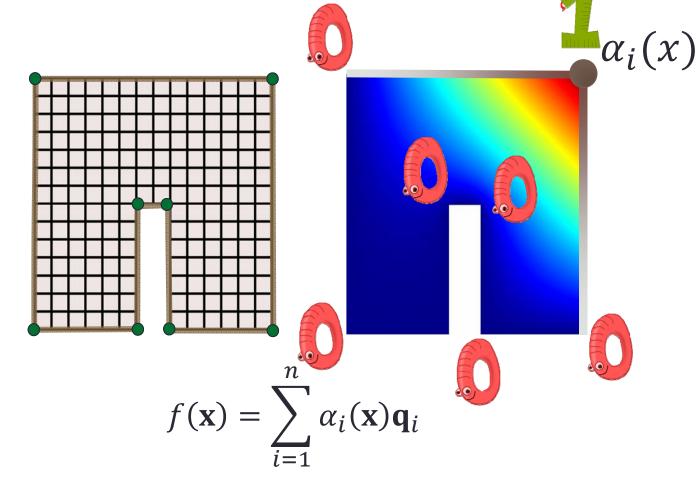
- Source shape
- Polygonal cage
- Coordinates



$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i(\mathbf{x}) \mathbf{q}_i$$

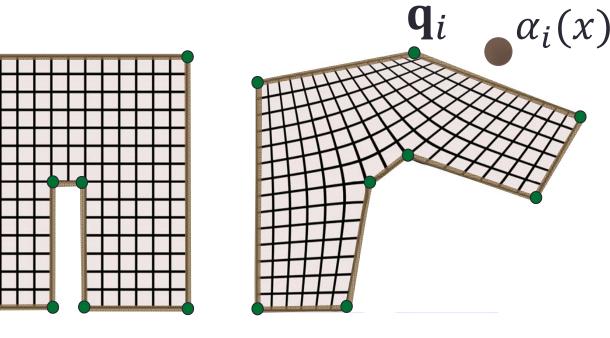
Stages:

- Source shape
- Polygonal cage
- Coordinates

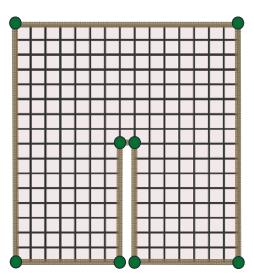


Stages:

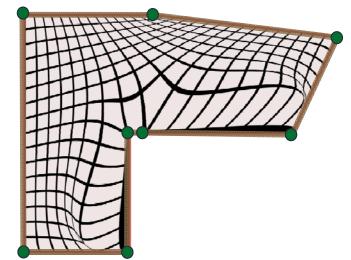
- Source shape
- Polygonal cage
- Coordinates
- Manipulate cage
- Apply deformation



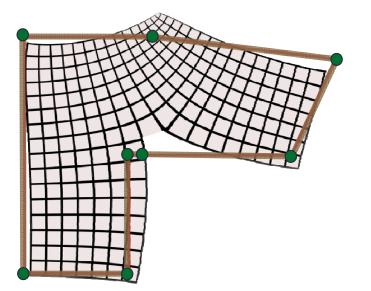
$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i(\mathbf{x}) \mathbf{q}_i$$



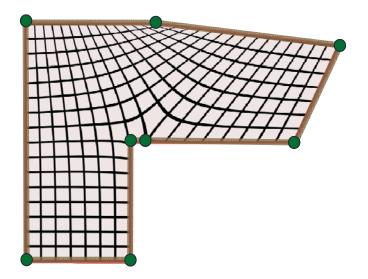
Mean-value coordinates



Cauchy coordinates

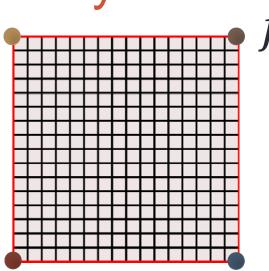


Harmonic coordinates

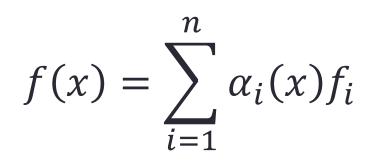


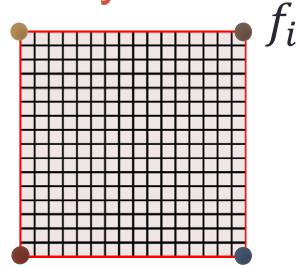
Example: Hermite Bary' Coordinates f_i

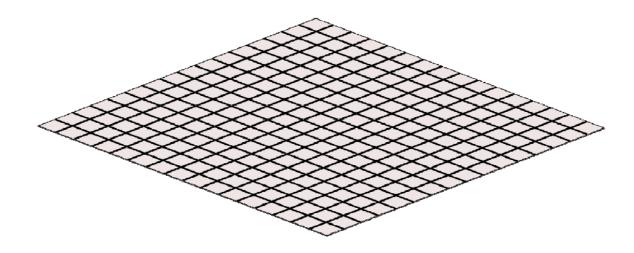
$$f(x) = \sum_{i=1}^{n} \alpha_i(x) f_i$$

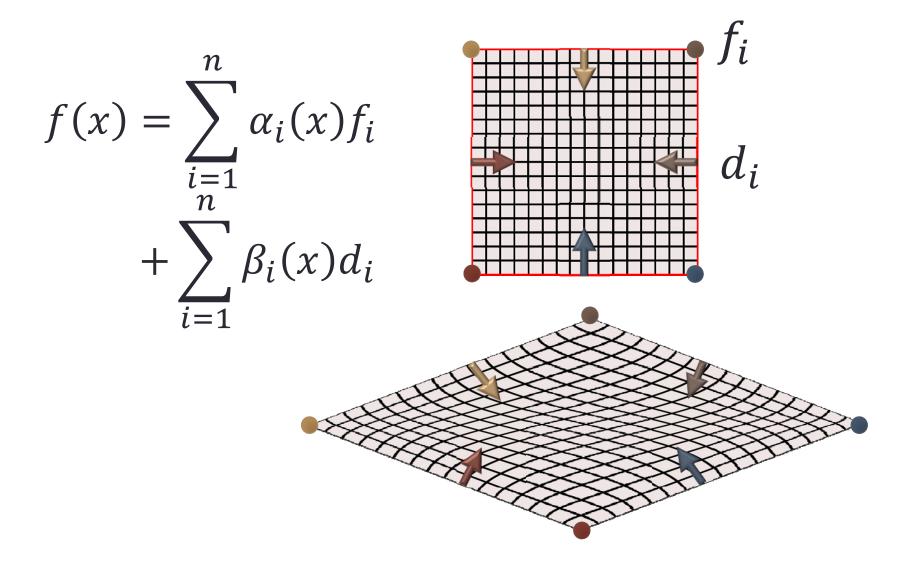


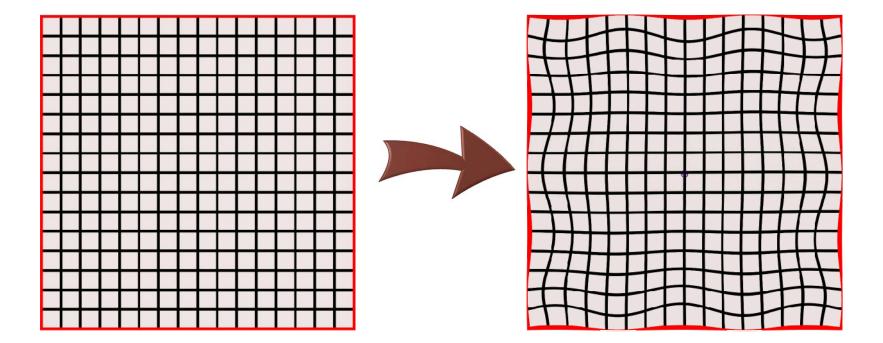
Example: Hermite Bary' Coordinates

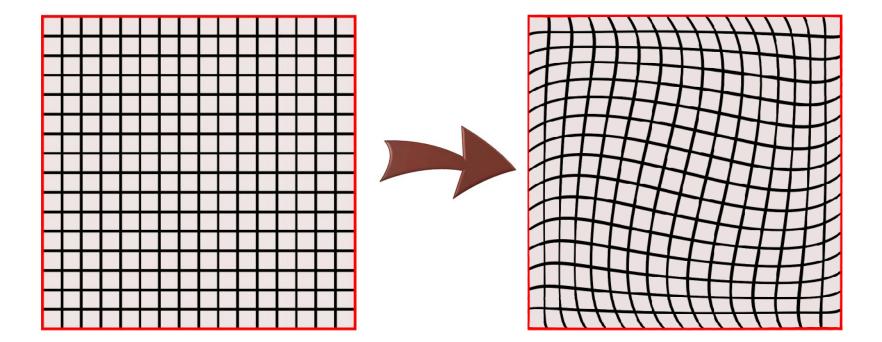


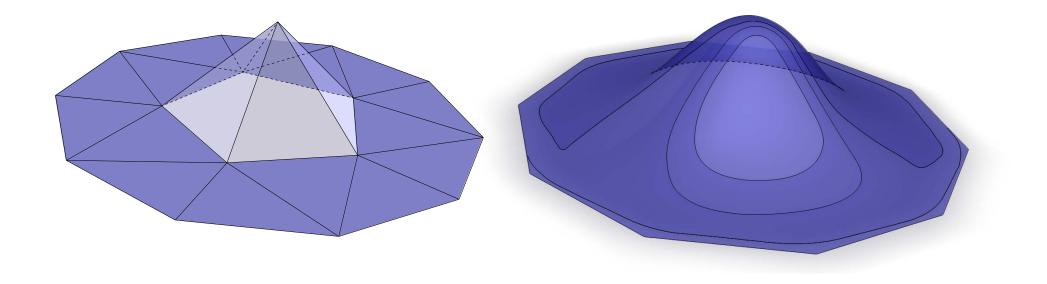






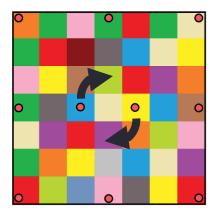






What are good maps?

Low distortion



Not Bijective

Bijective

Lower distortion

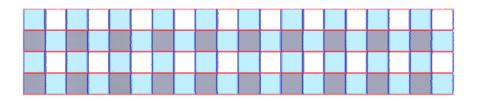
Globally Bijective Locally Bijective

f is bijective

 $f {:} U \to f(U)$ is bijective

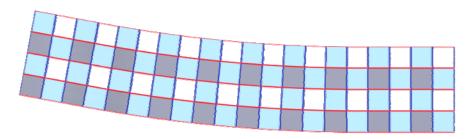
Globally	Locally
Bijective	Bijective

f is bijective $f: U \to f(U)$ is bijective



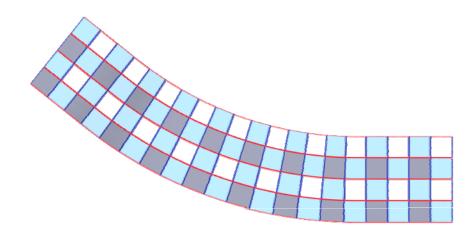
Globally	Locally
Bijective	Bijective

 $f \text{ is bijective } \quad f: U \to f(U) \text{ is bijective}$



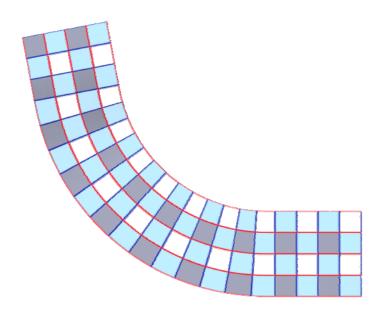
Globally	Locally
Bijective	Bijective

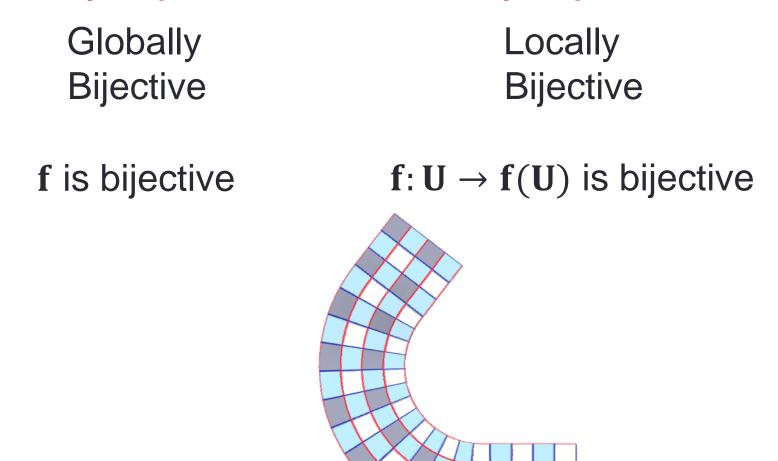
f is bijective $f: U \to f(U)$ is bijective



Globally	Locally
Bijective	Bijective

f is bijective $f: U \to f(U)$ is bijective

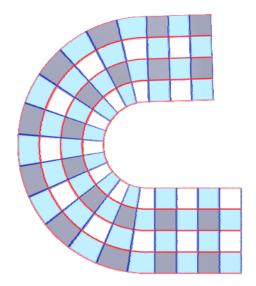




Globally	Locally
Bijective	Bijective

 $f \text{ is bijective } \quad f: U \to f(U) \text{ is bijective}$

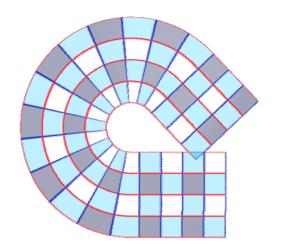
Still Bijective!



Globally	Locally
Bijective	Bijective

f is bijective

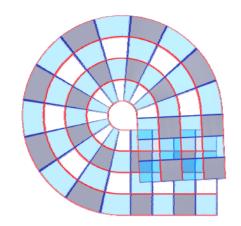
 $f: U \rightarrow f(U)$ is bijective



Globally	Locally
Bijective	Bijective

f is bijective

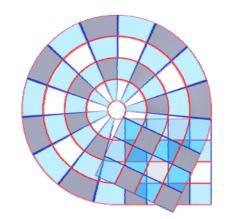
 $f: U \rightarrow f(U)$ is bijective



Globally	Locally
Bijective	Bijective

f is bijective

 $f: U \rightarrow f(U)$ is bijective

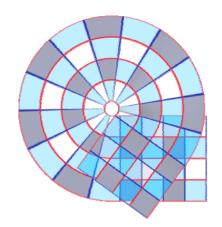


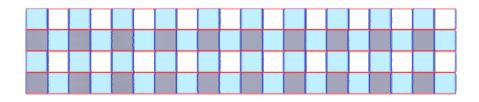
Globally	Locally
Bijective	Bijective

f is bijective $f: U \rightarrow f($

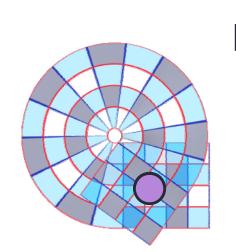
$f: U \rightarrow f(U)$ is bijective

Not Bijective!

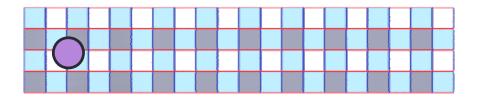




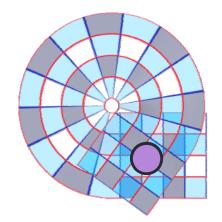
Not Bijective!

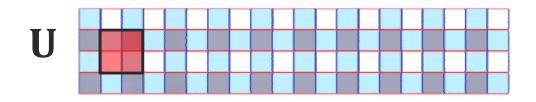


Two Pre-images

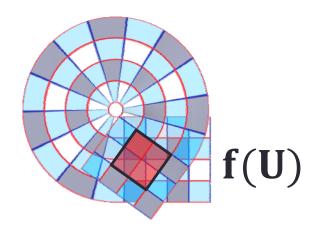


Not Bijective!

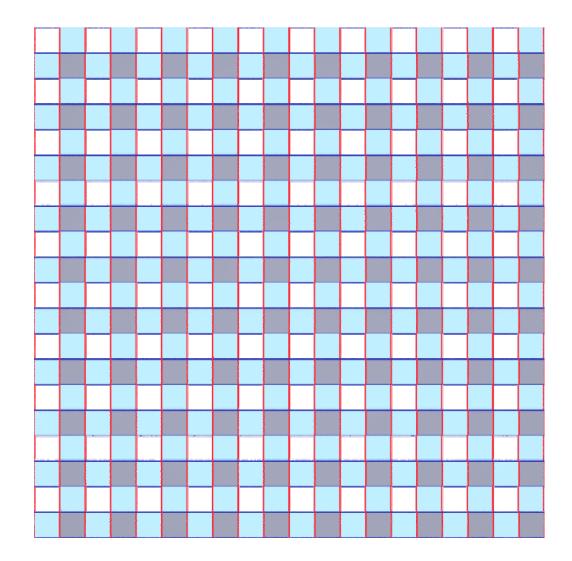




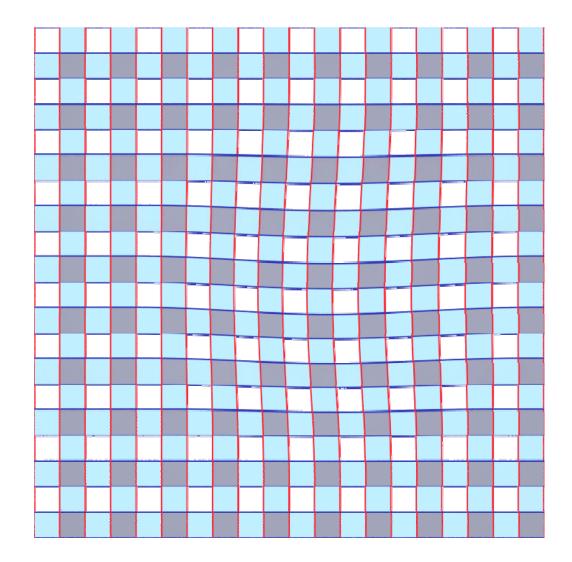
Only Locally Bijective!



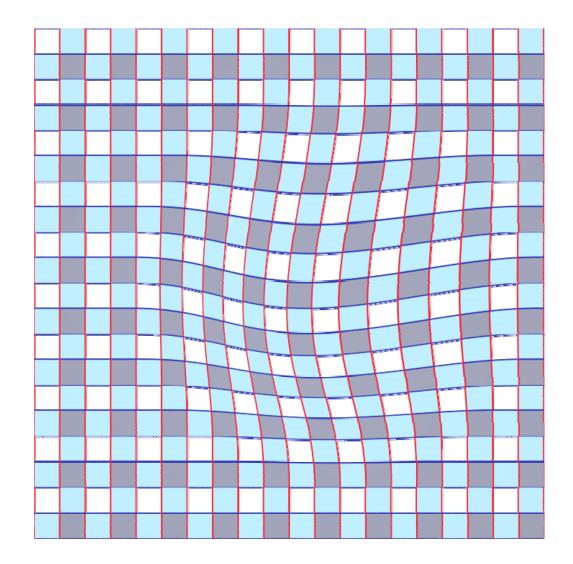
Locally Bijection – Non-example

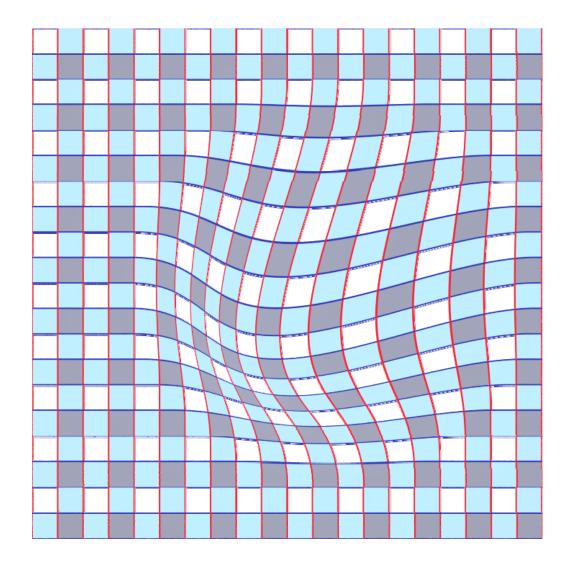


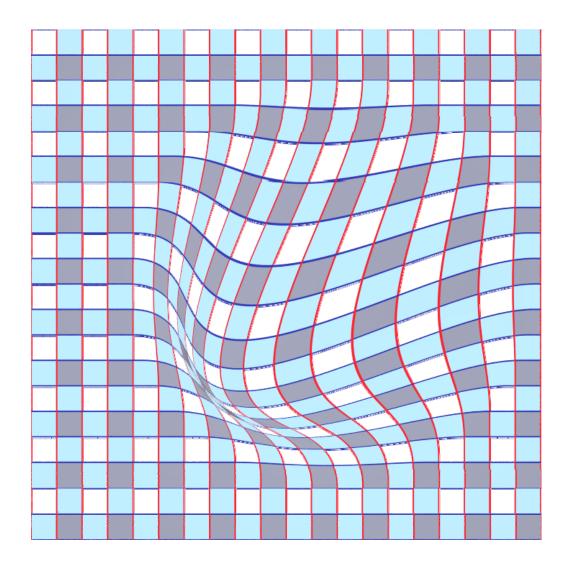
Locally Bijection – Non-example

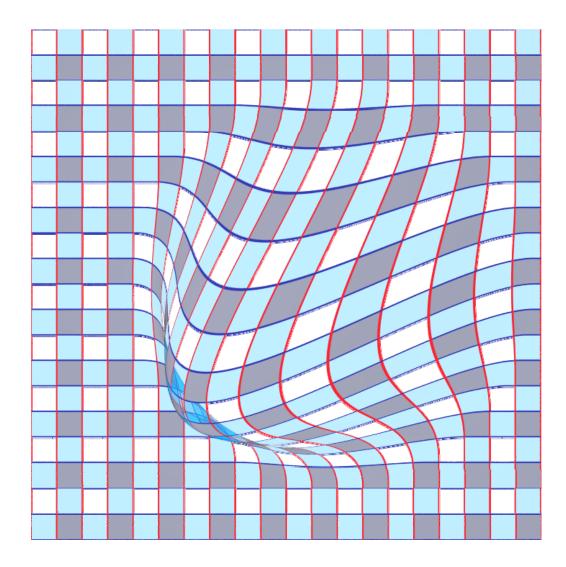


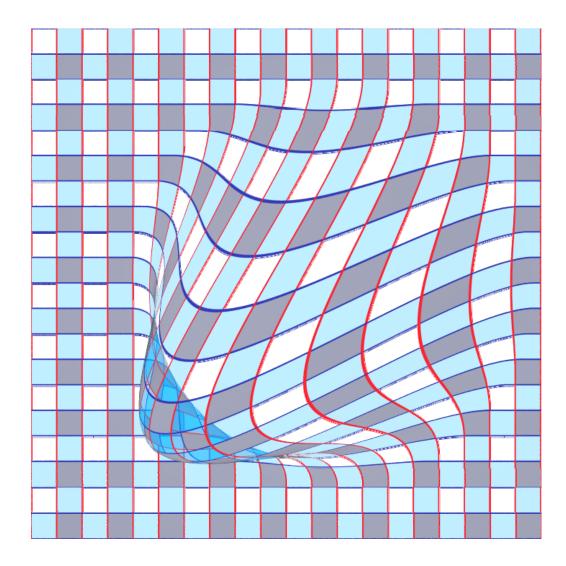
Locally Bijection – Non-example

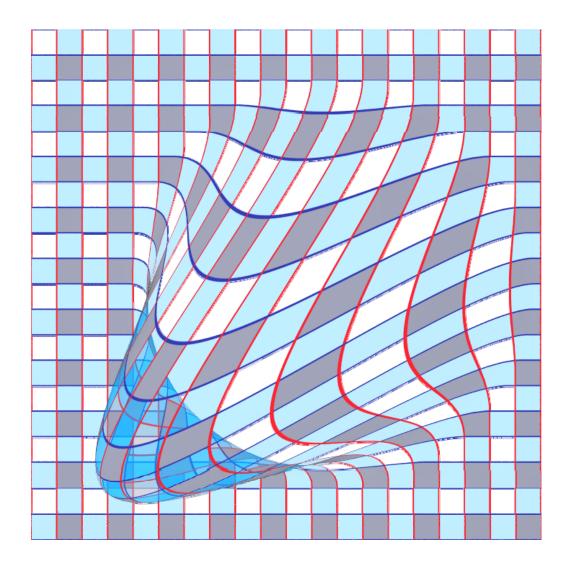


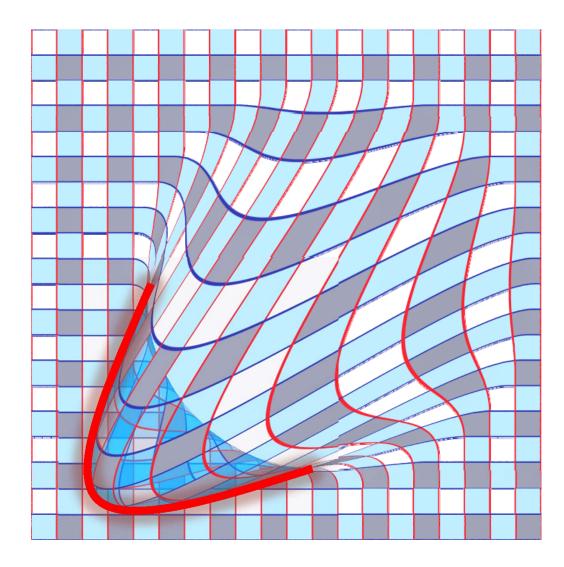




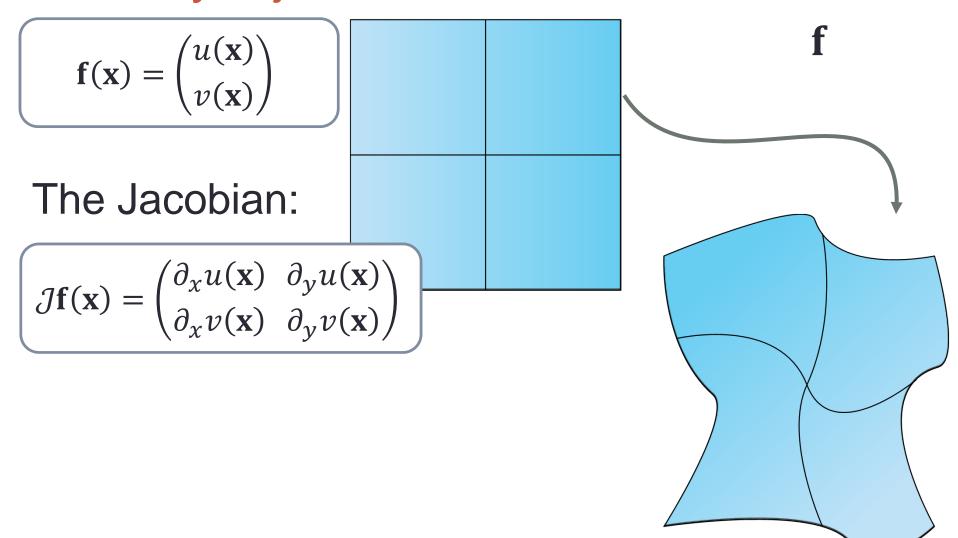




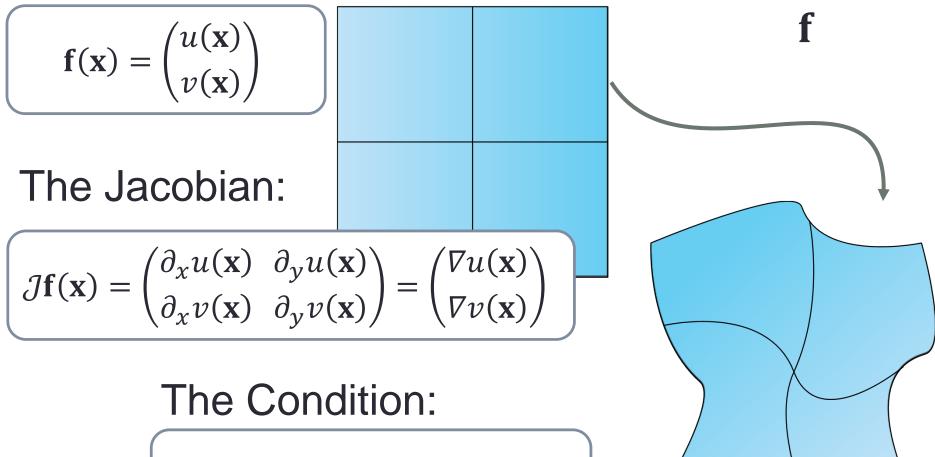




Locally Bijection – Sufficient condition



Locally Bijection – Sufficient condition



$$\det \mathcal{J}\mathbf{f}(\mathbf{x}) > 0, \forall x$$

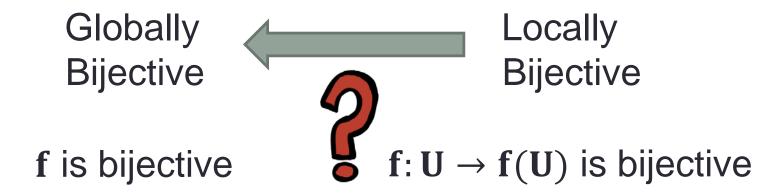
Globally Bijective VS. Locally Bijective

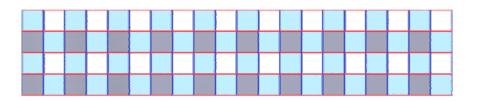
Globally Bijective Locally Bijective

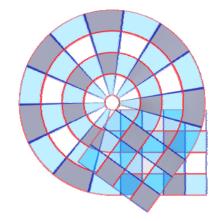
f is bijective

 $f {:} U \to f(U)$ is bijective

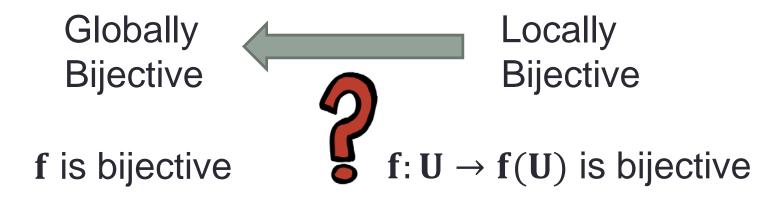
Globally Bijective VS. Locally Bijective







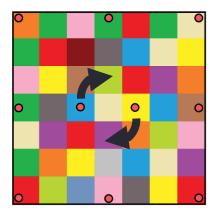
Globally Bijective VS. Locally Bijective



Google: "Global inversion theorems"

What are good maps?

Low distortion

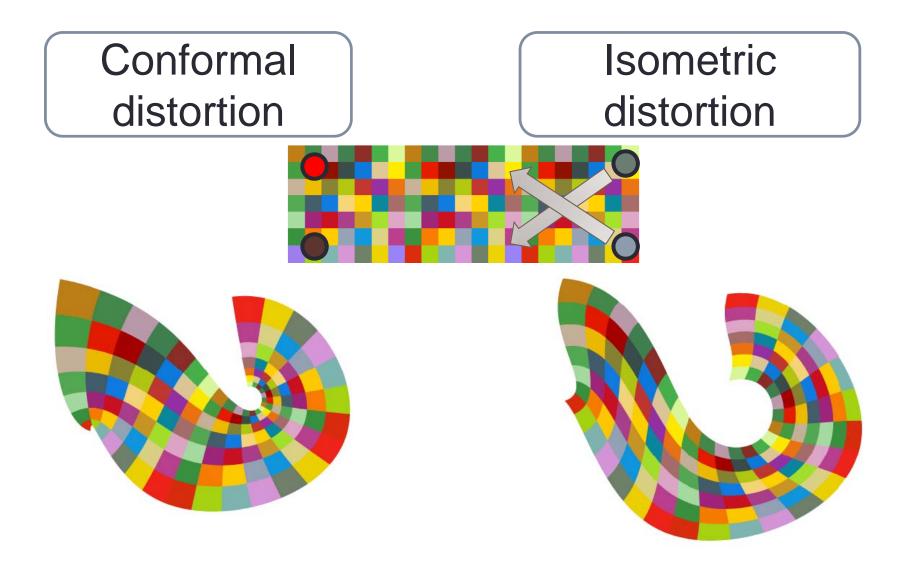


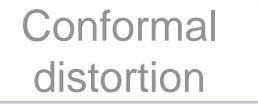
Not Bijective

Bijective

Lower distortion

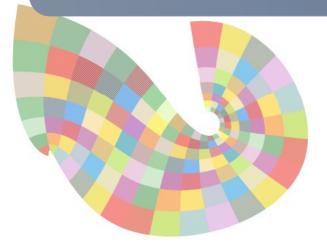
Distortion - Types





Isometric distortion

The distortion is a function of the Jacobian at a point



Distortion - LSCM

LSCM – Least Squares Conformal Map

We want the Jacobian

$$\begin{pmatrix} \partial_x u & \partial_y u \\ \partial_x v & \partial_y v \end{pmatrix}$$

to be a similarity matrix

$$\begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$$

$$\partial_x u = \partial_y v$$
 Cauchy-Riemann
 $\partial_y u = -\partial_x v$ Equations

Distortion - LSCM

LSCM – Least Squares Conformal Map

We want the Jacobian $(\partial_x u \ \partial_y u)$

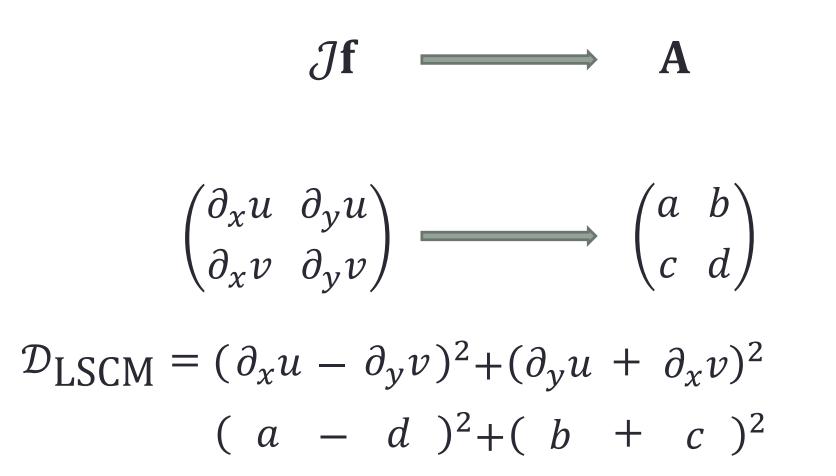
 $\begin{pmatrix} \partial_x u & \partial_y u \\ \partial_x v & \partial_y v \end{pmatrix}$

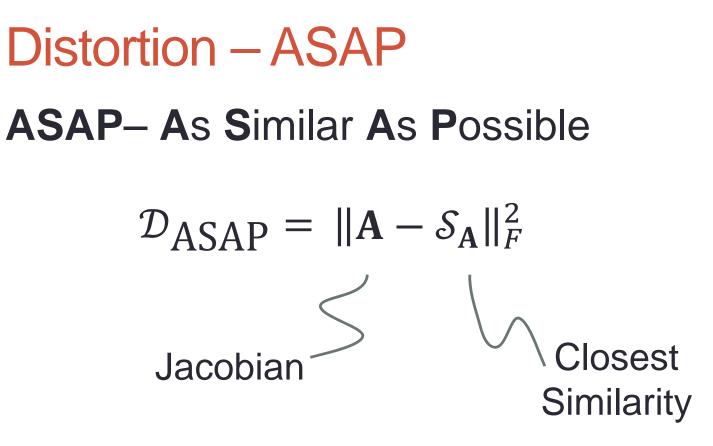
to be a similarity matrix

$$\begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$$

$$\mathcal{D}_{\text{LSCM}} = (\partial_x u - \partial_y v)^2 + (\partial_y u + \partial_x v)^2$$

Quick Notation Change





How to compute closest similarity?

Distortion – ASAP ASAP– As Similar As Possible

How to compute closest similarity?

Distortion – ASAP

ASAP– As Similar As Possible How to compute closest similarity?

In 2D:

 $\min_{\mathcal{S}} \|\mathbf{A} - \mathcal{S}\|_F^2$
s.t. \mathcal{S} is similarity

$$\min_{\alpha,\beta} \left\| \begin{pmatrix} a & b \\ c & d \end{pmatrix} - \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix} \right\|_{F}^{2}$$

Distortion – ASAP ASAP– As Similar As Possible How to compute closest similarity? In 2D:

 $\min_{\mathcal{S}} \|\mathbf{A} - \mathcal{S}\|_F^2$
s.t. \mathcal{S} is similarity

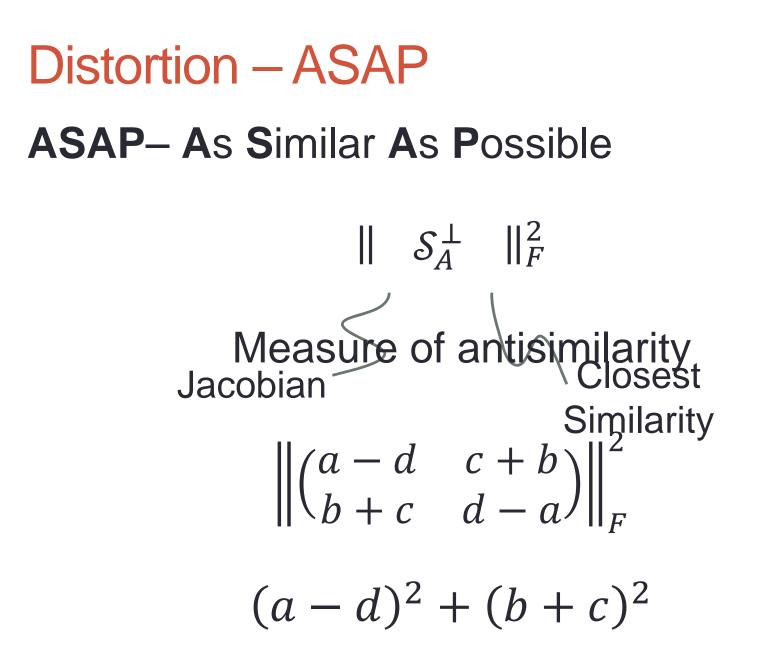
$$S = \frac{1}{2} \begin{pmatrix} a+d & c-b \\ b-c & a+d \end{pmatrix}$$

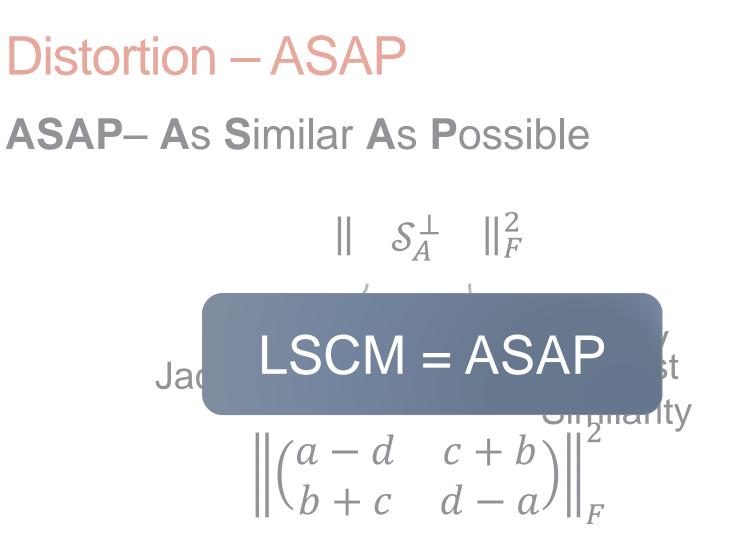
Distortion – ASAP ASAP– As Similar As Possible How to compute closest similarity? In 2D:

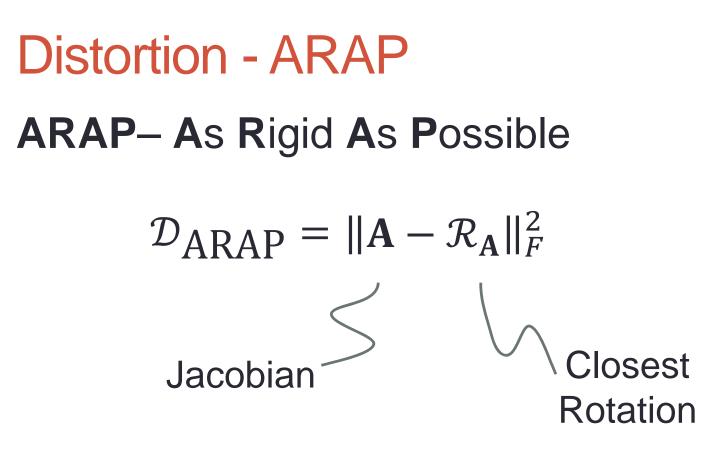
$$\mathbf{A} = \frac{1}{2} \begin{pmatrix} a + d & c - b \\ b - c & a + d \end{pmatrix} + \frac{1}{2} \begin{pmatrix} a - d & c + b \\ b + c & d - a \end{pmatrix}$$

Distortion – ASAP ASAP– As Similar As Possible How to compute closest similarity? In 2D:

$$S_{A} \qquad \qquad S_{A}^{\perp}$$
$$\mathbf{A} = \frac{1}{2} \begin{pmatrix} a+d & c-b \\ b & \text{Similarity} & d \end{pmatrix} + \frac{1}{2} \begin{pmatrix} a-d & c+b \\ b & \text{Similarity} \end{pmatrix}$$





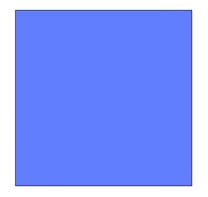


How to compute closest Rotation?

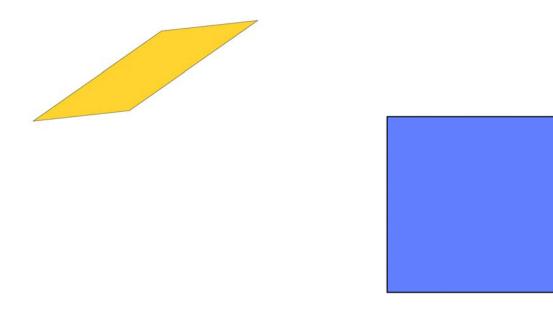
Every Matrix *M* has a factorization of the form

$$M = U \qquad S \qquad V^{T}$$
$$\begin{pmatrix} \sigma_{1} & 0 \\ 0 & \sigma_{2} \end{pmatrix} \qquad \sigma_{1} > \sigma_{2}$$

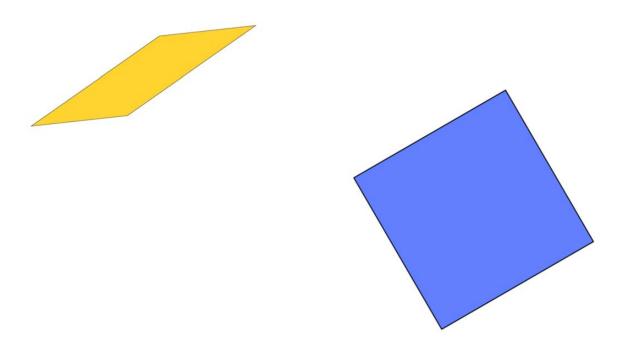
Every Matrix *M* has a factorization of the form



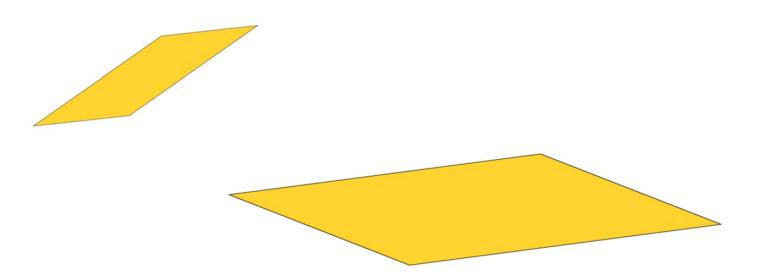
Every Matrix M has a factorization of the form



Every Matrix *M* has a factorization of the form



Every Matrix *M* has a factorization of the form



Every Matrix *M* has a factorization of the form

$$M = U \qquad S \qquad V^T$$

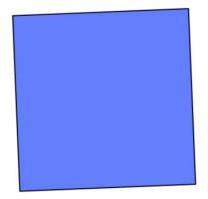
U and V are not rotations!

Every Matrix *M* has a factorization of the form

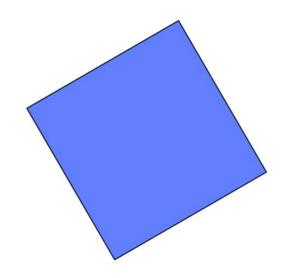
$$M = U \qquad S \qquad \mathbf{R}^T$$

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

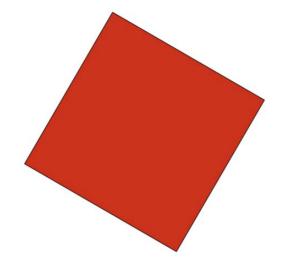
Every Matrix *M* has a factorization of the form



Every Matrix *M* has a factorization of the form



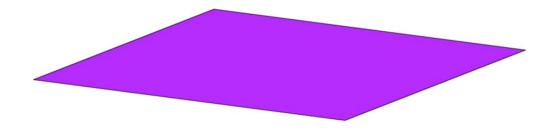
Every Matrix *M* has a factorization of the form



Singular Value Decomposition

Every Matrix *M* has a factorization of the form

 $M = U \qquad S \qquad RV^T$



Signed Singular Value Decomposition

Every Matrix *M* has a factorization of the form

$$M = U \qquad S \qquad RV^T$$

Signed Singular Value Decomposition Every Matrix *M* has a factorization of the form $M = U \qquad SR \qquad V^T$ $\begin{pmatrix} \sigma_1 & 0 \\ 0 & -\sigma_2 \end{pmatrix} \sigma_1 > \sigma_2$

Now U and V are rotations!

Signed Singular Value Decomposition

Every Matrix *M* has a factorization of the form

$$M = U \qquad SR \qquad V^{T}$$
$$\begin{pmatrix} \sigma_{1} & 0 \\ 0 & -\sigma_{2} \end{pmatrix} \sigma_{1} > \sigma_{2}$$

Now U and V are rotations! What if U and V both had reflections?

Signed Singular Value Decomposition

Every Matrix *M* has a factorization of the form

$$M = U \qquad SR \qquad V^{T}$$
$$\begin{pmatrix} \sigma_{1} & 0 \\ 0 & -\sigma_{2} \end{pmatrix} \sigma_{1} > \sigma_{2}$$

Now *U* and *V* are rotations! What if *U* and *V* both had reflections? sign det $M = sign(\sigma_2)$

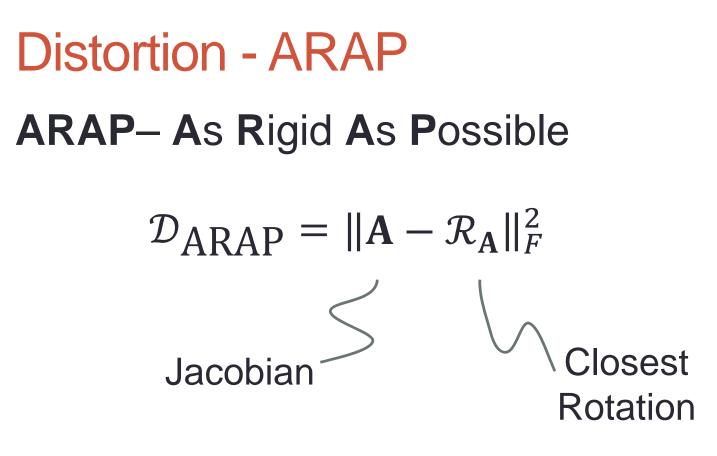
Singular values in 2D

Closed form expression

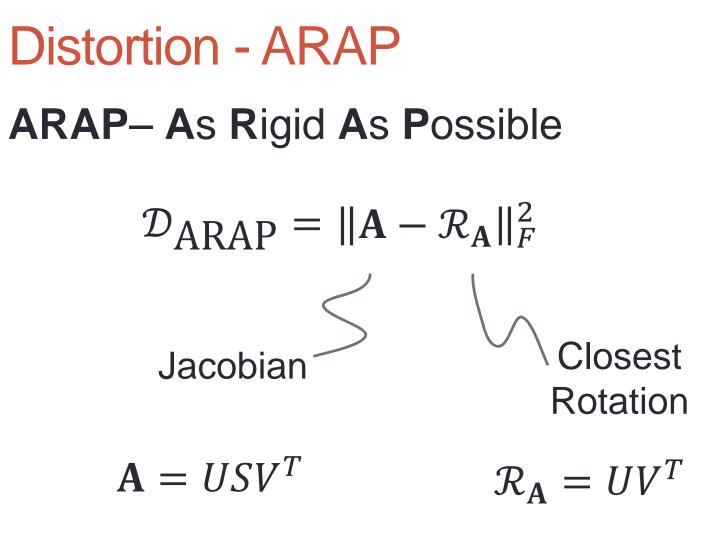
$$\mathcal{J}\mathbf{f} = \begin{pmatrix} \partial_x u & \partial_y u \\ \partial_x v & \partial_y v \end{pmatrix} = \begin{pmatrix} \nabla u \\ \nabla v \end{pmatrix}$$

$$\alpha = \frac{\nabla u + \neg v}{2} \qquad \qquad \beta = \frac{\nabla u + \triangleright v}{2}$$

 $\sigma_1 = \|\alpha\| + \|\beta\| \qquad \qquad \sigma_2 = \|\alpha\| - \|\beta\|$

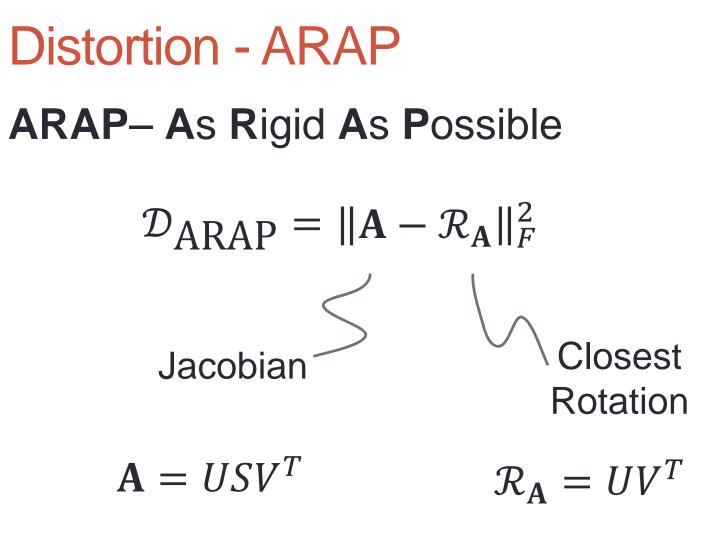


How to compute closest Rotation?



Proof: Using Lagrange multipliers

Distortion – ASAP ASAP- As Similar As Possible $\mathcal{D}_{\text{ASAP}} = \|\mathbf{A} - \mathcal{S}_{\mathbf{A}}\|_{F}^{2}$ Closest Jacobiar Similarity $S_{\mathbf{A}} = \bar{\sigma} U V^{T}$ $\bar{\sigma} = \frac{\sigma_{1} + \sigma_{2}}{2}$ $\mathbf{A} = USV^T$



Proof: Using Lagrange multipliers

Distortion - ARAP ARAP– As Rigid As Possible $\mathcal{D}_{\mathsf{ARAP}} = \|\mathbf{A} - \mathcal{R}_{\mathsf{A}}\|_{F}^{2} = \|\mathbf{A} - UV^{T}\|_{F}^{2}$ $= \|USV^T - UV^T\|_{F}^2$ $= \|U(S-I)V^T\|_F^2$ $= \|(S - I)\|_{F}^{2}$ $= (\sigma_1 - 1)^2 + (\sigma_2 - 1)^2$

Distortion - ASAP ASAP– As Similar As Possible $\mathcal{D}_{\text{ASAP}} = \|\mathbf{A} - \mathcal{S}_{\mathbf{A}}\|_{F}^{2}$ $= \|USV^T - \overline{\sigma}UV^T\|_F^2$ $= \|U(S - \overline{\sigma}I)V^T\|_F^2$ $= (\sigma_1 - \bar{\sigma})^2 + (\sigma_2 - \bar{\sigma})^2$ $= (\sigma_1 - \sigma_2)^2$

$$\mathcal{D}_{\text{ASAP}}(A) \quad < \quad \mathcal{D}_{\text{ASAP}}(2A)$$

$$(\sigma_1 - \sigma_2)^2$$
 $(2\sigma_1 - 2\sigma_2)^2$

Conformal distortion

$rac{\sigma_1}{\sigma_2}$

