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This article shows to which extent a particular field of mathematics, namely dis-
crete differential geometry, has recently become relevant in architectural design.
It is very interesting that new mathematics has emerged from this cooperation with
a branch of knowledge hitherto not known for its use of mathematical methods.

Introduction

Complex freeform structures are one of the most striking trends in contemporary
architecture. This direction has been pioneered by architects such as F. Gehry who
exploit digital technology originally developed for the automotive and airplane in-
dustry for tasks of architectural design and construction. This is not a simple task
at all, since the architectural application differs from the original target industries
in many ways, including aesthetics, statics, scale and manufacturing technologies.
Whereas metal forming can generate any reasonable shape of a car body, it is
much less clear how to actually construct a complicated geometric shape in an
architectural design. One has to segment the shape into simpler parts, so-called
panels. According to Lars Spuybroek, “panelization is a hugely important issue”
[10]. Since available CAD software does not cover this topic, one may have to
resort to simpler shapes, to accept higher costs or to try experimental approaches.
Very recent research shows that the use of geometry and computational mathe-
matics bears a great potential to advance the field of freeform architecture. It is
a major goal of this paper to sketch these developments and to illustrate them at
hand of a few real projects. In fact, it is in place to talk about a new research
area, called Architectural Geometry [6], which is currently emerging at the bor-
der of differential geometry, computational mathematics and architectural design/
engineering.
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Figure 1: Segmentation of
curved surfaces: From left
to right: flat panels (Mur-
insel, Graz), single-curved
panels (TGV train station,
Strasbourg), and double-
curved panels (St. Lazaire
metró station, Paris).

Our paper is structured as follows. In Section 1, we discuss the problem of cov-
ering freeform shapes with planar quadrilateral panels. The resulting planar quad
(PQ) meshes possess a number of important advantages over triangular meshes:
they have a smaller number of edges, resulting in a smaller number of support-
ing beams following the edges, less steel and less cost. Quad meshes also have
a lower node complexity, which is an important advantage for manufacturing.
Panelization with planar quads and an optimized layout of supporting beams can
be made accessible with methods from discrete differential geometry [5, 6, 7, 4].
Section 2 discusses freeform structures covered by single curved panels. It turns
out that a basic geometric entity for this purpose, which we call a developable
strip model, is obtained as a limit shape of a quad mesh with planar faces under a
one-directional refinement rule. Developable strip models may be considered as
semi-discrete surface representations since they constitute a link between smooth
surfaces and discrete surfaces (meshes). In Section 3, we address other types of
semi-discrete representations which are suitable for covering negatively curved
surface parts with ruled surface panels. Finally, we point to some of the many
open problems in architectural geometry.

1 Planar quad meshes and supporting beam layout

Assume that a smooth shape is given (‘designed’), and one seeks a way of achiev-
ing that design in reality by approximating it by a polyhedron with quadrilateral
faces, by subsequently building a steel construction along the edges of that poly-
hedron, and by realizing the faces as glass panels. For reasons of simplicity, and
because this is the typical case anyway, we reduce that problem to the following
mathematical abstraction: Given a submanifold M ⊆R3, typically with boundary,
we ask for a mapping x from Z2 to R3 such that all x(i, j) lie close to M and such
that each elementary quadrilateral

x(i , j +1) x(i+1 , j +1)∣∣∣ ∣∣∣
x(i , j) x(i+1 , j)

(1)

16



Figure 2: Left: Network of conjugate curves on a smooth surface M which away
from singularities serve as parameter lines of a conjugate parametrization f (u,v).
Right: Discrete samples of f yield a mesh x : V →M with combinatorics (V,E,F)
which is mostly that of a regular grid.

is planar (see Figure 3). For practical purposes we also want this face to be convex.
A characterization of both properties in elementary terms is that the angle sum in
the quadrilateral (1) equals 2π.1

In the construction of such discrete surfaces one has a lot of freedom, and it is
tempting to solve for x(i, j) in the manner of an initial value problem: Assum-
ing that vertices x(i, j), x(i + 1, j), x(i, j + 1) lie in the surface M, we consider
their affine span U and choose x(i + 1, j + 1) anywhere on the intersection curve
M∩U . This method however does not work in practice, as it does not take aesthet-
ics into account: we have use only for such solutions where each of the polygons(
x(i, j)

)
i=const. and

(
x(i, j)

)
j=const. is visually smooth. It turns out that the right

way to approach this problem is to invoke the theory of discrete differential geom-
etry [9, 3], and to consider x as a discrete surface parametrization approximating
a smooth one.
In the classical differential geometry of smooth surfaces, there is the notion of
conjugate parametrization f (u,v) of a surface, which is characterized by linearly
dependent vectors ∂u f ,∂v f ,∂u∂v f . This means that any small quadrilateral

f (u , v+∆v) f (u+∆u , v+∆v)∣∣∣ ∣∣∣
f (u , v) f (u+∆u , v)

(2)

whose convex hull’s volume has the Taylor polynomial

1
6
(∆u∆v)2 det(∂u f ,∂v f ,∂u∂v f )+ · · · (3)

1For an n-gon with vertices p0, . . . , pn−1, the angle sum s is defined by letting vi = pi+1 − pi
(indices modulo n) and s = ∑cos−1(〈vi,−vi−1〉/(‖vi‖·‖vi−1‖)). For general n-gons, the condition
of planarity plus convexity reads s = (n−2)π, by the discrete version of Fenchel’s theorem.
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is planar to a higher degree than in the general case. As it turns out [5], a planar
quadrilateral mesh x(i, j) approximating a surface can be effectively found from a
conjugate parametrization f (u,v) by letting x0(i, j) = f (i∆u, j∆v) and optimizing
x0 towards planarity of quads (see Figure 2).

Computational issues. This optimization procedure is highly nonlinear, as it in-
volves planarity of quadrilaterals as a constraint yet to be achieved, together with
target functionals which express smoothness and proximity to a reference sur-
face Φ. Smoothness of a polygon (xi)i∈Z is encoded by the quadratic functional
‖∆2x‖l2 → min and dist(Φ, ·)2 is reasonably close to a quadratic function, but
planarity of faces contains quite some numerical nastiness. Experiments con-
firm that it is hopeless to optimize arbitray meshes towards planarity. The reason
for this lies also in combinatorial/topological obstructions. However, optimiza-
tion typically succeeds if initialized from a conjugate parametrization f (u,v).
In theory it is easy to find those: one can arbitrarily prescribe the tangent field
(u,v) 7→ span(∂u f ). Thus one would expect that the problem of approximate seg-
mentation of a surface into planar quadrilaterals is solved. In practice however,
finding f (u,v) is the real crux of the matter, because there are additional con-
straints such as minimum angles between parameter lines.

Surface layers and beam layout — Offset surfaces. We go one step further and
consider not one but two discrete surfaces at the same time which we think of as
two layers of an actual construction (see Figure 3). A usual condition imposed
on them is that they are combinatorially equivalent and located at constant dis-
tance from each other (in that case they are called an offset pair). Distances make
sense only if corresponding edges and faces are parallel, and they can be mea-
sured between corresponding faces, or edges, or vertices. The appropriate way
of measuring distances depends on the application, one of which is beam layout
(see Figure 4): We imagine steel beams with a constant rectangular cross section
following edge pairs.
For more information on meshes which admit offsets of various kinds, see [5, 7].
Several interesting geometric characterizations of offset properties are known, and
the entire theory fits nicely into the consistence as integrability paradigm which is

Figure 3: This multilayer construc-
tion is based on two discrete sur-
faces x : Z2 → R3 and y : Z2 → R3

where corresponding faces are pla-
nar, and parallel at constant dis-
tance. In addition, every pair of
corresponding edges lies in a plane
(Image: B. Schneider).

x(i, j)

x(i+1, j)

x(i+1, j +1)

x(i, j +1)
y(i, j)

y(i+1, j)

y(i+1, j +1)

y(i, j +1)
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x( j)x( j)x( j)x( j)x( j)x( j)x( j)x( j)x( j)x( j)x( j)x( j)x( j)x( j)x( j)x( j)x( j)
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y(k)y(k)y(k)y(k)y(k)y(k)y(k)y(k)y(k)y(k)y(k)y(k)y(k)y(k)y(k)y(k)y(k)

Figure 4: This beam layout is based on a discrete surface x : V →R3 which has the
combinatorics of a regular hexagonal lattice (V,E,F). Another discrete surface
y : V → R3 has the property that for all (k, j) ∈ E, corresponding edges x(k)x( j)
and y(k)y( j) are parallel at constant distance. In the positively curved areas of the
surface, edges of beams with rectangular cross-section have an exact intersection
at the nodes (Image: H. Schmiedhofer).

the main theme of the monograph [3]. For instance the discrete surface x admits
an offset y at constant face-face distance, if and only if for all i, j, in the figure of
four edges emanating from the vertex x(i, j),

x(i , j +1)∣∣∣
x(i−1, j) x(i , j) x(i+1, j)∣∣∣

x(i , j−1)

the sums of the two diagonally opposite angle pairs are equal. A further equivalent
characterization which extends to non-quadrilateral faces is that for any vertex,
the adjacent faces are tangent to a common right circular cone. Such geometric
conditions are not difficult to incorporate into optimization procedures and are
highly relevant for applications, as still we can approximate ‘arbitrary’ shapes
by discrete surfaces with the face offset property by starting optimization from a
principal curvature line parametrization [5].
The case of meshes which admit offsets at constant edge-edge distance behaves
in a different way: here the obtainable shapes are still unknown, even for the
appropriate smooth analogue (i.e., isothermic surfaces in the sense of Laguerre
geometry).

Remark: Discrete curvature theory. We do not want to pass over the fact that
the concept of parallel meshes developed in [7] naturally leads to a theory of cur-
vatures of discrete surfaces which has its basis in the following: Assume that a
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Figure 5: Layout of supporting beams for non-planar quad mesh applied to the
project Yas Island Marina Hotel, Abu Dhabi, by Asymptote Architecture: The
figure on the left shows an optimised solution for the construction of the steel
frame aligned with the mesh shown at right.

surface M is equipped with a unit normal vector field, and every point p ∈ M
moves to p + δ · n(p), where δ ∈ R. Then the change in surface area is given
by the area integral ∆A =

R
1− 2δH + δ2K, where the functions H,K are mean

curvature and Gaussian curvature, respectively. An analogous formula in the dis-
crete category, where movement in orthogonal direction is replaced by passage to
an offset mesh leads to the definition of curvatures associated with the faces of
discrete surfaces [7, 2]. It is remarkable and was not in the least expected by the
authors that the discrete minimal surfaces of [1] occur as a special case.

Supporting beam layout for arbitrary types of meshes. In practice triangular
meshes are widely used for covering freeform shapes. A major issue regarding
these is the layout of supporting beams: for each node and its adjacent edges
one is looking for a configuration of steel beams such that their symmetry planes
intersect in a common node axis. Exact solutions to this problem are not feasible
for applications in general. This is due to the fact that all meshes parallel to a
triangular mesh are scaled copies of the given mesh with respect to some center.
Therefore one is looking for approximate solutions which uniformly distribute the
error throughout the nodes of the mesh. Similarly such solutions can be applied to
types of meshes where parallelity is not defined, e.g. quad meshes with non-planar
faces (see Figure 5).

Design of PQ meshes. In order to overcome the great numerical difficulties when
optimizing a mesh towards planarity of its faces, we used a strategy common to
discrete problems which are in fact discretizations of continuous ones: First solve
at a coarse resolution and propagate the result to the next finer resolution, using
it as initial values for the next round of optimization. In our case we use the
available polyhedral subdivision rules [11] for propagation, and are thus able to
greatly facilitate the design of polyhedral surfaces with planar quadrilateral faces
(see Figure 6).
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Figure 6: Design of a
planar quad mesh via
subdivision: Iterated
steps of optimization
and subdivision (which
destroys planarity) lead
to a planar quad mesh
design useful in practice.
The images show an
application to the Opus
project by Zaha Hadid
Architects. This work
has been performed
within the project MLFS
(grant 813391 funded
by the Austrian research
council, FFG).

2 Single curved panels

From the design viewpoint it is very desirable to be able to use genuinely curved
surfaces without the necessity of segmentation into planar pieces (see e.g. Figure
1, right). Unfortunately this is rather expensive: in order to realize double curved
glass panels, a separate mould has to be manufactured for each. The cost of this
method has led to the fact that only very few large freeform structures which use
double curved panels are in existence. Kunsthaus Graz (where the cost of con-
struction is reported to have been considerable) is one, even if its double curved
outer surface is only ornamental and does not, for instance, keep out rain.
An elegant compromise which achieves the illusion of true curvedness to a greater
extent than polyhedral surfaces are surfaces comprised of single-curved panels,
each of which is developable into the plane and has zero Gaussian curvature. The
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Figure 7: A semidiscrete surface p : Z×R→R3 as limit of a sequence (x( j) : Z×
(2− jZ)→R3) j=0,1,2,... of discrete surfaces. Planarity of elementary quadrilaterals
implies developability of the limit, assuming smoothness.

manufacturing of such single-curved panels is much easier than that of double-
curved ones and basically is the same as bending paper. Today only few buildings
which use that idea have been realized, one being the new TGV train station in
Strasbourg (see Figure 1, center).

Semidiscrete surface representations. It turned out that an elegant way to de-
scribe surfaces consisting of developable strips (D-strip models) is a mixture of
the discrete and continuous surfaces employed above.
It is a well known theorem of classical differential geometry that the following
properties of a surface are essentially equivalent: (i) the surface is developable,
i.e., locally isometric to a plane; (ii) the Gaussian curvature equals zero; (iii) the
surface locally has a torsal ruled parametrization f (u,v) = (1− u)a(v) + ub(v)
with det(∂ua,∂ub,b−a) = 0.
For this reason we consider the semidiscrete surface representation p : Z×R →
R3, where we imagine the actual surface described by p to consist of the union of
straight line segments

{p(i,u)p(i+1,u) | i ∈ Z,u ∈ R}, (4)

(see Figure 7). The single strips of the semidiscrete surface p(i,u) are devel-
opable, if the vectors ∂u p, ∆i p, ∆i∂u p are linearly dependent, which means that
the elementary quadrilateral

p(i , u+∆u) p(i+1 , u+∆u)∣∣∣ ∣∣∣
p(i , u) p(i+1 , u)

(5)

whose convex hull’s volume has the Taylor polynomial

1
6
(∆u)2 det(∆i p,∂u p,∆i∂u p)+ · · ·
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Figure 8: Design of D-strip models via subdivision: A coarse model is optimized
so as to become piecewise developable (left). A subdivision rule destroys this
property, but yields a good starting point for another round of optimization (cen-
ter). This procedure is iterated (at right).

is planar to a higher degree than usual. From this property we derive the view-
point that a D-strip model is a semidiscrete version of a conjugate parametrization
and also a semidiscrete version of a PQ mesh. This is exploited by [8], where
approximation of surfaces with D-strip models, design of D-strip models, and a
geometric theory of D-strip models including offsets is studied.

Computational issues. The basic instrument in computing with D-strip models
is an optimization procedure which takes a semidiscrete surface and optimizes
it towards developability. It can be used to solve the approximation problem (if
initialized from a conjugate surface parametrization, see Figure 9) and for the
design problem (if used in an alternating way with a refinement procedure, see
Figure 8).

Figure 9: Szervita Square, Budapest, a project designed by Zaha Hadid Architects.
Example of approximating the outer shell by a D-strip model aligned with planar,
parallel sections given by the bottom three floor slabs. Sections, corresponding
points used for initialization and the resulting D-strip model are shown at right.

23



Figure 10: The top and bottom
flanges of the I-beam follow an off-
set pair p, p̃ of circular D-strip mod-
els – shown by dashed lines and one
inscribed circle. It can be shown that
these circles are contained in fami-
lies of cones, which are tangent to an-
other offset pair q, q̃ of D-strip mod-
els usable for glass panels, and that
the cone axes define a developable
strip Ni usable as the vertical web of
the I-beam.

q(i−1, ·)q(i−1, ·)q(i−1, ·)q(i−1, ·)q(i−1, ·)q(i−1, ·)q(i−1, ·)q(i−1, ·)q(i−1, ·)q(i−1, ·)q(i−1, ·)q(i−1, ·)q(i−1, ·)q(i−1, ·)q(i−1, ·)q(i−1, ·)q(i−1, ·)

q̃(i−1, ·)q̃(i−1, ·)q̃(i−1, ·)q̃(i−1, ·)q̃(i−1, ·)q̃(i−1, ·)q̃(i−1, ·)q̃(i−1, ·)q̃(i−1, ·)q̃(i−1, ·)q̃(i−1, ·)q̃(i−1, ·)q̃(i−1, ·)q̃(i−1, ·)q̃(i−1, ·)q̃(i−1, ·)q̃(i−1, ·)
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q(i,u)q(i,u)q(i,u)q(i,u)q(i,u)q(i,u)q(i,u)q(i,u)q(i,u)q(i,u)q(i,u)q(i,u)q(i,u)q(i,u)q(i,u)q(i,u)q(i,u)

Similar to the optimization of meshes with planar faces, optimization towards
developability is a numerically challenging task which is bound to fail except
for small instances, or for instances initialized with geometric knowlege (using
conjugate parametrizations). We used a simple spline model

p(i,u) = ∑ j bi jN(γu− j),

where N is the cubic B-spline basis function and bi j ∈ R3 are control points. We
formulated all optimization goals, including the developability constraint, as tar-
get functions to be minimized. For details, see [8].

Semidiscrete differential geometry. Semidiscrete objects have been considered
before in the systematic investigation of k-surface transformations (Jonas, Dar-
boux, Combescure, etc.) as partial limits of (k + l)-dimensional discrete surfaces,
where k parameters become continuous and l remain discrete [3]. It turns out
that discrete integrable systems yield a master theory where many of the classical
results, e.g. on permutability of transformations, follow as corollaries. The ap-
proach to semidiscrete surfaces described here is basically the case k = l = 1. We
refrain from systematically discussing the further development of this semidis-
crete surface theory, and restrict ourselves to aspects which have applications in
architecture.

Offsets. For the purpose of multilayer constructions, we are interested in such
D-strip models p : Z×R→ R3 which admit an offset at constant distance, which
means another D-strip model p̃ such that either

‖p(i,u)− p̃(i,u)‖= const.

or alternatively that the distance between developable strips, measured along com-
mon normal vectors, is the same. It is also desirable that all ruled surface strips

(u,v) 7→ (1− v)p(i,u)+ v p̃(i,u) (i ∈ Z)
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Figure 11: The close connection be-
tween PQ meshes and D-strip models
can be exploited for mixed multilayer
constructions. Usually one prefers
simple structural elements, which can
be achieved using a PQ mesh. An
offset of this PQ mesh gives a good
initialization for optimization of a D-
strip model.

are developable because then we can use them for the definition of curved steel
beams (see Figure 10). As it turns out, the circular strip models which possess
families of inscribed circles, and the conical strip models, which possess fami-
lies of inscribed cones, are the right geometric entity to consider here. Both are
semidiscrete versions of principal curvature line parametrizations.

3 Ruled panels and beyond

Different types of segmentation are driven by capabilities of the material used,
requirements on the substructure, aesthetics, etc. Up to now we have considered
segmentation of surfaces into developable pieces only. These are relevant for
materials that can be single curved to a certain extent, like glass, sheet metal
or wood. As an example for a material with completely different properties we
consider freeform surfaces made from concrete, for which one can not avoid to
build freeform moulds or substructures. Therefore the production of moulds must
be cheap, which can be achieved in practice e.g. by hot wire cutting of styrofoam.
This leads to the necessity of approximating a freeform surface with a sequence
of ruled surfaces.

Smooth strip models. Like in section 2, we are naturally led to semidiscrete
surface representations, cf. Equation (4). Instead of developability, we aim for
smooth transitions between successive ruled strips along their common edge
curves. This is the case if the vectors ∆i p,∂u p,∆i+1 p are linearly dependent, or,
in other words, if the infinitesimal vertex star

p(i ,u+∆u)∣∣∣
p(i−1,u) p(i ,u) p(i+1,u)∣∣∣

p(i ,u−∆u)

(∆u → 0) (6)

is planar.
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Figure 12: Above: Depending on the behavior of the asymptotic curves of the
given design surface, negatively curved areas may be approximated by large ruled
surface patches, or by a smooth union of ruled surface strips. Here an application
to Zaha Hadid Architects’ design for the Nuragic and Contemporary Art Museum
in Cagliari, Italy is shown. Below: Details of surface parts which carry a dense
sequence of ruled strips (taken from the underside).

Analogous to D-strip models, an optimization procedure is used to compute a
smooth ruled strip model. The Gaussian curvature of ruled surfaces is ≤ 0, there-
fore it only makes sense to approximate negatively curved surfaces with ruled strip
models. The initialization of the optimization and the decision on the number of
strips one should use can be made by inspecting the asymptotic curves of the given
design surface. Rulings should approximately follow the (less curved) asymptotic
curves. Hence, small curvature of one family of asymptotic curves implies a small
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number of ruled strips. Figure 12 shows an example.

Future research. The field of Architectural Geometry is just emerging and thus
a large number of problems have not been addressed so far. While solving parts of
the existing problems, architects are creating even more complex and challenging
shapes and thus provide a steady input to the list of future research topics.
Among the problem areas addressed in this note, the initialization of optimization
algorithms with conjugate curve networks is probably the most challenging and
important unsolved task. The challenge lies in the incorporation of design intents,
while meeting various constraints and dealing with global problems such as the
placement of singularities.
There is basically no geometric research on freeform structures from non-ruled
double curved panels. Those have to be manufactured with moulds. Depending
on the technology being used, moulds may be reusable and then the interesting
question arises to cover a freeform surface with panels that can be manufactured
with a small number of moulds. If the surface does not exhibit symmetries, precise
congruence of panels may not be achievable. However, one can aim at panels that
can be cut out from a slightly larger panel produced with the same mould.
The number of tasks being unsolved is also enlarged by the number of differ-
ent materials being used, since their behavior and production technology has to
enter the panel layout computation. Panel layout and the underlying supporting
structure may not be totally separated. Therefore, structural aspects have to be
incorporated as well.
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