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Fig. 1. An architectural design based on challenging developable lo�ing tasks. CAD so�ware has been used to connect given boundaries by a NURBS lo�,

followed by quad remeshing. Subsequently, our optimization towards developability has been applied. Observe that patches have several boundaries, and

meshes exhibit combinatorial singularities. From le� to right, we show the resulting design, meshes representing developables, and a zoomed-in detail revealing

a discrete-developable quad mesh, endowed with inscribed contact elements, and the ruling line field we get from intersecting neighboring contact elements.

The property of a surface being developable can be expressed in di�erent

equivalent ways, by vanishing Gauss curvature, or by the existence of iso-

metric mappings to planar domains. Computational contributions to this

topic range from special parametrizations to discrete-isometric mappings.

However, so far a local criterion expressing developability of general quad

meshes has been lacking. In this paper, we propose a new and e�cient dis-

crete developability criterion that is applied to quad meshes equipped with

vertex weights, and which is motivated by a well-known characterization

in di�erential geometry, namely a rank-de�cient second fundamental form.

We assign contact elements to the faces of meshes and ruling vectors to

the edges, which in combination yield a developability condition per face.

Using standard optimization procedures, we are able to perform interactive

design and developable lofting. The meshes we employ are combinatori-

ally regular quad meshes with isolated singularities but are otherwise not

required to follow any special curves on a developable surface. They are

thus easily embedded into a design work�ow involving standard operations

like remeshing, trimming, and merging operations. An important feature is

that we can directly derive a watertight, rational bi-quadratic spline surface

from our meshes. Remarkably, it occurs as the limit of weighted Doo-Sabin

subdivision, which acts in an interpolatory manner on contact elements.
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1 INTRODUCTION

The numerical and geometric modeling of developable surfaces has

attracted attention for many years, starting with the �rst mesh

representations proposed by R. Sauer [1970]. One reason for that

is the great practical importance of developables, which represent

shapes made by bending �at pieces of inextensible sheet material.

New algorithms continue to emerge, as do new applications — we

only point to the construction of metamaterials that can be speedily

laser-cut and �ll volumes in the manner of ru�es by Signer et al.

[2021], and the use of developables in interactive physical book

simulation by Wolf et al. [2021].

A developable surface is unanimously de�ned by the existence

of local isometric mappings to planar domains. As it turns out, the

physical reality of bending thin sheets is modeled by surfaces ex-

hibiting piecewise�2 smoothness, which means surfaces exhibiting

curvature continuity except for creases along curves. Geometric

modeling of developables has been con�ned to this case. The contin-

uous new proposals for the computational treatment of developables

ACM Trans. Graph., Vol. 42, No. 6, Article 183. Publication date: December 2023.

https://doi.org/10.1145/3618355
https://doi.org/10.1145/3618355
https://doi.org/10.1145/3618355


183:2 • Ceballos Inza, V. et al.

are a sign that the problem has not yet been satisfactorily solved.

Another reason is the mathematical complexity of the subject itself,

as well as the fact that �2 developables enjoy many di�erent but

equivalent characterizations. These include vanishing Gauss curva-

ture or other equivalent in�nitesimal properties; line contact with

tangent planes; or the existence of a local planar development. Each

of these properties has been the basis of a computational approach,

and each serves as motivation for de�ning a certain kind of discrete

developable surface. This is also true for the present paper: We use

the fact that developability is characterized by a rank de�cient sec-

ond fundamental form, and we employ the checkerboard patterns

proposed by Peng et al. [2019] to express this in a discrete way. The

basic entity we work with is a contact element, which is a weighted

point plus a normal vector.

1.1 Overview and Contributions

• Wepresent a new quad-mesh-based discretemodel of developable

surfaces which does not require the use of a development. Neither

do edges have to be aligned with special curves on the surface under

consideration. It is based on so-called contact elements inscribed in

the faces of the mesh which are de�ned via vertex weights (§ 2.2).

• The contact element net derived from a quad mesh is used to

express discrete developability (§ 2.3), and also to derive a water-

tight spline surface interpolating contact elements. Incidentally that

spline surface is the limit of weighted Doo-Sabin subdivision which

acts in an interpolatory manner on contact elements (§ 2.2.2).

• The discrete developability property is achieved by optimization,

essentially performing a projection onto the constraint manifold,

guided by soft constraints like fairness and proximity to a reference

surface (§ 2.4). When needed, we can combine our method with the

isometric mappings proposed by Jiang et al. [2020].

• Interactive design of developables can mean the isometric defor-

mation of a given �at piece as well as generally modifying a design

surface such that developability is maintained as a constraint. We

are able to do both (§ 3).

• Modeling tools treated in this paper include developable lofting,

which is an old problem not easily accessible with previous methods

(§ 3.2). A user can interactively modify developables by pulling

on handles and letting developables glide through guiding curves;

attaching a developable patch to a surface; and positioning singular

curves. The re�nement property of contact element nets allows for

a multiresolution approach to modeling developables (§ 3.3).

1.2 Previous Work

There is a large body of literature about geometric modeling of

and with developable surfaces. Our brief overview is subdivided

according to the way developables are represented, either as spline

surfaces or as discrete surfaces.

1.2.1 Previous work based on splines. It is known that developables

consist of ruled surfaces enjoying torsality, i.e., the tangent plane

along a ruling is constant. A ruled surface can bemodeled as a degree

(1, =) B-spline surface — one family of parameter lines then will be

the surface’s rulings. Torsality is a nonlinear constraint [Lang and

Röschel 1992] that can be achieved by optimization [Jiang et al. 2019;

Tang et al. 2016]. One limitation of such a method is the necessity

to decompose developables into ruled pieces. The method thus may

not be suitable for modeling deformations of developables where

that decomposition may change.

A torsal ruled surface is the envelope of its tangent planes, and

thus essentially is a curve in the dual space of planes. This fact

has been exploited by Bodduluri and Ravani [1993] and follow-

up publications. It reduces the design of ruled developables to the

design of curves. The drawback of this method is that, in addition

to the one mentioned in the previous paragraph, working in plane

space is not intuitive and does not naturally avoid singularities.

Finally, we point to Jiang et al. [2020] who impose approximate

developability on spline surfaces via conversion to a quad mesh.

Here rulings do not have to coincide with parameter lines, cf. § 1.2.2.

1.2.2 Previous work based on quad meshes. The textbook [Sauer

1970] proposes discrete developables based on the fact that devel-

opables are the envelopes of their tangent planes: A discrete ruled

developable is simply a sequence of �at quads, and the edges be-

tween them play the role of rulings. This property lies on the basis

of quad-meshing of developables, see recent work by Verhoeven at

al. [2022]. Such ruling-based developables are the basis of work by

Liu et al. [2006] and Solomon et al. [2012]. Their disadvantages are

the same as for other ruling-based methods: it is di�cult to model

situations where the ruling pattern of a developable changes.

A di�erent characterization of developables, the existence of a

network of orthogonal geodesics, is the basis of work by Rabinovich

et al. [2018a; 2018b; 2019] and Ion et al. [2020]. Here developables

are represented by quad meshes whose edges are not necessarily

aligned with the rulings, but nevertheless are in a special position —

they discretize a network of orthogonally intersecting geodesics.

Jiang et al. [2020] use discrete-isometric mappings to handle

developables: A surface is represented by a quad mesh whose edges

do not have any special relation to the surface. Developability is

imposed by maintaining a second mesh in R
2 isometric to the �rst

mesh. Similarly, the work by Chern et al. [2018] is also capable of

handling developables via isometric mappings to planar domains.

1.2.3 Previous work based on other discretizations. A triangle mesh

is intrinsically �at except at the vertices, and it is in fact locally �at

if and only if the angle sum in its vertices equals 2c . This natural

discretization of the concept of a developable surface has not been

in much use in geometric modeling. An exception is provided by

meshes consisting of equilateral triangles as used by Jiang et at.

[2015]. Better suited for geometric design of developables is the

‘local hinge’ condition imposed by Stein et al. [2018]. It ensures the

existence of rulings and also implies that the position of edges is not

arbitrary; every face has an edge that represents the direction of a

ruling. Binninger et al. [2021] approximate surfaces with piecewise-

developable ones by thinning the Gauss image; their method oper-

ates on a triangle mesh.

Sellán et al. [2020] use an entirely di�erent way of imposing

developability. A height �eld I = 5 (G,~) represents a developable

surface if and only if the Hessian of 5 has a vanishing determinant.

A certain convex optimization converts a given height �eld to one

where the Hessian is nonsingular only along 1D curves. This leads

to a piecewise-developable surface. Our method is also based on the
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characterization of developables as surfaces with low-rank second

fundamental forms. Our discretization, however, works for any quad

mesh, and is not limited to height �elds.

1.2.4 Previous work on Contact Elements. In the continuous setting,

contact elements have been used in di�erential geometry and anal-

ysis since the 19th century. In the discrete setting, contact elements

are implicitly present every time vertices are treated together with

normal vectors. There are only a few contributions explicitly based

on contact elements, such as the discrete principal meshes proposed

by Bobenko and Suris [2007] and subsequent treatment of a discrete

curvature theory and related topics [Bobenko et al. 2010; Rörig and

Szewieczek 2021; Schröcker 2010].

2 DISCRETE DEVELOPABLES

2.1 Di�erential Geometry of Smooth Developables

We consider surfaces that are piecewise curvature continuous and

which enjoy the property of being locally isometric to a planar

domain. It is well known (see e.g. [Guggenheimer 1963]) that this

intrinsic �atness is characterized by the vanishing of Gauss cur-

vature,  = 0. It is also well known that one family of principal

curvature lines of such surfaces is composed of straight lines, and

that the tangent plane along these straight lines (rulings) is constant.

The rulings extend all the way to the boundary of the surface. A

developable thus decomposes into ruled surface pieces and planar

parts. In geometric modeling, the number of pieces is assumed to be

�nite. We also consider surfaces consisting of individual developable

pieces.

Gauss Image and 2nd Fundamental Form. The Gauss image of a

developable is the set of its unit normal vectors. It is contained in

the unit sphere (2, and it decomposes into curves, one for each ruled

piece.

In each point ? of the surface, the second fundamental form

II? (v,w) governs curvatures. It takes as arguments vectors v,w

tangent to the surface. If x(D, E) is a parametrization, and n(D, E) is

the corresponding unit normal vector �eld, then the second funda-

mental form relates their derivatives via

II? (xD , xD ) = ⟨xD ,−nD⟩, II? (xD , xE) = ⟨xD ,−nE⟩,

II? (xE, xE) = ⟨xE,−nE⟩.

By linearity, II is now de�ned for all tangent vectors.

The Conjugacy Relation and Developability. Tangent vectors v,w

attached to the same point ? are called conjugate, if

II? (v,w) = 0.

Gauss curvature vanishes in ? if and only if II? has rank less than 2

and exhibits a kernel (the ruling) which is conjugate to all tangent

Fig. 2. A developable touch-

ing another surface along a

curve c(C ) . Its rulings A (C )

are conjugate to the deriva-

tive vectors ¤c(C ) .
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Fig. 3. A contact element associated with the weighted vertices of a face 5 is

defined by points<48 on the edges 48 = E8 E8+1, the plane g5 and its normal

vector n5 , and the contact point 15 . The plane g5 serves as a tangent plane

associated with face 5 .

vectors. This can equivalently be expressed by the existence of a

tangent vector which obeys

II(xD , r) = II(xE, r) = 0 (r ≠ 0) . (1)

There is another property relating conjugacy of tangent vectors

with developable surfaces: Suppose we have a curve c(C) contained

in a surface and a vector �eld r(C) which is conjugate to the deriva-

tive ¤c(C). Then the ruled surface y(C, B) = c(C) + Br(C) is tangent to

the original surface along the curve c, and is itself developable [Liu

et al. 2006]. It is the envelope of the tangent planes of the surface

along the curve c, and it is a geometric fact that the rulings of this

envelope are conjugate to the tangents of the curve — see Fig. 2.

2.2 Contact Element Nets

It is our aim to express developability as a local property of a quad

mesh whose edges and faces are allowed to be arbitrary. In contrast

to previous work [Liu et al. 2006; Sauer 1970] we do not require the

faces to be planar, nor do we require the edges to be aligned with

special curves on the surface, as is done by the previous references

and by [Rabinovich et al. 2018b; Stein et al. 2018]. We also do not

need an isometric mapping to a planar domain.

2.2.1 Contact Element Nets From Weighted Vertices. We propose

a developability condition that uses a generalized version of the

checkerboard patterns approach used e.g. by [Jiang et al. 2020]. For

each edge they consider the midpoint, and for each face 5 , the

inscribed parallelogram formed by those edge midpoints — see

Fig. 3.

The center of the parallelogram together with a normal vector

already form a contact element as it is. However, we aim for greater

generality; we wish to consider not only parallelograms, but any

planar quadrilateral inscribed in the faces of meshes.

Consider a quadrilateral, which needs not be planar, with vertices

E0, E1, E2, E3, and edge points <48 on each edge 48 = E8E8+1 (indices

modulo 4). The edge points shall not coincide with the vertices.

Lemma 2.1. The edge points are co-planar if and only if the ratios

of distances

(E8 ,<48 , E8+1) :=
∥<48 − E8 ∥

∥E8+1 −<48 ∥

ful�ll the equation

(E0,<40 , E1) (E1,<41 , E2) (E2,<42 , E3) (E3,<43 , E0) = 1. (2)
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Proof. Note that (E8 ,<48 , E8+1) equals the ratio of distances of

points to any plane through<48 not containing E8 , E8+1 Taking this

plane as the one which spans 3 edge points, the product of ratios

equals 1 if and only if the 4th point lies on the same plane, so that

all distances in the product cancel out. □

The edge points can be described by weightsF8 > 0 associated

with the vertices E8 as

<48 =
1

F8,8+1
(F8E8 +F8+1E8+1), F8, 9 = F8 +F 9 . (3)

Lemma 2.2. Any choice of weightsF8 > 0 leads to co-planar edge

points. Conversely, any co-planar edge points can be described by

vertex weights.

Proof. Given edge points as in Eq. (3), the ratios of distances be-

come (E8 ,<48 , E8+1) = F8+1/F8 , so Eq. (2) holds. Conversely, to show

the representation via weights, if Eq. (2) holds, we can obviously

�nd weightsF8 > 0 to represent the points<48 . □

The setting of Lemma 2.2 is shown by Fig. 3. For any given quad

mesh we therefore attach a weight to each vertex and de�ne edge

points on the edges by Eq. (3). It is convenient to represent weighted

points in R
3 by their homogeneous coordinates, letting

Ê8 = (F8E8 ,F8 ) ∈ R
4 .

Given a weight _, provided that _ ≠ 0, any point (G1, G2, G3, _) ∈ R
4

corresponds to the point ( G1
_
, G2
_
,
G3
_
) ∈ R

3. It is elementary that the

edge points<48 are represented by homogeneous coordinate vectors
1
2 (Ê8 + Ê8+1) ≡ Ê8 + Ê8+1. This correspondence between vectors of R4

and points of R3 is illustrated by Fig. 3.

We think of the given quad mesh as approximating a smooth

surface. For each face 5 , the plane containing the edge points repre-

sents a tangent plane g5 . Every face is thus naturally equipped with

a unit normal vector n5 . It is natural to de�ne the contact point 1 5
as the weighted center of mass of vertices:

1̂ 5 = (Ê0 + · · · + Ê3)/4 =⇒

1 5 = (F0E0 + · · · +F3E3)/F 5 , F 5 = F0 +F1 +F2 +F3 .

Here F 5 is a weight associated with the face 5 . It is easy to show

that this contact point is the intersection of diagonals<40<42 and

<41<43 — see Fig. 3. Note that we consider all unit normal vectors

n5 to be consistently oriented and pointing to one side of the mesh.

Lifting the mesh to R
4 yields a checkerboard pattern in the orig-

inal sense of [Jiang et al. 2020], where each face is equipped with

an inscribed parallelogram (Fig. 3, left), de�ning a tangent plane ĝ5 .

The given quad mesh together with its edge points is a checkerboard

pattern in R
3 only if all vertex weights are equal.

2.2.2 Subdivision of Contact Element Nets. It is interesting that so-

called dual quad-based subdivision rules are able to re�ne contact

elements in a natural way, yielding a smooth limit surface. The

well-known Doo-Sabin re�nement rule even interpolates contact

elements, as follows. We are going to apply it to homogeneous

coordinate vectors Ê8 ∈ R
4. For each vertex Ê 9 of a quadrilateral

face 5 = (E0E1E2E3) we construct a new vertex

Ê ′
9,5

=
1

16
(9Ê 9 + 3Ê 9+1 + 3Ê 9−1 + Ê 9+2) (indices mod 4).

R
3

E0

E1

E2E2E2E2E2E2E2E2E2E2E2E2E2E2E2E2E2

E3

E′
1,5

E′
0,5

n5

1515151515151515151515151515151515

R
4

Ê0

Ê1

Ê3

Ê2̂E2̂E2̂E2̂E2̂E2̂E2̂E2̂E2̂E2̂E2̂E2̂E2̂E2̂E2̂E2̂E2

1̂ 5̂1 5̂1 5̂1 5̂1 5̂1 5̂1 5̂1 5̂1 5̂1 5̂1 5̂1 5̂1 5̂1 5̂1 5̂1 5̂1 5

Fig. 4. Left: Doo-Sabin refinement acting on weighted vertices interpolates

both the center 15 of faces and the normal vectors n5 . Right: The limit

surface of the subdivision is a biquadratic rational spline surface composed

of rational Bézier patches. The control elements inR4 of the la�er are derived

from the homogeneous coordinates Ê8 of vertices, from their midpoints

(Ê8 + Ê9 )/2, and from face midpoints, as shown in the figure.

In this way, each vertex, each edge, and also each face of the original

mesh is naturally associated with a cycle of new vertices, yielding a

new face each — see Fig. 4. For the re�nement rule for =-gons with

= ≠ 4 we refer to [Peters and Reif 2008].

For our purposes, the following observation is relevant: The center

of mass 5̂ = (Ê0Ê1Ê2Ê3) of a face is invariant under subdivision:

1̂ 5 =
1

4

∑
Ê ′
8,5

=
1

4

∑
Ê8 .

So are diagonals in inscribed quads, which span the tangent plane:

1

2

( 1
2
(Ê0 + Ê1) −

1

2
(Ê2 + Ê3)

)
=

1

2
(Ê ′0,5 + Ê ′1,5 ) −

1

2
(Ê ′2,5 + Ê ′3,5 ) .

An illustration is provided by Fig. 4. Summing up, we get:

Proposition 2.3. The Doo-Sabin re�nement scheme, acting on

the homogeneous coordinate representation of a regular quad mesh,

interpolates contact elements. In the limit, it produces a �1-smooth

spline surface of the rational biquadratic type, whose spline control

points are the weighted vertices we started from. That spline surface

interpolates the contact elements of the original quad mesh.

The nature of the limit referred to in Prop. 2.3 is well known

[Peters and Reif 2008]. If the original mesh is not a regular quad

mesh, the statement remains true away from extraordinary points.

Prop. 2.3 is relevant because it shows how to construct a smooth

surface naturally connected to the data we work with. Note that

Doo-Sabin subdivision surfaces in their simple form as shown here

do not interpolate the boundary.

<40<40<40<40<40<40<40<40<40<40<40<40<40<40<40<40<40

<41<41<41<41<41<41<41<41<41<41<41<41<41<41<41<41<41

40
41 42 43

1 501 501 501 501 501 501 501 501 501 501 501 501 50
1 501 501 501 50

1 511 511 511 511 511 511 511 511 511 511 511 511 51
1 511 511 511 51

A40A40A40A40A40A40A40A40A40A40A40A40A40A40A40
A40A40

A41A41A41A41A41A41A41A41A41A41A41A41A41A41A41
A41A41

A42A42A42A42A42A42A42A42A42A42A42A42A42A42A42
A42A42 A43A43A43A43A43A43A43A43A43A43A43A43A43A43A43

A43A43

Fig. 5. A discrete version of conjugacy. This discrete version of Fig. 2 shows

a strip of contact elements comprised of faces { 58 } with tangent planes

{g58 } and points of contact {158 }. It represents a developable tangentially

circumscribed to a surface along the discrete curve {158 }. In analogy to the

smooth case it is natural to define that discrete tangents 158+1 − 158 and

intersections A48 = g58 ∩ g58+1 are conjugate.
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2.3 Developable Contact Element Nets

2.3.1 Conjugacy and Fields of Rulings. Consider a sequence of faces

50, 51, . . . which have common edges 58 ∩ 58+1 — see Fig. 5. Each is

equipped with a tangent plane g58 . We now perform a construction

that is a discrete analog of the envelope of tangent planes shown by

Fig. 2: We construct the intersection lines of successive planes,

A48 = g58 ∩ g58+1 , where 48 = 58 ∩ 58+1 .

The line A48 passes through the edge point<48 as de�ned by Eq. (3).

The line A48 it is a discrete ruling of the discrete envelope of tangent

planes along the discrete curve 1 50 , 1 51 , . . . [Sauer 1970]. In analogy

to the smooth case shown, we postulate:

Definition 2.4. The discrete envelope of tangent planes g50 , g51 , . . .

along a discrete curve 1 50 , 1 51 , . . . is developable if discrete tangents

1 58+1 − 1 58 and intersections A48 = g58 ∩ g58+1 are conjugate.

The direction of the ruling A48 is indicated by a ruling vector

associated with an oriented edge (half-edge) ®48 . If ®48 and −®48 are the

two half-edges corresponding to the edge 48 = 58 ∩ 58+1, we let

r®48 = n58 × n58+1 . (4)

Here we assume that 58 is to the left and 58+1 to the right, and we

also have r−®48 = −r®48 .

The vector r®48 computed as a cross product in Eq. (4) is zero if

neighbouring tangent planes g58 , g58+1 coincide. This happens e.g. if

the mesh is �at, or the strip under consideration is �at.

Figure 6 shows what happens when we assign a ruling A4 to all

edges of a quad mesh. The rulings A4 associated with the edges of a

mesh are usually not samples of a continuous line �eld. However,

in the case of a developable mesh, they indicate the kernel of the

2nd fundamental form, so they correspond to a single continuous

line �eld.

This way of computing rulings amounts to numerical di�erentia-

tion. The de�nition of ruling vectors in Eq. (4) is valid provided a

fair mesh that discretizes a smooth surface. We consider only such

meshes where the edge polylines themselves are fair, so that they

could be interpreted locally as a discrete version of the parameter

lines of a DE parametrization — which is no restriction.

Fig. 6. Left: On a general surface, the rulings associated with edges corre-

spond to two distinct line fields (yellow and red). Right: Developability is

characterized by the property that these line fields coincide.

Fig. 7. Characterization of developability in-

volving the ruling vectors r®40 , . . . , r®43 associ-

ated with the cycle of edges around a face 5 .

r®40r®40r®40r®40r®40r®40r®40r®40r®40r®40r®40r®40r®40r®40r®40r®40r®40

r®42r®42r®42r®42r®42r®42r®42r®42r®42r®42r®42r®42r®42r®42r®42r®42r®42r®43r®43r®43r®43r®43r®43r®43r®43r®43r®43r®43r®43r®43r®43r®43r®43r®43

r®41r®41r®41r®41r®41r®41r®41r®41r®41r®41r®41r®41r®41r®41r®41r®41r®41

2.3.2 Definition of Developable �ad Meshes. We express devel-

opability via the following property: A surface is developable if and

only if its 2nd fundamental forms do not have full rank [do Carmo

1976, p. 194]. For a discrete version of this statement, it is useful to

associate part of a 2nd fundamental form with each face of a mesh.

Consider a face 5 = E0E1E2E3 with its boundary cycle ®40, . . . , ®43,

assuming 48 = 5 ∩ 58 . We de�ne edge vectors e8 = E8+1 − E8 (indices

modulo 4). We use Eq. (4) to compute ruling vectors r®40 , . . . , r®43 :

r®48 = n5 × n58 .

Figure 7 shows this con�guration. Note that the ruling vectors

associated with opposite edges point in the opposite direction, like

the edge vectors themselves.

We now partly de�ne the matrix II5 of a 2nd fundamental form

attached to the face center 1 5 . II5 governs conjugacy, and in fact

Def. 2.4 already states such a conjugacy relation per edge. In order

to formulate a conjugacy condition per face, we de�ne average edge

vectors

e02 =<42 −<40 =
1

F42

(F2E2 +F3E3) −
1

F40

(F1E1 +F0E0) (5)

e13 =<43 −<41 =
1

F43

(F0E0 +F3E3) −
1

F41

(F2E2 +F1E1),

and we postulate that these average edge vectors are conjugate to

average ruling vectors

r®413 =
1

F 5

(
F41r®41 +F43 (−r®43 )

)
r®402 =

1

F 5

(
F40r®40 +F42 (−r®42 )

)
.

The bilinear conjugacy relation per face then reads

e)13 · II5 · r®413 = e)02 · II5 · r®402 = 0, (6)

where II5 is the symmetric 2 × 2 matrix of a discrete second funda-

mental form associated with the face 5 . Equations (6) determine II5
uniquely up to a factor.

We now propose a de�nition of developability of quad meshes

which uses the notions introduced above and discretizes several

properties of smooth developables simultaneously:

Definition 2.5. A quad mesh is developable if for all faces the

average ruling vectors are parallel, i.e.,

r®413 × r®402 = 0. (7)

This expresses the fact that each face is equipped with a single

ruling direction, where rulings arise as intersections of neighboring

tangent planes. Further, Eq. (7) implies that the conjugacy relation

(6) is degenerate, because now two di�erent average edge vectors

are conjugate to the same ruling direction. It follows that

det(II5 ) = 0.

A further equivalent condition is det(r®413 , r®402 ,n5 ) = 0.

Fig. 8. This developable has an in-

flection ruling visible as the zero

level set of the length of ruling

vectors. Ruling vectors are here

shown without arrows.
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Ruling vectors might vanish for several reasons: (i) In planar

parts of a developable, rulings vectors r®48 vanish and Eq. (7) is

ful�lled automatically. The same is true if the developable has an

in�ection ruling: Fig. 8 shows that already close to the in�ection

ruling, vectors r®48 approach zero. (ii) An individual ruling vector r®48
vanishes if and only if the normal vectors n5 ,n58 are parallel. This

situation happens if faces 5 , 58 are arranged along a ruling contained

in the developable mesh; similar to the previous special cases, it is

consistent with Eq. (7).

Remark 2.6. In case vertex weights are equal, Eq. (7) has interesting

consequences for the Gauss image. We illustrate this in the generic

case (away from an in�ection ruling), where a developable locally

is convex. De�nition 2.5 is expressed by the condition that

n5 × (n51 − n53 ), n5 × (n50 − n52 ) are parallel.

All vectors involved here approximately lie in a

plane orthogonal to n5 (namely the unit sphere’s

tangent plane in n5 ). If the quad n50 , . . . ,n53 were

planar, then Eq. (7) would express the fact that di-

agonals are parallel (see the inset �gure; diagonals are yellow). This

characterizes quads of zero oriented area, and is nicely consistent

with the fact that the Gauss image of a developable is curve-like

and has zero area.

Projective Transformations. Developability is well known to be

invariant under projective transformations. This property is numer-

ically veri�ed by Fig. 26, and is in part re�ected in our approach

using homogeneous coordinates (in this way projective transforma-

tions are simply expressed as linear mappings). Our constructions

up to and including the computation of the ruling line �elds are

projectively invariant. Only the developability condition of Def. 2.5

itself, which checks equality of ruling line �elds, is not. We employ

such a projective transformation later — see Fig. 13.

Singularities of Developable Quad Meshes. Developables can ex-

hibit geometric singularities like a cone’s vertex or the line of regres-

sion in a torsal ruled surface. The developability criterion of Def. 2.5

does not prevent singularities from emerging, and in fact, extremely

singular meshes formed by the tangents of a curve may well enjoy

discrete developability. We prevent such singularities by fairness

imposed on the normal vector �eld n5 . Combinatorial singulari-

ties do not pose a problem, since also in this case the geometric

interpretation of Eq. (7) remains valid — see Fig. 9.

Fig. 9. Singularities. Left: We show a discrete-developable mesh and the

good behaviour of ruling vectors r®4 in the vicinity of combinatorial singu-

larities (red). Right: This mesh exhibits a geometric singularity typical for

developables, namely a sharp curve of regression. The singularity is not

detectable via checking fairness of mesh polylines and is made visible by

clipping by a plane. The mesh fulfills the developability condition of Def. 2.5.

(a) (b)

(c) (d)

Fig. 10. A simple developable computed with our method. (a) An optimized

quad mesh exhibiting discrete developability. (b) Rulings found by integrat-

ing the ruling vector field. (c) The Gauss image consisting of face normal

vectors n5 . (d) Detail of the discrete ruling vector field r®4 .

2.4 Computation

All our computations are based on an optimization procedure which

achieves constraints and yields low values of fairness functionals.

We operate with a quad mesh (+ , �, � ) which is thought to follow

the parameter lines of a smooth surface. We have regular grid com-

binatorics except for isolated singularities, and we assume that we

have a consistent orientation of faces. Our variables are vertices E8 ,

vertex weights F8 , re-weighted vertices Ẽ8 = F8E8 , a unit normal

vector n5 of each face 5 ∈ � , appropriately re-weighted edge vec-

tors ẽ02,5 , ẽ13,5 per face, a ruling vector r®4 for each oriented edge

®4 ∈ �, and re-weighted ruling vectors r̃02,5 , r̃13,5 per face.

Constraints involving vertices are

2vert,1 (E) := Ẽ8 −F8E8 = 0, 2vert,2 (E) := F8 − l
2
8 − 1.0 = 0.

We use one dummy variable l8 per weight to ensure that weights

remain above the threshold 1.0. The precise value of the threshold is

not relevant because all other constraints are homogeneous. Average

edge vectors per face, in the notation used by Eq. (5), are de�ned by

the constraints

2ev,1 (5 ) := ẽ02,5 −
(
(F0 +F1) (Ẽ2 + Ẽ3) − (F2 +F3) (Ẽ1 + Ẽ0)

)
= 0,

2ev,2 (5 ) := ẽ13,5 −
(
(F1 +F2) (Ẽ0 + Ẽ3) − (F0 +F3) (Ẽ2 + Ẽ1)

)
= 0

Vectors ẽ02,5 , ẽ13,5 are the previously de�ned average edge vec-

tors e02, e13, multiplied by a combination of weights which makes

denominators vanish.

The normal vector n5 is initialized according to Fig. 3, while

taking the orientation into account. Our average edge vectors are

precisely the diagonals in the inscribed quad depicted in Fig. 3. We

therefore use the following constraints to handle normal vectors:

2norm,1 (5 ) := ⟨n5 , ẽ02,5 ⟩ = 0, 2norm,2 (5 ) := ⟨n5 , ẽ13,5 ⟩ = 0,

2norm,3 (5 ) := ∥n5 ∥
2 − 1 = 0.

These normal vectors are recomputed after each round of optimiza-

tion, since we cannot be sure that the implicit conditions above are

su�cient to keep a consistent orientation. For every oriented half-

edge ®4 = E8E 9 , we have a ruling vector r®4 de�ned by the constraint
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2rul (®4) := r®4 − n5 × n5 ′ = 0, where ®4 = 5 ∩ 5 ′,

with 5 to the left and 5 ′ to the right of the half-edge ®4 . We de�ne

re-weighted ruling vectors per face by the constraints

2rul,1 (5 ) := r̃13,5 −
(
(F1 +F2)rE1E2 + (F3 +F0) (−rE3E0 )

)
= 0,

2rul,2 (5 ) := r̃02,5 −
(
(F0 +F1)rE0E1 + (F2 +F3) (−rE2E3 )

)
= 0.

Developability is expressed by Eq. (7):

2dev (5 ) := r̃13,5 × r̃02,5 = 0.

The sums of squares of the constraints de�ne energy functionals,

�vert =
∑

E∈+ ,9 2vert, 9 (E)
2, �norm =

∑
5 ∈�,9 2norm, 9 (5 )

2, and analo-

gously for energies �ev, �rul, �dev.

To ensure that the mesh polylines approximate smooth parameter

lines of a surface, we employ fairness functionals: We de�ne

�+fair =
∑

triples E8 E9 E:
∥E8 − 2E 9 + E: ∥

2,

where the sum is over all triples E8E 9E: of successive vertices on a

discrete parameter polyline. Likewise we measure the fairness of

the normal �eld and ruling �elds by energies

�=fair =
∑

triples 58 59 5:

∥n58 − 2n59 + n5: ∥
2, �Afair =

∑

triples ®48 ,®4 9 ,®4:

∥r®48 − 2r®4 9 + r®4: ∥
2 .

The sum in �=
fair

is over all triples of successive faces arranged in a

strip like shown in Fig. 5. We found that imposing fairness on the

normal vector �eld prevents singularities like the one in Fig. 9, right.

The sum in �A
fair

is over triples of successive half-edges.

Summing up, in our optimization we minimize the functional

� = �norm + _vert�vert + _ev�ev + _rul�rul + _dev�dev

+ _+fair�
+
fair + _

=
fair�

=
fair + _

A
fair�

A
fair . (8)

The weights _vert, _rul, . . . have to be chosen according to the par-

ticular application — see Table 1. In the last steps of the iteration,

weights of terms used for regularization are set to 0. This enables

�dev to approach zero itself. Table 1 refers to the status immediately

before.

Remark 2.7. Both the de�nition of discrete developability and the

optimization setup are much simpli�ed if the vertex weights are

equal. In such case, we can, without loss of generality, simply let

F8 = 1 for all 8 . Our choice of variables for optimization is guided

by the empirical rule that the polynomial degree of constraints

should not exceed 2. If all weights equal 1, the number of variables

Fig. 11. The in�uence of vertex weights F9 . A coarse mesh (le�) has been

optimized to become developable, se�ing all point weights to 1 (center) and

with weights as variables (right). Gauss images show that the additional

degrees of freedom provided by the weights have a beneficial influence.

Fig. 12. The influence of ruling fairness. The le�- and right-hand images show

results of optimization with ruling fairness disabled (_A
fair

= 0) resp., enabled.

The e�ect is that the resulting developable does not as easily decompose

into several ruled pieces.

is reduced not only because the weights themselves are constants

now, but we also would not need edge vectors as variables — they

could be replaced by a linear combination of vertices. Similarly, the

average face ruling vectors could be replaced by a di�erence of

edge ruling vectors. Figure 11 shows that the additional degrees of

freedom provided by the weights have a bene�cial in�uence, which

is particularly visible for coarse meshes.

2.5 Approximation Power of Discrete Developables

We argue that contact element nets as introduced in § 2.3 are a

suitable discretization for developable surfaces, as they are capable

of representing developables up to 2nd order approximations.

Locally, a surface Ψ is represented as a height �eld I = 5 (G,~).

We approximate 5 with a 2nd order Taylor polynomial, which yields

an approximating surface Φ de�ned by

I = 6(G,~) = 5 (0, 0) + ∇5 (0, 0))
(
G

~

)
+
1

2
(G ~)∇2 5

(
G

~

)
.

If Ψ is developable, then det∇2 5 = 0 [do Carmo 1976, p. 163]. It

follows that Φ is a parabolic cylinder.

Interestingly, there are many contact element nets that are devel-

opable in the sense of Def. 2.5, and whose associated B-spline surface

reproduces the above-mentioned cylinder Φ. The construction is

the following:

Φ1 Φ1

Φ2

Fig. 13. A projective transformation maps the parabolic cylinder Φ1 to

a quadratic cone Φ2. Φ1 has many exact representations by a discrete-

developable quad mesh and associated biquadratic spline surface (le� and

center). The projective transformation maps spline control points of Φ1

to weighted spline control points of Φ2, leading to a quadratic NURBS

representation. This low degree is possible with polynomial (un-weighted)

splines only in special cases, namely, if parameter lines are rulings.
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(a) (b) (c) (d) (e) (f)

Fig. 14. Interactive editing. The sequence of images (a)–(d) shows a developable patch being interactively modified by a user who keeps one boundary segment

and two corner vertices (blue) fixed, and is dragging on another boundary vertex (red). Images (e) and (f) show the influence of the weight we give to �iso in

our optimization. While in subfigures (a)–(d) we use isometry to the previous step for its regularizing e�ect, in (e) we employ isometry to the original patch.

This is a constraint that is not compatible with the user’s desire to move the red vertex. Subfigure (f) is similar to (a)–(d), but with a lower weight of �iso.

Fig. 15. The action of our optimization procedure on a non-developable initial mesh. From le� to right, we show the initial mesh and the result of 2, 5, and 10

rounds of optimization. A�er 10 rounds, both Gauss image and orthotomic surface (§ 4.2) are curve-like and no pockets of non-developability remain.

Consider the special case 6(G,~) = G2 �rst. De�ne a parametriza-

tion of the G~ plane and Φ by G (D, E) = 01D +11E ,~ (D, E) = 02D +12E ,

and I (D, E) = G (D, E)2 = (01D +11E)
2. Its polar form [Prautzsch et al.

2002] reads

� (D1, D2; E1, E2) =
(
01
D1 + D2

2
+ 11

E1 + E2

2
, 02

D1 + D2

2
+ 12

E1 + E2

2
,

021D1D2 + 20111
D1 + D2

2

E1 + E2

2
+ 121E1E2

)
.

The function� de�nes spline control points E8 9 = � (8, 8 + 1; 9, 9 + 1),

where 8, 9 run in the integers. The bi-quadratic B-spline surface with

control points E8 9 exactly reproduces Φ. By § 2.2.2, it is at the same

time the limit surface when the net of control points undergoes

Doo-Sabin subdivision.

A general parabolic cylinder I = 6(G,~) is either generated

from the special case I = G2 by applying an a�ne transforma-

tion, or directly by computing control points via the polar form of

6(G (D, E), ~ (D, E)) [Prautzsch et al. 2002]. Figure 13 shows examples.

The contact element net with vertices E8 9 is exactly developable

in the discrete sense. This is because discrete tangent planes g5 by

§ 2.2.2 are tangent to Φ, therefore intersect in lines parallel to the

rulings of Φ. It follows that all discrete rulings are parallel, implying

developability.

Developables have the same tangent plane in all points of a single

ruling. The parabolic cylinders mentioned above have 2nd order

contact only in a single point. However, applying projective trans-

formations yields the class of quadratic cones, which are capable

of 2nd order approximation along an entire ruling [Pottmann and

Wallner 2001, § 6.1]. This means that contact element nets with

appropriately weighted vertices can reproduce developables up to

2nd order along an entire ruling.

Summing up, contact element nets are capable of approximating

developables in the sense of a 2nd order Taylor approximation; they

are even capable of exactly reproducing said Taylor approximation.

For an exact reproduction, it is not necessary that the edges of

the contact net are aligned with rulings.

3 DESIGN TOOLS FOR DEVELOPABLE SURFACES

We here discuss several tools for modeling developables. All are

based on minimizing a target functional composed of individual

energies expressing either constraints or fairness.

3.1 Interactive Editing

A basic way of design is the interactive manipulation of a surface

by pulling on handles, and by requiring that certain vertices stay

close to prescribed positions. Positional constraints are handled

by adding an energy of the form �pos =
∑

∥E8 − E
∗
8 ∥

2 to the total

energy of Eq. (8). Here the sum is over all vertices E8 for which target

positions E∗8 are available. Figure 14 shows how di�erent positional

constraints in�uence editing.

Initializing Variables For Editing. In all our examples concerning

editing, vertex weights are set to 1 and are never modi�ed. The ver-

tices of themesh to be edited are assumed to be given. The remaining

variables are initialized directly via their respective constraints.

The initial mesh can be arbitrary; it evolves toward developability

in a way which is de�ned by the positional constraints imposed by

the user. Figure 15 shows an example of how a non-developable

initial mesh quickly becomes developable.

Φ Fig. 16. Gliding Con-

straint. 3 positions of

a developable gliding

along a curve Φ.
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Fig. 17. The surface on the le� is made

piecewise developable by partitioning it

into strips alongmesh polylines, andmak-

ing those strips developable while bound-

aries remain fixed. We also show the

Gauss image, whose curve components

correspond to the developable parts of

the surface. The figure on the right shows

a paper model.

Gliding Constraint. Another basic design requirement would be

that our surface" is to glide through a reference shape represented

by a point cloud Φ (e.g. a curve). For all ? ∈ Φ we compute the

closest point projection ?∗ ∈ " which is contained in some face

5 (?). We now require that ? does not deviate from the tangent plane

associated with this face, which passes through the face midpoint

1 5 (? ) and has normal vector n5 (? ) . This is expressed by a low value

of the energy

�prox =
∑

? active
⟨? − 1 5 (? ) , n5 (? ) ⟩

2

The sum is over all active points ? in the cloud Φ (which are not

variables), where active means they are not too far from the variable

mesh" . The faces 5 (?) are recomputed in each round of the opti-

mization. The approximation of the distance �eld of" by distances

to tangent planes is done on the basis of [Pottmann et al. 2006]. It is

known to be accurate to 2nd order in the case of zero distance, and

it prevents unwanted e�ects if the pool of active points in Φ is not

entirely correct. Figure 16 shows an example where a developable

is gliding along a curve.

Soft Isometry Constraints as Regularizers. In interactive modelling

applications, we o�er to the designer di�erent kinds of material

behaviour as illustrated by Fig. 14.

For the soft isometry constraints, we follow [Jiang et al. 2020].

We express isometry between faces 5 = E0E1E2E3 and 5
′
= E ′0E

′
1E

′
2E

′
3

by

2iso,1 (5 , 5
′) := ∥E2 − E0∥

2 − ∥E ′2 − E
′
0∥

2
= 0,

2iso,2 (5 , 5
′) := ∥E3 − E1∥

2 − ∥E ′3 − E
′
1∥

2
= 0,

2iso,3 (5 , 5
′) := ⟨E2 − E0, E3 − E1⟩ − ⟨E ′2 − E

′
0, E

′
3 − E

′
1⟩ = 0.

These constraints yield a contribution to the target functional in

optimization, namely

�iso =

∑
(5 ,5 ′ )

∑
:=1,2,3

2iso,: (5 , 5
′)2 .

• If the design surface" is to behave like an inextensible material,

geometric design can be done by including the property of being

isometric to the reference mesh, using the term �iso with a large

associated weight _iso.

• The design surface may behave in an elastic way. In our imple-

mentation, we can choose to include the property of being isometric

either to the reference mesh (with a smaller weight _iso), or to the

previous state/iteration. Both provide a regularizing e�ect to vary-

ing extents, without pulling the surface back to its initial position.

We do not claim to accurately model any exact material behavior.

3.2 Developable Lo�ing

A basic way how a designer may specify a developable is to prescribe

two boundary curves — see Fig. 18. This procedure is referred to

as lofting. Developable lofting is a problem with a long history,

and early solutions for special cases. Within the framework of our

optimization, we set up lofting as follows: We connect the two given

curves by an arbitrary quad mesh (e.g. by a ruled surface) which we

subsequently optimize.

Previous approaches to discrete developables cannot take this

road easily:

• The semidiscrete representation of piecewise-developables by

Pottmann et al. [2008] uses quad meshes with planar faces. Edges

correspond either to boundary curves, or rulings. Apart from the the

di�culty of having planar faces, such a mesh also cannot describe

strips that are cut o� in an arbitrary way, not exactly along a ruling.

Since in our approach rulings are not aligned with edges, such

problems do not occur.

• The ruling-based method of Tang et al. [2016] su�ers the same

de�ciencies.

• The methods based on orthogonal geodesic nets, such as [Rabi-

novich et al. 2018a] and follow-up contributions, cannot describe a

collection of developable strips without trimming, since the bound-

ary curves are, in general, not geodesics.

• The method of Jiang et al. [2020], which is based on isometries,

cannot easily solve examples like that of Fig. 18. This is because the

development, which does not even exist globally, has to be initialized

and then optimized simultaneously with the surface.

While some of these drawbacks might be solvable through trivial

engineering solutions (such as trimming, or matching local develop-

ments), our method does not require any computational overhead,

making it more e�cient, and hence suitable, for interactive design.

Fig. 18. Developable lofting. The surface with cylinder topology on the le�

is optimized for developability so that the two boundary curves remain

unchanged. We visualize developability not only via the Gauss image, but

also with the orthotomic curve mentioned in § 4.2.
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Fig. 19. Developable lofting of skew straight lines. A lo�ing solution usually

findings a developable with rulings transverse to the prescribed boundaries.

However, this is not possible if those boundaries are straight lines. Our

method allows us to find a solution with singularities and a planar piece (top)

and another solution where the boundaries are actually rulings (bo�om).

The la�er is found automatically if the ruling fairness term is given a higher

weight.

Solvability of the Lofting Problem. Lofting is actually a di�cult

problem, which does not need to have a smooth solution: It has many

continuous solutions such as a union of cones whose vertices lie on

the given boundary curves in an alternating way. Figure 19 shows

the behavior of our algorithm in such a failure case. A developable

containing two skew lines exists and can be found (Fig. 19, bottom).

However, when disabling ruling fairness, our optimization gets stuck

in a local minimum and tries to �nd a developable whose rulings are

transverse to the given boundary. In this special case, it is known

that no solution exists, so we use this example to simulate a failure

case. Our algorithm produces a developable with singularities at the

boundary (Fig. 19, top).

Generally, developable lofting is known to be challenging. An

example demonstrating the capabilities of our method is illustrated

by the architectural design shown in Fig. 1.

3.3 Multiresolution Modeling

In § 2.2.2 we described the watertight spline surface associated with

a quad mesh, and how it occurs as the limit of weighted Doo-Sabin

subdivision. We use these tools for a multiresolution approach to

modeling developables.

We start with a coarse quadmesh" equippedwith vertexweights.

Vertices and weights are optimized such that (:" , the result of :

rounds of subdivision, is a discrete developable. Here typically : = 1

or : = 2. The idea of this procedure is to de�ne a near-developable

spline surface (∞" by a small optimized control mesh" . In case

the result of optimization does not yield the desired quality, we

subdivide, let" := (1" , and repeat the procedure.

The resulting spline surface consists of as many biquadratic ra-

tional Bézier patches as the mesh has faces. Our aim is to achieve a

small number of patches. Figure 20 shows an example of multireso-

lution modeling.

Fig. 20. Combining lofting with multiresolution. Left: A coarse mesh" which

is optimized towards developability. The corresponding Gauss image shows

that the goal has not been achieved, owing to the low resolution. Center:

A coarse mesh" ′, constrained to the same two boundary curves as" , is

optimized such that a subdivided mesh (2" ′ is discrete-developable. The

Gauss image of" ′ demonstrates a high degree of developability. Right: The

biquadratic spline surface defined by" ′ , consisting of 16 Bézier patches. It

does not interpolate the boundary (for that, we would have to impose that

certain face centers are constrained to the boundary, see Fig. 4, right).

4 DISCUSSION

4.1 Implementation

All interactive design tools described in § 3 were implemented as

part of Rhinoceros3D. Our plugin is a C++ dynamic-link Windows®

library that can directly interact with the Rhino application. The

bene�t of our implementation choice is two-fold: �rst, it seamlessly

combines with all the existing geometry processing tools already

in Rhino. This results in a powerful design environment. Secondly,

Rhino is widely used within the architectural community, and thus

provides a natural, broad user base for the new algorithms. Our

plugin will be made available as open-source software.

The optimization of § 2.4 and § 3.1 was solved using a Levenberg-

Marquardt method according to [Madsen et al. 2004, §3.2], with

a damping parameter of 10−6. In the interactive application, the

optimization is restarted on every user input. We terminate the opti-

mization loop when the energy value falls below a certain threshold,

or when there is no more improvement.

Our implementation uses McNeel’s openNURBS toolkit for el-

ementary geometric manipulations, the Intel® oneAPIMath Ker-

nel library for e�cient sparse matrix manipulations, and Intel®’s

oneMKL pardiso for solving large sparse symmetric linear systems.

The behaviour of energies during the course of optimization is

exemplarily shown by Fig. 21. Table 1 provides statistics on the

size of optimization problems, the choice of weights, and the time

needed. Times refer to an Intel® Xeon® CPU E5-2695 v3 @ 2.30GHz

x64-based processor, running 64-bit Windows® 10. Our plugin is

con�gured to use 64 parallel openMP threads. This was chosen to

10−6

10−4

10−2

100

7 iterations

Fig. 10 Fig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, top

400 iterations

�pos

�dev

�rul

�norm

�+
fair

�=
fair

Fig. 21. Energies during optimiza-

tion for Fig. 10 (weights change

a�er 4 iterations), and for the sin-

gular case of Fig. 19, top. Energy

spikes correspond to buckling-

like local shape changes.
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Table 1. Optimization details. For selected examples, we give the number of

faces, weights used in optimization, the number of individual surfaces this

example consists of, the number of iterations (resp. an average number of

iterations, if marked by “∼”), the average time in seconds needed for a single

iteration and a single surface, and the total time used for optimization.

Fig. |� | F+
fair

F=
fair

FA
fair

Frul Fdev Fpos Fiso #surf #it)
per it
single

)total

10 1024 0.1 1.0 10.0 10.0 0.1 1 4 .201

0.01 0.1 10.0 10.0 0.1 3 .207 1.4

11cent 99 0.1 10.0 100.0 1.0 1 162 .009 1.5

11right 99 0.1 10.0 100.0 1.0 1 133 .018 2.4

15 1638 0.1 10.0 100.0 1 10 .227 2.3

17 1076 0.1 0.01 1.0 10.0 100.0 6 ∼21 .018 2.7

18 1500 1.0 0.01 10.0 100.0 10.0 1 52 .211 11.0

19top 1800 0.01 0.1 10.0 10.0 10.0 0.1 1 400 .395 158

19bot 1800 0.1 0.1 2.0 10.0 100.0 10.0 0.1 1 380 .703 267

20left 25 0.05 10.0 100.0 1.0 1 23 .004 .092

20cent 25 0.05 10.0 100.0 1.0 1 106 .037 3.9

Table 2. Measuring developability. This table gives the energy �dev for those

examples where remeshing and projective transformations take place.

Fig. �total
dev

�
per face
dev

|� |

26a 5.5 ·10−5 7.4 ·10−8 734

26b 2.0 ·10−4 1.1 ·10−6 175

26c 1.9 ·10−5 2.1 ·10−8 900

26d 2.5 ·10−5 3.4 ·10−8 734

Fig. �total
dev

�
per face
dev

|� |

13left 9.6 ·10−30 – 77

13center 1.6 ·10−28 – 77

13right 6.1 ·10−5 7.9 ·10−7 77

achieve interactivity for the models shown throughout the �gures,

but could be tuned for larger designs.

We do not give statistics for Fig. 1, Fig. 22 or Fig. 23 since these

examples were interactively designed, with optimization running

in the background continuously. The architectural design in Fig. 1

consists of 6 surfaces with a total of 15k faces.

4.2 Validation

Our developability condition of Def. 2.5 imposed on meshes is com-

parable to the requirement that the Gauss curvature of a smooth

developable vanishes. The latter has a list of local and global impli-

cations, including a curve-like Gauss image and existence of rulings.

These properties could be veri�ed up to tolerances.

Visualization of Gauss Curvature. The property of the Gauss im-

age being curve-like is a very sensitive indicator of developability. In

contrast to this, visualizing the numerical values of Gauss curvature

Fig. 22. Creases as a design element of piecewise developables.

Fig. 23. A developable surface

made with the design tool de-

scribed in § 3.1, starting from a

planar mesh with 3 incisions. Af-

ter cu�ing free every hole, a devel-

opment can be computed, using

the method of [Jiang et al. 2020].

is not suitable for properly identifying developable surfaces, because

the numerical errors inherent in the approximate computation of

Gauss curvature are bigger than the value of Gauss curvature itself.

This was con�rmed in experiments on fair quad meshes sampled

frommathematically correct developables, using the jet �tmethod of

[Cazals and Pouget 2005]. For this reason, we validate developability

via the Gauss image throughout this paper.

Visualization of Developability via Orthotomics. For any surface Φ,

re�ecting a source point in all tangent planes yields the orthotomic

surface Φ∗ [Hoschek 1985]. It degenerates into a curve if and only

if the original surface was developable and thus is a good visual

indicator of developability — see Fig. 15 and Fig. 18.

4.3 Conclusion

The developability criterion for quad meshes presented in this paper

has successfully been used to solve design problems with devel-

opable surfaces, which is a well-known and di�cult topic with a

long list of individual contributions. The fact that the edges of our

developable quad meshes do not have to be aligned with special

curves, represents a great practical advantage. Another advantage

is the fact that we do not have to consider the actual development

at the same time as the developable surface. These advantages are

evident in comparison with prior work.

The method presented in this paper has a focus on the model-

ing of continuous deformations of discrete developable surfaces for

applications in design, in line with the works of [Jiang et al. 2020;

Rabinovich et al. 2018a]. We observed that typically we could im-

prove the quality of results obtained by prior work by subjecting

these results to optimization by our method. Figure 24 shows an

example where this has been tested on a result obtained by the

method of [Rabinovich et al. 2018a]. In our experience, the Gauss

image test reveals that the results of [Rabinovich et al. 2018a] have

the highest quality of developability among related work [Jiang

et al. 2020; Sellán et al. 2020; Stein et al. 2018]. Yet our method can

improve the quality of developability even further.

Our method can be used in other applications involving devel-

opables, such as guided surface approximation by piecewise devel-

opables — see Fig. 17. We do not compare approximation capabilities
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Fig. 24. The mesh on the le� has been created using the method of [Rabi-

novich et al. 2018a]. We illustrate rulings and Gauss image to show that

this surface is developable. Further optimization by our method improves

the quality (right). The main advantage of our method compared to that of

Rabinovich et al. [2018a] is that theirs works with a special parametrization,

limiting its capabilities e.g. for modeling.

with previous contributions in that area [Binninger et al. 2021; Ion

et al. 2020; Sellán et al. 2020; Stein et al. 2018], as currently our

method would require a prior decomposition into piecewise devel-

opables. This limitation is intentional, as our focus is to incorporate

design aesthetics that cannot be achieved without user-guided input.

Interactive Modeling. Our method is interactive in two ways.

Firstly it can be used to interactively model developables — see

Fig. 14. Secondly, we provide immediate feedback to the user: The

Gauss image directly shows if developability has been achieved.

The user can react and change constraints, or the weights given to

constraints.

Since developables can often be de�ned by their boundaries, loft-

ing is actually a very good method of design. We show several

examples in previous sections; here we only point out that we can

model creases as a design element, as shown in Fig. 22, as well as

singularities, illustrated by Fig. 25.

The developability condition proposed in this paper is almost-

invariant under remeshing — see Fig. 26. This means representing

a given developable mesh by another quad mesh with fair mesh

polylines yields a mesh that almost ful�lls our criterion of Def. 2.5

again. This is due to the underlying geometric property not being

changed. This property has been used to create the examples of

Fig. 23, and is extremely useful e.g. for trimming and for joining

Fig. 25. Lofting singularities. By choosing boundaries and optimizing the

surfaces between them we achieve piecewise developability. The singularity

at the top is a strip boundary that doubles back onto itself.

(a) (b)

(c) (d)

Fig. 26. Invariance of developability under remeshing and projective maps.

Remeshing converts mesh (a) to meshes (b), (c), and a projective transfor-

mation yields (d). �dev remains small — see Table 2.

patches. We emphasize that we can work with most methods for

user-guided quad remeshing, e.g. [Ebke et al. 2016].

Recall that in our setup we can directly leverage the projective

invariance of developability, cf. § 2.3.2. A�ne transformations were

used in the modeling process that led to Fig. 23.

Limitations. One major limitation of our methods is geometric

in nature. While an experienced user can generate developables

easily, this is more di�cult for a user without prior knowledge of

the quirks of developable surfaces. Our implementation currently

requires the user to choose weights meaningfully.

Future Research. Our aim is to publish a plugin for the software

Rhino, which bene�ts from the possibility of conversion to NURBS

format. For practical applications, material properties and tolerances

need to be considered. Regarding our contribution to geometry, we

are con�dent that it can lead to a more comprehensive theory of

contact element nets.
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