Machine Learning Techniques
for Geometric Modeling




3D models for digital entertainment

Limit Theory



3D models for printing

MakerBot Replicator-2 ,

UepeLgor Kebjicay

MakerBot Industries



3D models for architecture

Architect: Thomas Eriksson
Courtesy Industriromantik



Geometric modeling is not easy!

Autodesk Maya 2015
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“Traditional” Geometric Modeling
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Think of a “shape space” traversed by “low-level” operations
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“native” shape representation
polygons, points, voxels...

add more faces,
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faces

Images from flossmanuals.net



“Traditional” Geometric Modeling

Impressive results at the hands of experienced users
Operations requires exact and accurate input
Creating compelling 3D models takes lots of time

Tools usually have steep learning curves



An alternative approach to geometric modeling

* Users provide high-level, possibly approximate input
* Computers learn to generate low-level, accurate geometry

» Machine learning!
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> attributes (discrete, continuous)
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> attributes (discrete, continuous)
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> attributes (discrete, continuous)
> sketch (approximate, noisy) Design Space
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> attributes (discrete, continuous)

> sketch (approximate, noisy) ?

> gestures

» natural language

» brain signals etc B
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“Low-level”
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Machine learning for Geometric Modeling

e Learn mappings from design to “low-level” space



Design Space

No unique solution
necessarily!
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Machine learning for Geometric Modeling

* Learn mappings from design to “low-level” space

* Learn which shapes are probable (“plausible”) given input



“Plausible” chairs




“Plausible” chairs
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Machine learning for Geometric Modeling

* Learn mappings from design to “low-level” space

* Learn which shapes are probable (“plausible”) given input

III

* Learn design space (“high-level” representation)



Design space might ?

not be pre-defined! Design Space

Learn it from data!

“Low-level”
Shape Space




Learning formulation:

Input: training shapes ? Design Space

Output: design space x,
mapping f

y=f(x)
>
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“Low-level”
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(easier!)

A

S
Learning formulation: &,§ [0.1, 1.0]
Input: training shapes, Design Space

design labels

Output: mapping f

y=f(x)
>

”LOW'IEVEI"
Shape Space




Goal:

Generalize from training data: Design Space
Given new design data
produce new shapes
y=f(x)
“Low-level”

Shape Space




Fundamental challenges

* How do we represent the shape space?
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“Low-leve

shape space representation
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|II

“Low-level” shape space representation

Can we use the polygon meshes as-is for our shape space?

— . “Low-level”

= ! Shape Space




“Low-level” shape space representation

Can we use the polygon meshes as-is for our shape space?
No. Take the first vertex on each mesh. Where is it?
Meshes have different number of vertices, faces etc
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|II

“Low-level” shape space representation —
the “computer vision” approach

Learn from pixels & multiple views! Produce pixels! Include view information?




“Low-level” shape space representation —
another “computer vision” approach

Learn from voxels! Produce voxels! Include orientation information?
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shape space representation —
correspondences

“Low-leve

Find point correspondences between 3D surface points. Can do aligment.
Can we always have dense correspondences?

Image from Vladimir G. Kim, Wilmot Li, Niloy J. Mitra, Siddhartha Chaudhuri, Stephen DiVerdi, and Thomas Funkhouser,
“Learning Part-based Templates from Large Collections of 3D Shapes”, 2013



“Low-level” shape space representation —
abstractions

Parameterize shapes with primitives (cuboids, cylinders etc)
How can we produce surface detail?

Image from E. Yumer., L. Kara, Co-Constrained Handles for Deformation in Shape Collections, 2014



Fundamental challenges

* How do we represent the shape space?

* What is the form of the mapping? How is it learned?



Regression example (simplistic)
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Regression example (simplistic)
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Regression example (simplistic)
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Regression example (simplistic)
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Regression example (simplistic)

A Y=W: X'
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@ Training data point ( shape + design values )



Regression example (simplistic)

A Y=W: X'
= Q
2
4 x'=[x"x 1]
3:0 O
% o 112
§ O L(w) = Z[yi—W°XZ.]
train. i
%0 - S new datapoint
~|-—e—°
>
sturdiness x

@ Training data point ( shape + design values )



Regression example (simplistic)

A Y=W: X'
) o
2
§ 5 x'=[x" x 1]
~
% o 172
= O L(w) = Z[yi—W°XZ.]
‘;O P train. i
3 R new datapoint ..linear least-squares solution...
>
sturdiness x

@ Training data point ( shape + design values )



Overfitting

Important to select a function that would avoid overfitting & generalize
(produce reasonable outputs for inputs not encountered during training)

v N v v
> > >
X X X
Underfitting Just right! overfitting

image from Andrew Ng’s ML class (?)



Classification example (Logistic Regression)

Suppose you want to predict pixels or voxels (on or off).

Probabilistic classification function: &

=, |

P(y =1|x)=1(x) = o(W-x) o(W-X)
where : 2
o(W-x) = 1
1 +exp(—w-Xx)
—I6 -4 —I2 i ; zI;



Logistic regression: training
Need to estimate parameters w from training data.

Find parameters that maximize probability of training data

N
mV?XHP(y — 1 | Xf)[}YiZZI][l — P(y = 1 | Xl.)][yi::()]
i=l



Logistic regression: training
Need to estimate parameters w from training data.

Find parameters that maximize probability of training data

N
hax H o(w-x)"l-o(w-x )"
W i=1



Logistic regression: training
Need to estimate parameters w from training data.

Find parameters that maximize log probability of training data

N
max log{H o(w-x ) 1-o(w-x )N

i=1



Logistic regression: training
Need to estimate parameters w from training data.

Find parameters that maximize log probability of training data

max 3[y, == loga(w+x) +[y, == 0]log(1 - 5(w %)



Logistic regression: training
Need to estimate parameters w from training data.

Find parameters that minimize negative log probability of training data

mwin— ﬁ:[yi == l]logo(w-x,)+[y, ==0]log(l-o(w-x,))



Logistic regression: training
Need to estimate parameters w from training data.

In other words, find parameters that minimize the negative log
likelihood function

min
Ayl




Logistic regression: training
Need to estimate parameters w from training data.

In other words, find parameters that minimize the negative log
likelihood function

OL(W)

=2 %[y, —o(w-x)]

ow, ,

(partial derivative for dth parameter)



How can you minimize/maximize a function?

Gradient descent: Given a random initialization of
parameters and a step rate #, update them according to:
W W — Wold _UVL(W)

ne

See also quasi-Newton and IRLS methods



Regularization

Overfitting: few training data and number of parameters is large!

Penalize large weights - shrink weights:
min L(w) + ﬂz w,’
W d

Called ridge regression (or L2 regularization)



Regularization

Overfitting: few training data and number of parameters is large!

Penalize non-zero weights - push as many as possible to O:

min L(w)+A) |w, |
W d

Called Lasso (or L1 regularization)



Lasso vs Ridge Regression

ridge

Modified image from Robert Tibsirani, Regression shrinkage and selection via the lasso, 1996



Case study: the space of human bodies

Training shapes: 125 male + 125 female scanned bodies

(UE N EEX Y
MMM

Slides from Brett Allen, Brian Curless, Zoran Popovic, Exploring the space of human body shapes, 2003



Matching algorithm

Slides from Brett Allen, Brian Curless, Zoran Popovic, Exploring the space of human body shapes, 2003



Matching algorithm

Slides from Brett Allen, Brian Curless, Zoran Popovic, Exploring the space of human body shapes, 2003
to access the video: http://grail.cs.washington.edu/projects/digital-human/pub/allen04exploring.html



Principal Component Analysis

2y Zp Zp
X3 X3 X1
Y1 Y1 Y1
Z; Z; Z;
X; X Y]

Slides from Brett Allen, Brian Curless, Zoran Popovic, Exploring the space of human body shapes, 2003



Dimensionality Reduction

Summarization of data with many (d) variables by a smaller set of (k)
derived (synthetic, composite) variables.




Principal Component Analysis

Each principal axis is a linear combination of the original variables
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Principal Component Analysis

average“male mean + PCA
component #1

Slides from Brett Allen, Brian Curless, Zoran Popovic, Exploring the space of human body shapes, 2003
to access the video: http://grail.cs.washington.edu/projects/digital-human/pub/allen04exploring.html



Principal Component Analysis

average“male mean + PCA
component #3

Slides from Brett Allen, Brian Curless, Zoran Popovic, Exploring the space of human body shapes, 2003
to access the video: http://grail.cs.washington.edu/projects/digital-human/pub/allen04exploring.html



Fitting to attributes

Correlate PCA space with known attributes:

60

40

Principal component #1

1.5 1.7 1.9 21
Height (m)

Slides from Brett Allen, Brian Curless, Zoran Popovic, Exploring the space of human body shapes, 2003



Fitting to attributes

Slides from Brett Allen, Brian Curless, Zoran Popovic, Exploring the space of human body shapes, 2003
to access the video: http://grail.cs.washington.edu/projects/digital-human/pub/allen04exploring.html



Case study: content creation with semantic attributes

A

>

Slides from Siddhartha Chaudhuri, Evangelos Kalogerakis, Stephen Giguere, Thomas Funkhouser,
Content Creation with Semantic Attributes, 2013



Case study: content creation with semantic attributes

Scary
Strong

»

Slides from Siddhartha Chaudhuri, Evangelos Kalogerakis, Stephen Giguere, Thomas Funkhouser,
Content Creation with Semantic Attributes, 2013



Less aerodynamic = > More aerodynamic

Less scary - > More scary

Slides from Siddhartha Chaudhuri, Evangelos Kalogerakis, Stephen Giguere, Thomas Funkhouser,
Content Creation with Semantic Attributes, 2013



Attriblt: Content Creation with Semantic Attributes

Siddhartha Chaudhuri
Evangelos Kalogerakis
Stephen Giguere
Thomas Funkhouser

to access the video: https://www.youtube.com/watch?v=U_XfYzy2c9w



Ranking

Rank-SVM: Project shape space onto a subspace that best preserves
pairwise orderings

o

\ o

K,;fo @
C/] ° o
&

o
o
o

Slides from Siddhartha Chaudhuri, Evangelos Kalogerakis, Stephen Giguere, Thomas Funkhouser,
Content Creation with Semantic Attributes, 2013



Ranking

Rank-SVM: Project shape space onto a subspace that best preserves
pairwise orderings

Slides from Siddhartha Chaudhuri, Evangelos Kalogerakis, Stephen Giguere, Thomas Funkhouser,
Content Creation with Semantic Attributes, 2013



Ranking

Rank-SVM: Project shape space onto a subspace that best preserves
pairwise orderings
Learn attribute strength:
rm(X) = Wy, - X
subject to crowdsourced constraints:

V(i,j) € O : Wi - X > Wiy, * X
VG0 E S | Wy 58 = Wi » Xy

minimize |wWml3+ p Y cij(1— o(Wm(xi —x;)))
,J€E0m

i Z Cijo([Wm(x; —x;)|)

1,JESm

Slides from Siddhartha Chaudhuri, Evangelos Kalogerakis, Stephen Giguere, Thomas Funkhouser,
Content Creation with Semantic Attributes, 2013



“Old-Fashioned”
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Slides from Siddhartha Chaudhuri, Evangelos Kalogerakis, Stephen Giguere, Thomas Funkhouser,
Content Creation with Semantic Attributes, 2013



“Old-Fashioned”
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Slides from Siddhartha Chaudhuri, Evangelos Kalogerakis, Stephen Giguere, Thomas Funkhouser,
Content Creation with Semantic Attributes, 2013



“Old-Fashioned”

Slides from Siddhartha Chaudhuri, Evangelos Kalogerakis, Stephen Giguere, Thomas Funkhouser,
Content Creation with Semantic Attributes, 2013



Case study: a probabilictic model for component-based synthesis

Given some training segmented shapes:

™A T =
FSLE="F & ¥}

... and more ....

Slides from Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, Vladlen Koltun
A Probabilistic Model for Component-Based Synthesis, 2012



Case study: a probabilictic model for component-based synthesis

Describe shape space of parts with a probability distribution

base avg. mean curvature

base diameter
>

Slides from Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, Vladlen Koltun
A Probabilistic Model for Component-Based Synthesis, 2012



Case study: a probabilictic model for component-based synthesis

Learn relationships between different part parameters within each cluster
e.g. diameter of table top is related to scale of base plus some uncertainty

o,

>

table top diameter

— >

base diameter

Slides from Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, Vladlen Koltun
A Probabilistic Model for Component-Based Synthesis, 2012



Case study: a probabilictic model for component-based synthesis

Learn relationships between part clusters e.g. circular table tops are
associated with bases with split legs

AATXERX K
M1 AspT™T =y

Slides from Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, Vladlen Koltun
A Probabilistic Model for Component-Based Synthesis, 2012




Case study: a probabilictic model for component-based synthesis

Represent all these relationships within a structured probability distribution
(probabilistic graphical model)

Slides from Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, Vladlen Koltun
A Probabilistic Model for Component-Based Synthesis, 2012




Shape Synthesis - Airplanes
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Slides from Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, Vladlen Koltun
A Probabilistic Model for Component-Based Synthesis, 2012



Shape Synthesis - Airplanes
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Slides from Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, Vladlen Koltun
A Probabilistic Model for Component-Based Synthesis, 2012



Shape Synthesis - Chairs

Slides from Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, Vladlen Koltun, A Probabilistic Model for Component-Based Synthesis, 2012



Shape Synthesis - Chairs
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Slides from Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, Vladlen Koltun, A Probablllstlc Model for Component-Based Synthesis, 2012



From “swallow” to “deep” mappings:
Input: training shapes Design Space
Output: latent spaces x, / /1 Y
mappings f '
“mediating”
representations
>

. N
i “Low-level”

B = Shape Space
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From “swallow” to “deep” mappings (networks)

Images, shapes, natural language have compositional structure

Deep neural networks!

Note: Let’s discuss them in the case of 2D images for now! Also let’s map from images
to high-level representations. We’ll see how this can be reversed later.



pixel 2
N
+ - -—
+ +
+ +
> pixel 1

+ Coffee Mug
= Not Coffee Mug

Motivation

)

Learning Algorithm

Is this a Coffee Mug?

pixel 2
N -
+ -—
+ +
+ +
> pixel 1

modified slides originally
by Adam Coates



Motivation

handle? cylinder?

Is this a Coffee Mug?

cylinder? cylinder?
A A

++ +
+, 1

=
+

- + Learning Algorithm -

> handle? > handle?

+ Coffee Mug
= Not Coffee Mug

modified slides originally
by Adam Coates



"Traditional” recognition pipeline

Fixed/engineered descriptors + trained classifier/regressor

"Hand-engineered"

. Trained
Descriptor Extractor |l . =l car?
e.g. SIFT, bags-of-words classifier/regressor

modified slides originally
by Adam Coates



"New" recognition pipeline

Trained descriptors + trained classifier/regressor

Trained

Descriptor = Trained ) car?

classifier/regressor
Extractor [reg

modified slides originally
by Adam Coates



From “swallow” to “deep” mappings (networks)

In logistic regression, output was a direct function of inputs. Conceptually,

this can be thought of as a network:

(¥) [y=f(x)=o(w-x)

modified slides originally
by Adam Coates



Basic idea

Introduce latent nodes that will play the role of learned representations.

h =oc(w - x)

modified slides originally
by Adam Coates



Neural network

Same as logistic regression but now our output function has multiple

stages ("layers", "modules").

X— O'(W(l)'X) :h

» (W -h)

_>y

Intermediate representation

where WU =

Prediction

modified slides originally
by Adam Coates



Biological Neurons

Terminal Branches

Dendrites of Axon

Neurotransmitter
Molecules

Axon



Analogy with biological networks

x1
w1
X2 . [} [}
w2 Activation Function

wn
xn

Slide credit : Andrew L. Nelson



Neural network

Stack up several layers:

ML~
i
i i
W
SN

modified slides originally

by Adam Coates



Forward propagation

Process to compute output:

®» ® .0 O

modified slides originally
by Adam Coates



Forward propagation

Process to compute output:

modified slides originally
by Adam Coates



Forward propagation

Process to compute output:

(W . m)—h'

~h

o (W . x)

X

modified slides originally

by Adam Coates



Forward propagation
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Process to compute output:
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X

modified slides originally

by Adam Coates
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modified slides originally

by Adam Coates



How can you learn the parameters?

Use a loss function e.g., for classification:

Lw)==2, > [y, ==1llog f,(x) +[y,, == 0]log(l - f,(x,))

i=1 outputt
For regression:

Lewy=2, >, [y, ~f,(x)r

i outputt



Backpropagation

For each training example i (omit index i for clarity):

For each output: 5t(3) =y, - f(x)

OL(w) _50p,
ow, & T

t,n



Backpropagation

For each training example i (omit index i for clarity):
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Backpropagation

For each training example i (omit index i for clarity):
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s this magic?

All these are derivatives derived analytically using the chain rule!

Gradient descent is expressed through backpropagation of messages o
following the structure of the model



Training algorithm
For each training example [in a batch]

1. Forward propagation to compute outputs per layer

2. Back propagate messages o from top to bottom layer

3. Multiply messages o with inputs to compute derivatives per layer
4. Accumulate the derivatives from that training example

Apply the gradient descent rule



Yet, this does not work so easily...




Yet, this does not work so easily...
* Non-convex: Local minima; convergence criteria.

* Optimization becomes difficult with many layers.

* Hard to diagnose and debug malfunctions.

* Many things turn out to matter:
* Choice of nonlinearities.
* Initialization of parameters.
* Optimizer parameters: step size, schedule.



Non-linearities

* Choice of functions inside network matters.
 Sigmoid function yields highly non-convex loss functions
* Some other choices often used:

tanh(+) abs(-) RelLu(-) = max{0, -}
A A A
N \7/ _—
—— -1
tanh'(:)= 1 - tanh(-)? abs'(-)= sign(*) RelLu'()= [->0]

“Rectified Linear Unit”

- Increasingly popular.
[Nair & Hinton, 2010]



Initialization

e Usually small random values.

* Try to choose so that typical input to a neuron avoids saturating
4

S

* Initialization schemes for weights used as input to a node:
* tanh units: Uniform([-r, r]; sigmoid: Uniform[-4r, 4r].
* See [Glorot et al., AISTATS 2010]

r = +/6/(fan-in + fan-out)

* Unsupervised pre-training



Step size

* Fixed step-size
* try many, choose the best...
 pick size with least test error on a validation set after T iterations

* Dynamic step size "It o
* decrease after T iterations \_

t

* if simply the objective is not decreasing much, cut step by half



Momentum

Modify stochastic/batch gradient descent:

Before: Aw=nV _L(w), w=w-Aw

With momentum : Aw = yAw +nV _L(w), w=w-Aw

previous

“Smooth” estimate of gradient from several steps of gradient descent:
e High-curvature directions cancel out.
* Low-curvature directions “add up” and accelerate.



Regularize!

* Adding L2 regularization term to the loss function:

AW =nV (L(W)+ A [ w],)

* Adding L1 regularization term to the loss function:

Aw =1V (L(W)+ A (W)



Yet, things will not still work well!




Main problem

* Extremely large number of connections.
* More parameters to train.
* Higher computational expense.

modified slides originally
by Adam Coates



Local connectivity

Reduce parameters with
local connections!

modified slides originally
by Adam Coates



Neurons as convolution filters

Think of neurons as convolutional
filters acted on small adjacent
(possibly overlapping) windows

Window size is called
“receptive field” size
and spacing is called
“step” or “stride”

modified slides originally
by Adam Coates



Extract repeated structure

Apply the same filter (weights) throughout the image

Dramatically reduces the number of parameters

modified slides originally
by Adam Coates



Can have many filters!

Response per pixel p, per filter f for a transfer function g:

b, =g(W,x,)

modified slides originally
by Adam Coates



Pooling

Apart from hidden layers dedicated to convolution, we can have layers
dedicated to extract locally invariant descriptors
Max pooling:

Mean pooling:

O O h,,=avg(x,)
O

O Fixed filter (e.g., Gaussian):
hp',f = Wgaussian ) Xp

Progressively reduce the resolution of the image, so that the next

convolutional filters are applied on larger scales  [scherer et al., ICANN 2010]
[Boureau et al., ICML 2010]



Convolutional Neural Networks

ImageNet system from Krizhevsky et al., NIPS 2012:
Convolutional layers
Max-pooling layers
Rectified linear units (ReLu).
Stochastic gradient descent, L2 regularization etc

_ {M 2038 soag \dense
13
1 ha dense’| |dense
1000
128 Max Joab L
Max 8 Max pooling 2048
pooling pooling




Application: Image-Net

Top result in LSVRC 2012: ~85%, Top-5 accuracy.

mite container ship motor scooter leopard
] mite container ship motoér scooter pard
] black widow lifeboat go-kart Jaguar
i cockroach amphibian moped cheetah
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Learned representations

Low-Level| |Mid-Level| [|High-Level Trainable
—_ —_— —_
Feature Feature Feature Classifier

From Matthew D. Zeiler and Rob Fergus, Visualizing and Understanding Convolutional Networks, 2014



Multi-view CNNs
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Image from Hang Su, Subhransu Maji, Evangelos Kalogerakis, Erik Learned-Miller,
Multi-view Convolutional Neural Networks for 3D Shape Recognition, 2015



Multi-view CNNs

Use output of fully connected layer as a shape descriptor.
Shape retrieval evaluation in ModelNet40:
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Image from Hang Su, Subhransu Maji, Evangelos Kalogerakis, Erik Learned-Miller,

Multi-view Convolutional Neural Networks for 3D Shape Recognition, 2015



Sketch-based 3D Shape Retrieval using Convolutional Neural Networks
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Image from Fang Wang, Le Kang, Yi Li,
Sketch-based 3D Shape Retrieval using Convolutional Neural Networks, 2015



Sketch-based 3D Shape Retrieval using Convolutional Neural Networks
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Image from Fang Wang, Le Kang, Yi Li,
Sketch-based 3D Shape Retrieval using Convolutional Neural Networks, 2015



Sketch-based 3D Shape Retrieval using Convolutional Neural Networks

Precision

0.6

0.5

o
=

=
t

0.2

0.1

)

N

“

—— Ours Siamese Model
—=—— Qurs |dantic Modal
B Furuya (COMR-BF-iGALIF+CDMR-BF-DSIFT)
#—— Furuya (COMRB-BF-GALIF)
Furuya (BF-iGALIF+BF-fDSIFT)
Furuya (UMR-BF-fGALIF+UMR-BF-{DSIFT)
Furuya (CDMR-BF-fDSIFT)
Furuya (BF-fGALIF)
Furuya (UMR-BF-fDSIFT)
Li (SBR VC-NUM-100)
Furuya (UMR-BF -fGALIF)
Furuya (BF-fDSIFT)
Li (SBR 2D-3D-MUM-50)
- Saavedra (HOG-SIL)
#—— LI (SBR VC-NUM-50)
—&—— Saavedra (HELO-SIL)
—F&— Saavedra (FDC-CVIU version)
——f—— Saavedra (FDC)
—#— Pascoal (HTD)
—&— pono (EFSD)

Image from Fang Wang, Le Kang, Yi Li,

Sketch-based 3D Shape Retrieval using Convolutional Neural Networks, 2015
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Learning to Generate Chairs
Inverting the CNN...
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Image from Alexey Dosovitskiy, J. Springenberg, Thomas Brox
Learning to Generate Chairs with Convolutional Neural Networks 2015 to access video: http://Imb.informatik.uni-freiburg.de/Publications/2015/DB15/



Learning to Generate Chairs
Inverting the CNN...
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I I
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5x5 convolution: -

Image from Alexey Dosovitskiy, J. Springenberg, Thomas Brox
Learning to Generate Chairs with Convolutional Neural Networks 2015



Deep learning on volumetric representations

4000

1 AP00NTRLrSTuEON .

u

object label 10 1200
i

512 filters of e

stride 1 4:L 5

160 filters of v

stride 2

48 filters of
stride 2

3D voxel input

L I BRRA T TLIY A 4 FEA R

SIITESRSAPRETYINE .

n3nrgneenssscesc
P LIARARLILS 1]

s ®a ttsougtiaglt'u
z:\la¢*31I Thdry
'llhl9~l‘lll"m*
(A d (40
"0 "haete gy
S P RS2y,

“

.
-

l'
- wi
Pac
T

Image from Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J. Xiao
3D ShapeNets: A Deep Representation for Volumetric Shapes, 2015
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Image from Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J. Xiao
3D ShapeNets: A Deep Representation for Volumetric Shapes, 2015



Summary

Welcome to the era where machines learn to generate 3D visual content!

Deep learning seems one of the most promising directions



Summary

Welcome to the era where machines learn to generate 3D visual content!

Deep learning seems one of the most promising directions

Big challenges:

* Generate plausible, detailed, novel 3D geometry from
high-level specifications, approximate directions

* What shape representation should deep networks operate on?

* Integrate with approaches that optimize for function and
human-object interaction



