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Fair Webs

Abstract Fair webs are energy-minimizing curve networks.
Obtained via an extension of cubic splines or splines in ten-
sion to networks of curves, they are efficiently computable
and possess a variety of interesting applications. We present
properties of fair webs and their discrete counterparts, i.e.,
fair polygon networks. Applications of fair curve and poly-
gon networks include fair surface design and approximation
under constraints such as obstacle avoidance or guaranteed
error bounds, aesthetic remeshing, parameterization and tex-
ture mapping, and surface restoration in geometric models.

Keywords Curve network · Spline interpolation and
approximation · Variational surface design · Curves in
surfaces · Aesthetic meshes · Obstacle avoidance · Texture
mapping · Mesh fairing

1 Introduction

We present a variational approach to the design of energy
minimizing curve networks that are constrained to lie in
a given surface or to avoid a given obstacle. Such con-
strained energy minimizing curve networks are called fair
webs. These curve networks generalize the previous work
of [14,33] on energy-minimizing spline curves in surfaces.
There are no restrictions on the dimension of the surface,
the dimension of ambient space or the type of surface repre-
sentation. In this paper we contribute theoretical results on
properties of energy-minimizing curve networks in surfaces
and their discrete counterparts, fair polygon networks. We
illustrate the usefulness of fair webs and fair polygon net-
works by means of several applications such as the design
of fair surfaces in the presence of obstacles, remeshing with
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Fig. 1 Design based on a fair mesh.

fairness properties for applications in art and design (Fig. 1),
surface parameterization, and hole filling in geometric mod-
els.

1.1 Previous Work

Variational design of curves and surfaces is a well studied
subject, see e.g. [6,8,26,42] and the references therein. En-
ergy-minimizing curve networks using the cubic spline en-
ergy or generalizations of it have served for the reconstruc-
tion of a bivariate function from scattered data [28,29,20].
There is also prior art on surface design based on energy-
minimizing curve networks, e.g. [19,26]. In the discrete set-
ting variational subdivision has been addressed in [18].

Note that there are many contributions dealing with curve
networks that do not explicitly use a variational approach.
For completeness we cite a few recent contributions on that
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topic. ‘Wires’ [37] are sets of curves used for freeform defor-
mations, combined subdivision schemes [22] exactly inter-
polate a network of curves given in any parametric represen-
tation, lofted subdivision surfaces [34] approximate a net-
work of curves, and the multiresolution subdivision surfaces
of [3] use a set of user-defined curves to create sharp features
and trim regions along them. A set of polygonal curves em-
bedded in a meshed surface has been used by [23] for mesh
editing purposes.

While curve networks in 3-space are widely used and several
contributions exist that use a variational approach, much less
is known about energy-minimizing curves or curve networks
in surfaces, and in the presence of obstacles. Some authors,
e.g. [31], discuss the minimizers of the energy defined by the
second covariant derivative with respect to arc length. These
intrinsic splines will not be the topic of this paper. Our work
is an extension of energy minimizing curves in surfaces as
discussed at first by [5] and later by [14] where an extrin-
sic formulation of the energy is used. Fair polyline networks
with an extrinsic energy formulation have been employed
successfully for constrained smoothing of digital terrain el-
evation data [15].

The present work has also been inspired by research on ac-
tive contours [4], especially by work on active curves and
geometric flows of curves on surfaces, see e.g. [11,25]. Ac-
tive curve networks have been used for image metamorpho-
sis [21] and texture analysis [24]. The geodesics of a surface
are those curves “c” which minimize the arc length

∫
‖c′‖

(the prime indicates differentiation with respect to the curve
parameter). The same curves, if traversed with constant ve-
locity, arise as minimizers of the functional

∫
‖c′‖2. A vari-

ety of applications of geodesics has been described within
Computer Vision and Image Processing [16]. We are going
to minimize a similar functional defined on many curves si-
multaneously.

1.2 Contributions and Overview

In the present paper we study fair curve and polygon net-
works constrained to lie in surfaces or avoiding obstacles. In
Section 2 we define curve networks and different energies
for curve networks. Using variational calculus we prove the-
oretical results about fair webs. In Section 3 we introduce
an appropriate notation which allows us to define discrete
energies of polygon networks. Using the theoretical insights
gained in the study of fair curve networks we are able to
show properties of fair polygon networks, which can be seen
as discretizations of fair curve networks. We also discuss a
special case of fair polygon networks, namely fair meshes.
In Section 4 we discuss computational issues that arise with
the implementation of fair polygon networks. Furthermore,
we illustrate that fair webs have a variety of interesting ap-
plications including fair remeshing, variational surface de-
sign in the presence of obstacles, surface approximation with

guaranteed error bounds, surface parameterization and tex-
ture mapping, and surface restoration of geometric models
containing holes. We conclude the paper in Section 4.3 with
an outlook towards future research.

2 Fair Curve Networks

In this section we define curve networks, their connectiv-
ity, and the energies we are working with. Since this paper
is about fair webs, i.e., energy minimizing curve networks,
we use variational calculus to derive theoretical results about
fair curve networks constrained to lie in a surface. These re-
sults are in the spirit of the paper [14], where similar results
have been derived for the case of a single energy minimizing
curve constrained to a surface.

2.1 Connectivity of a Curve Network

A curve network is a finite set of curves C = {c}, each de-
fined in its parameter interval [ac,bc]. We call points which
are common to more than one curve knots. One can think
that the curves are being knotted together at the knots. Note
that by “curve” we actually mean a curve segment between
two knot points of the curve network. As in the familiar case
of splines, some of these curves will later be joined to larger
curves, called structure lines.

Each knot k of the curve network has a collection Cs
k of

curves starting there and another set Ce
k of curve segments

ending there. The location of the knot in space is some point
pk. So if a curve c, defined in the interval [ac,bc] starts in the
knot pk, i.e., c ∈ Cs

k, then c(ac) = pk, and analogously, if a
curve c ends in the knot pk, i.e., c∈Ce

k , then c(bc) = pk. The
knots pk together with the sets Cs

k, Ce
k define the connectivity

of the network. Later on we will refer to the curves in the set
Cs

k also as the outgoing curves of the knot pk, and the curves
in the set Ce

k as the incoming curves of pk.

Figure 2 shows an example of a curve network defined by
sixteen curves c1, . . . ,c16. The connectivity of the curve
network is given by the nine knots p1, . . . , p9, the nine sets
of incoming curves Ce

1, . . . ,C
e
9 and the nine sets of outgoing

curves Cs
1, . . . ,C

s
9:

2.2 Structure Lines

To obtain nice polygon networks we often want that two
curve segments joining in a knot (an incoming curve and an
outgoing one) actually belong to one larger curve. More for-
mally we state: a curve ce ∈Ce

k ending in a knot pk together
with a curve cs ∈Cs

k starting in pk may be required to form a
single smooth curve. These two curve segments (ce,cs) are
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Fig. 2 Example of a curve network given by curves c1, . . . ,c16. The
connectivity is defined by the knots p1, . . . , p9, the sets Cs

1, . . . ,C
s
9 of

outgoing curves, and the sets Ce
1, . . . ,C

e
9 of incoming curves.

part of what we call a structure line of the curve network. If
two curves sharing a knot belong to a structure line, we say
that these two curves have property (S). For a knot pk, we
collect all outgoing curves that have the property (S) in a set
C∗

k . All outgoing curves c ∈Cs
k without property (S) are col-

lected in a set Cs∗
k , and the incoming curves c ∈Ce

k without
property (S) form the set Ce∗

k .

For the example shown in Fig. 2 we would e.g. choose the
following structure lines: (c1,c2), (c3,c4), (c5,c6), (c7,c8),
(c9,c10), (c11,c12), (c14,c15). Note that structure lines can
also consist of more than two curve segments. Actually in
our examples we use structure lines that connect many more
than two curve segments, see e.g. Fig. 3.

2.3 Energy of a Curve Network

Energies E1 and E2 of a curve c are defined by

E1(c) :=
∫ bc

ac

‖c′(t)‖2dt, E2(c) :=
∫ bc

ac

‖c′′(t)‖2dt. (1)

E2 is the cubic spline energy. Here c′(t) and c′′(t) denote the
first and second derivative vectors of the curve c(t) with re-
spect to the parameter t. Further we use a linear combination
of E1 and E2, the tension energy Eτ ,

Eτ = E2 + τE1 (2)

where τ is a tension parameter. The energy of the entire
curve network C is the sum of energies of all single curves
of the curve network:

E(C ) = Σ c∈C E(c). (3)

Here E is either of E1, E2, or Eτ . We refer to energy mini-
mizing curve networks also as fair curve networks or short

fair webs. Fair webs minimizing the energies E2, E1 +0.2E1,
and E1 are shown in Fig. 3.

2.4 Geometric Theory of Fair Webs in Surfaces

Fair webs constrained to surfaces have a number of nice
properties. The most important from the fairness point of
view is, that for E2-and Eτ -minimizing fair webs, a struc-
ture line (which originally is required to be smooth only) is
actually C2. Further, the derivatives of the curve segments
which join in a free knot (whose location is not fixed as a
side condition) fulfill some balance equations, which are de-
tailed below. A discretized network (see Section 3) has anal-
ogous properties. We consider fair webs whose curves are
constrained to a given surface Φ . Although we assume that
the connectivity of the fair web is maintained, we have the
freedom to choose which knot points shall be fixed (their
position is chosen, e.g. by the user), and which knot points
shall be free (their position will be determined by the energy
minimization procedure). In Fig. 3, fixed knots are marked.

The spirit of the theoretical results is like the familiar
one from differential geometry that E1-minimizing curves
have the second derivative vectors c′′ orthogonal to Φ , see
e.g. [10]. We consider small variations of the curve network
which obey the constraints, i.e., the connectivity of the curve
network does not change, all curves stay in the surface Φ ,
and the fixed knots are maintained.

A smooth variation of the network — so that for each curve
c, the point c(t) depends on a second variation parameter
u and we write c(u)(t) — leads to a total energy E(u) =
Σ c E(c(u)) dependent on u. If at u = 0 the network is in a
minimum position, then dE

du = 0 regardless of the particu-
lar variation we choose. There might be other, non-minimal,
positions of the network with the same property. They are
called stationary positions. It is impossible to tell a mini-
mum position from other stationary ones without analysis of
d2

du2 E(0), which already in the case of E1-stationary curves
is a rather involved theory (cf. do Carmo [9], §9.2).

We confine ourselves to C2 curve segments in the case of E1
and to C4 segments in the case of E2 and the tension energy
Eτ . A vector V attached to a point p in Φ can be written as
V = V>+V⊥, where V> is tangent and V⊥ is orthogonal to
Φ in the point p, see Fig. 4. The vectors c′(t),c′′(t), . . . are
attached to the point c(t). Now we prove theorems that give
a characterization of E-stationary curve networks for the dif-
ferent energies that we consider in this paper. We begin with
the energy E1.

Theorem 1 E1-stationary curve networks in a surface Φ

are characterized by:
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Fig. 3 Curve networks on a surface which minimize an energy E. From left to right: E = E2, E = E2 +0.2E1, E = E1. Fixed knots are marked
by a ball. All other knots are free. The structure lines of the fair web reveal themselves beautifully.

(i) The second derivative vectors c′′ of all curves c are or-
thogonal to the surface Φ , i.e.,

c′′> = 0

for all curves.

(ii) For each free knot k,

T1,k := ∑
c∈Ce

k

c′(bk)− ∑
c∈Cs

k

c′(ak) = 0, (4)

i.e., the first derivative vectors of incoming and outgoing
curves are in equilibrium.

Proof A standard method in the calculus of variations is
to consider a smooth variation of the network as described
above and express dE1

du in terms of the variation vector field

Vc(t) :=
∂c(u)(t)

∂u

at u = 0, i.e., the initial velocity of the curve point c(t) as it
is subject to variation. For the curve c, we use integration by
parts to compute

dE1(c(u))
du

=
d
du

∫ bc

ac

c′ · c′ dt =
∫ bc

ac

V ′
c · c′ dt

= [Vc · c′]bc
ac −

∫ bc

ac

Vc · c′′ dt.

We sum up the contributions of the single curves in order to
compute the derivative dE1

du (0) of the total energy. At each
knot k where curves come together, the variation vector field
has the same value V (k) for all curves, as the variation must

respect the fact that these curves are meeting at pk. So we
get

dE1

du
= ∑

k
V (k) ·

(
∑

c∈Ce
k

c′(bk)− ∑
c∈Cs

k

c′(ak)
)

− ∑
c∈C

∫ bc

ac

Vc · c′′. (5)

Note that Vc · c′′ = Vc · c′′>. We use a variation where Vc is
a positive multiple of c′′> outside the knots and zero in the
knots. Then the first part of Equ. (5) vanishes and we get a
nonzero value of dE1

du unless c′′> = 0. This proves (i) of Th. 1.
Now we know that the ∫ . . . term in Equ. (5) is zero for an E1-
stationary network, and we use another type of variation to
show part (ii) of Th. 1. The V (k)′s at different knots are inde-
pendent of each other and can assume any value if the knot is
not fixed. So we conclude that the right hand term in brack-
ets (. . .) in Equ. (5) must vanish if dE1

du is to be zero. This is
(ii) of Th. 1. It is obvious that the geometric characterization
derived here is not only necessary but also sufficient for a
network to be in an E1-stationary position. ut

For curves in C∗
k which represent an incoming/outgoing pair

and are therefore part of a structure line, the symbol ∆c′′
means the jump in c′′ when leaving the incoming curve and
continuing at the outgoing one, and similar for ∆c′′′. The
next theorem describes curve networks which make the en-
ergy E2 stationary.

Theorem 2 E2-stationary curve networks in a surface Φ

are characterized by:
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Fig. 4 A vector V attached to a point p on a surface Φ has a component
V⊥ orthogonal to Φ and a component V> tangential to Φ .

(i) The fourth derivative vectors c′′′′ of all curves c are or-
thogonal to the surface Φ , i.e.,

c′′′′> = 0

for all curves.

(ii) For each knot k, curves in Ce∗
k and Cs∗

k have c′′> = 0
there, and the curves in C∗

k which are part of a structure
line have ∆c′′ = 0 in the knot.

(iii) For each free knot k, T>
2,k = 0, where

T2,k := ( ∑
c∈Ce∗

k

− ∑
c∈Cs∗

k

)(c′′⊥′ + c′′′)− ∑
c∈C∗

k

∆c′′′. (6)

Proof We proceed in a way similar to the proof of Th. 1 for
the energy E1. The difference to E1 is that we do integra-
tion by parts twice, and that the contributions of the single
knots are somewhat more involved. It is elementary that for
a single curve

dE2(c(u))
du

= [V ′
c · c′′]bc

ac − [Vc · c′′′]bc
ac +∫ bc

ac
Vc · c′′′′ dt.

For the entire curve network, we get

dE2

du
= ∑

k
( ∑

c∈Ce
k

− ∑
c∈Cs

k

)(V ′
c · c′′−Vc · c′′′)

+ ∑
c∈C

∫ bc

ac

Vc · c′′′′ dt. (7)

Here the vector fields Vc, c′′ and so on are evaluated at the
parameter value corresponding to the knot, i.e., at ac or bc
depending on whether the curve is outgoing or incoming. Vc
is the same for all curves meeting in a knot, but V ′

c may be
different for each. An argument completely analogous to the
case of E1 shows (i) of Th. 2, and we know that the expres-
sion involving integrals in Equ. (7) is zero for any E2-sta-
tionary network.

It is well known that for any tangent vector field V (t) along
a curve, V ′⊥ depends on V and on c′ in a bilinear way (see
do Carmo [9], §6.2). Especially, if V = 0, V ′⊥ = 0 and V ′

is tangent to the surface. Also, c′′⊥ depends only on c′. So
if for a smooth curve in Φ the vector c′′ jumps, this jump

expresses itself in c′′> only, while c′′⊥ is always continuous.
We now construct a variation with Vc = 0 in the knots. An
incoming/outgoing pair of curves at a knot shares the same
c′ there. The vectors V ′

c can assume any value tangent to Φ ,
independently of each other in the case of a curve without
partner. A curve in C∗

k shares the same V ′
c with its partner.

The knot k contributes to Equ. (7) the expression

∑
c∈Ce∗

k

V ′
c · c′′>− ∑

c∈Cs∗
k

V ′
c · c′′>− ∑

c∈C∗
k

V ′
c ·∆c′′>. (8)

This has to vanish for all variations, which leads to part (ii)
of Th. 2: c′′> = 0 for curves without partner, and ∆c′′> =
0 for curves in C∗

k . As was mentioned above, this actually
means that ∆c′′ = 0. In case a knot is not fixed, there are
variations where V (k) is nonzero and equal for all curves
meeting there. Note that

V ′
c · c′′ = V ′

c · c′′>+V ′
c · c′′⊥.

Further, differentiating the identity Vc · c′′⊥ = 0 yields

Vc · c′′⊥′ +V ′
c · c′′⊥ = 0,

and thus
V ′

c · c′′ = V ′
c · c′′>−Vc · c′′⊥′.

Using these equalities together with ∆c′′⊥ = 0 for c ∈C∗
k we

express the contribution of a knot k to Equ. (7) as

V (k) · (( ∑
c∈Ce∗

k

− ∑
c∈Cs∗

k

)(c′′⊥′ + c′′′)− ∑
c∈C∗

k

∆c′′′).

This leads to (iii) of Th. 2: For all free knots, T>
2,k = 0. ut

The next theorem gives a geometric characterization of Eτ -
stationary curve networks in a surface.

Theorem 3 For the tension energy Eτ = E2 + τE1, Eτ -sta-
tionary curve networks are characterized by:

(i) A linear combination of the fourth and the second
derivative vector with the coefficients 1 and−τ vanishes,

(c′′′′− τc′′)> = 0

for all curves;

(ii) same as (ii) in Theorem 2;

(iii) at all free knots we have

(T2,k − τT1,k)> = 0

where T1,k and T2,k are defined by Equ. (4) and Equ. (6)
respectively.

Proof If Eτ is as in Th. 3, then dEτ

du is a linear combination
of Equ. (7) plus τ times Equ. (5). Consequently, a geometric
characterization of Eτ -stationary networks is the one given
by Theorem 3. ut
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2.5 Unconstrained Networks and Generalizations

Networks not constrained to a surface may be thought to be
constrained to Rn. Then for all vectors V , V = V> and V⊥ =
0. Thus Theorem 2 turns into the following characterization
of E2-stationary networks:

(i) c′′′′ = 0, i.e., all curves of the network are cubic polyno-
mials.

(ii) all structure lines are C2 cubic splines with natural end
conditions (c′′ = 0 at the ends and ∆c′′ = 0 in the knots)

(iii) For all free knots k,

T2,k := ( ∑
c∈Ce∗

k

− ∑
c∈Cs∗

k

)c′′′− ∑
c∈C∗

k

∆c′′′ = 0.

These conditions (and likewise those of Th. 1 and Th. 3) are
linear. The usually unique E-minimal network is found as
solution of a system of linear equations. Further we would
like to mention that it is straightforward to derive similar
properties for curve networks which minimize other qua-
dratic functionals from spline theory, e.g., the smoothing
spline energy or energies with higher derivatives.

As is done for smoothing splines, we penalize the distance
of movable knots pk from fixed target points qk and consider
the energy Eσ of a curve network C ,

Eσ (C ) = E2(C )+Σ k free µk‖pk −qk‖2 (µk ≥ 0 fixed).

The choice of the smoothing parameters µk for the purpose
of data approximation is not a simple problem [41]. Meth-
ods analogous to those used in the proofs of Theorem 1–3
show the following: Theorem2 characterizes Eσ -stationary
networks, except that in (iii) the vector T2,k is replaced by

T2,k + ∑
k free

µk(pk −qk).

3 Fair Polygon Networks

In this section we describe polygon networks which are dis-
crete analogues of curve networks. We first introduce a con-
sistent notation and resolve some technicalities that later on
allow us to describe theoretical properties of fair polygon
networks and compute them using known optimization al-
gorithms.

Theorem 2 says that structure lines have C2 smoothness
when passing through a knot, which means that demanding
a small energy yields smoothness. This is the main reason
why the optimization framework described below works and
produces ‘fair’ curve networks.

3.1 Notation and Technicalities

We use the word polygon as a synonym for a ‘sequence
of vertices’: We look at polygons as discrete curves. In
this paragraph we only consider a single polygon p =
(p1, . . . , pK) with vertices pi ∈ Rd . The length (number of
vertices) of a polygon with vertices p = (p1, . . . , pK) is K.
A polygon is either thought to be closed with pK+1 = p1,
pK+2 = p2, . . . or open. The difference polygon ∆ p consists
of the vectors

∆ pk := pk+1 − pk.

– If p is open, the length of the difference polygon ∆ p =
(∆ p1, . . . ,∆ pK−1) is K−1.

– If p is closed, indices are taken modulo K and the length
of the difference polygon ∆ p = (∆ p1, . . . ,∆ pK) is K.

By iteration, we construct higher difference polygons ∆ 2 p,
∆ 3 p that consist of vectors

∆
2 pk := ∆(∆ pk) = pk+2 −2pk+1 + pk,

∆
3 pk := ∆(∆ 2 pk) = pk+3 −3pk+2 +3pk+1 − pk,

and so on. In the remainder of the section we want to de-
scribe the energy of a polygon without having to distinguish
between the two cases of ‘open’ and ‘closed’ polygons. Thus
we define a modified difference operator ∆̂ as follows.

– For closed polygons p, we define the second difference
polygon ∆̂ 2 p := (∆̂ 2 p1, . . . , ∆̂

2 pK) and the forth differ-
ence polygon ∆̂ 4 p := (∆̂ 4 p1, . . . , ∆̂

4 pK) that contain the
vectors

∆̂
2 pk := ∆

2 pk−1, ∆̂
4 pk := ∆̂

2(∆̂ 2 pk)

where the indices are to be taken modulo K.

– If p is open, we let p̃=(0, p1, . . . , pK ,0), and define

∆̂
2 p := ∆(∆̃ p), ∆̂

4 p := ∆
2(∆̃ 2 p).

Then for both closed and open polygons, neither ∆̂ 2 nor ∆̂ 4

changes polygon lengths. Away from the polygon’s bound-
ary, we have

∆̂ 2 pk = pk+1−2pk + pk−1 (1<k<K),
∆̂ 4 pk = pk+2−4pk+1 +6pk−4pk−1 + pk−2 (2<k<K−1).

3.2 Energy of Polygons

Energies E(p) of a polygon p with K vertices in Rd are real-
valued functions defined in RKd that have gradients ∇E(p).
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ci
c j ck pi pi pi

Fig. 5 (Left) Curve network, (middle) polygon network, (right) triangle mesh. Knots are marked with the symbol }. While for curve networks
we combine some curves ci, c j , ck to form structure lines (ci,c j,ck), for polygon networks all polygons pi are already structure lines.

We define the discrete counterparts of the energies E1, E2,
and Eτ by

E1(p) :=
K

∑
k=1

‖∆ pk‖2, E2(p) :=
K

∑
k=1

‖∆
2 pk‖2, (9)

Eτ(p) :=
K

∑
k=1

(‖∆
2 pk‖2 + τ‖∆ pk‖2). (10)

The gradients ∇E1, ∇E2, and ∇Eτ of these energy functions
are given by

∇E1(p) = −2∆̂
2 p, ∇E2(p) = 2∆̂

4 p (11)

∇Eτ(p) = 2(∆̂ 4 p− τ∆̂
2 p). (12)

The expressions for the gradients hold in both the open and
the closed cases. The modifications the second and fourth
order central differences must undergo at the boundaries of
open polygons are neatly hidden in the operators ∆̂ 2 and ∆̂ 4.

An energy gradient ∇E(p) of Equations. (11) and (12) may
be visualized as a sequence of vectors (∇E(p))k attached to
the vertices pk of the polygon.

3.3 Fair Polygon Networks

A fair polygon network is a polygon network minimizing a
discrete energy. We consider polygon networks whose ver-
tices are constrained to surfaces, and also networks whose
vertices avoid obstacles. If the fair polygon network is such
that all vertices are knots, then we call it a fair mesh. A knot
is a vertex that is shared by more than one polygon. The con-
nectivity of a polygon network is given by the polygons and
the knots. Note that in contrast to the curve network case we
do not consider incoming and outcoming curves at a knot,
and each polygon is already a structure line. This is illus-
trated in Fig. 5: In the curve network case, curve segments ci,
c j, ck may form a structure line (ci,c j,ck), but in the polygon
network counterpart we only have one polygon pi for which
four of its vertices are knots. The total energy of a polygon
network P is defined as the sum of energies of all polygons
of the network,

E(P) := Σ
p∈P

E(p),

where E(p) is one of the discrete energies E1, E2, or Eτ of a
polygon that we have defined in Equ. (9) or Equ. (10).

Since the vertices of a polygon network are not all distinct,
we start with a collection V = (v1, . . . ,vN)∈RNd of vertices.
Then we consider polygons p = (p1, . . . , pK) whose vertices
are taken from V :

p1 = vi1 , . . . , pK = viK .

Using this setup, the energy of a single polygon p is also
a function of the entire vertex collection v1, . . . ,vN and we
write Ep(V ). The gradient of the function Ep(V ) is a se-
quence of vectors attached to the vertices collected in V . If
a vertex is not contained in p, then ∇Ep(V ) will assign the
zero vector to this vertex. Thus, the energy gradient ∇Ep(V )
is interpreted as a sequence of N vectors.

For the total energy of a fair polygon network, and the gra-
dient of the energy, seen as a function of the entire vertex set
V = (v1, . . . ,vN), we use the notation

E(V ) = ∑
p∈P

Ep(V ), ∇E(V ) = ∑
p∈P

∇Ep(V ).

3.4 Fair Polygon Networks in Surfaces

Suppose that the vertices vi of a polygon network P are
constrained to a surface Φ with implicit equation F(x) = 0.
Then an E-stationary polygon network is found by letting
the gradient of the Lagrange function

E(V )+
N

∑
i=1

λiF(vi)

equal zero under the constraints

F(vi) = 0, i = 1, . . . ,N.

When using the tension energy Eτ = E2 +τE1, this condition
reads

2∑p(∆̂
4 p− τ∆̂

2 p) =−λi∇F(vi), (13)

for i = 1, . . . ,N. The meaning of the sum is that each polygon
which contains the vertex vi contributes to it. We see that for
each vertex vi the sum on the left hand side of Equ. (13)
must be orthogonal to Φ if the discrete network is to be E-
minimizing.
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vi

p1

p2

p3

Fig. 6 Illustration of the polygons and points involved in the computa-
tion of the first and second umbrella vector. Three polygons p1, p2, p3
pass through the vertex vi. The points of the sets V ′

i and V ′′
i are marked

by circles ◦ and squares �, respectively. The triangle mesh defined by
the fair polygon network is marked with dotted lines. The triangles of
the first umbrella are shown shaded.

3.5 Fair Meshes

We now move to a special case and consider a mesh with
vertices V = (v1, . . . ,vN) taken from a surface Φ . The ver-
tices can be chosen such that the mesh is decomposed into
polygons made from edges of the mesh (see Fig. 6 for the
decomposition of a small patch and Fig. 7 (b) for a whole
surface). In our applications, the decomposition will be part
of the design (Fig. 1). Thus a fair mesh is a special fair poly-
gon network in a surface.

If a vertex vi takes part in exactly L polygons passing
through, it has 2L first order neighbours collected in the set
V ′

i and 2L second order neighbours, two to each polygon,
collected in V ′′

i , see Fig. 6. Kobbelt introduced the so called
umbrella vector for a vertex of a mesh, see e.g. [17]. Fol-
lowing this idea we define first and second umbrella vectors
ui,1, ui,2 by

ui,1 := vi −
1

2L ∑
v∈V ′

i

v, ui,2 := vi −
1

2L ∑
v∈V ′′

i

v.

Note that our first umbrella vector is the same as the one
defined by Kobbelt. However, ui,2 is different in that we use
only those points of the 2-ring neighborhood that appear in
the polygons passing through the vertex vi. For a fair mesh
it is easy to show that Equ. (13) reduces to the condition that

ui,2 − (4+ τ)ui,1

is orthogonal to Φ , whereas an E1-stationary network has
the first umbrella vectors orthogonal to Φ (the latter condi-
tion is used in mesh fairing algorithms based on Laplacian
smoothing, see e.g. [40]).

Φ

(a) (b) (c)
Fig. 7 (a) User input on original mesh Φ are four polygons in vertical
direction and two polygons in horizontal direction. (b) Fair mesh in-
terpolating the input polygons. (c) Design based on coarser fair mesh
interpolating the given polygons.

4 Results and Discussion

4.1 Implementation Issues

The energy gradient of a single polygon is computable with
Equ. (11) and the total energy gradient is found by summing
up the contributions of the single polygons. Thus setting up a
gradient descent algorithm or conjugate gradient method for
energy minimization is straightforward (in the case of net-
works constrained to surfaces, “gradient” means “projected
gradient”; in the case of obstacles gradients have to be mod-
ified so as not to move points into the obstacle). In order to
treat the various numerical representations of surfaces (para-
metric/implicit/triangle mesh/point cloud) and obstacles, it
is sufficient that a projection-type mapping onto the surface
or onto the obstacle’s boundary is available, and that tangent
spaces can be computed.

If the network connectivity is refinable, an energy-minimiz-
ing coarse network can be used to initialize computation of
a finer one, so the multigrid idea applies. By locality of the
gradient, perturbations propagate through the network at a
speed of two vertices per iteration. Total computation times
depend on the nature of surfaces and obstacles used — we
experienced about 1/100 sec per point of the discrete net-
work on a 2GHz PC.

4.2 Examples

Figure 7 illustrates how a user specifies coarse polygons on
a surface Φ which are interpolation conditions for the fair
mesh (i.e., all knots are fixed). Note that in this example Φ

is itself a triangle mesh. The vertices of the fair mesh lie on
the surface Φ , but there is no correspondence of the vertices
of Φ to the vertices of the fair mesh. With the interpolation
constraints as input our algorithm computes a fair mesh on
Φ where the edges of the triangles nicely follow the direc-
tions given by the user.
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Fig. 8 Minimal energy network of cube topology wrapped around a
point cloud (fixed knots yellow, original cube corners have valence 3).

Fig. 9 Fair polygon network used for texture mapping. The mean size
of features of the coral branch implies that hat the network is just dense
enough to avoid being stuck in an insignificant local minimum. Experi-
mental evidence supports this. The colored band itself lies on the given
surface.

Aesthetic remeshing. Alliez et al. give a state-of-the-art re-
port on remeshing [2], a topic that has attracted a lot of atten-
tion in recent years. Optimization criteria mainly have been
taken from needs in simulation or high accuracy approxi-
mation [1,7,38]. Fair webs add another perspective and thus
contribute to aesthetic design [36]: They are well suited to
compute visually pleasing meshes in the sense that they are

Fig. 10 Model restoration: A fair curve network is used to fill the hole
present in the model. Note that the curve network beautifully fills the
hole in a meaningful way.

Fig. 11 Surface approximation with prescribed error bounds. This is
achieved by confining the network to the space between two surfaces
which are close together.

formed by sequences of fair discretized curves. By fixing
certain knots or even some curves, the designer has an in-
fluence on the visual appearance. Special fair meshes arise
in various problems of computational differential geometry
[32], but there also the surface is subject to optimization.
This is not the case in our approach, where the mesh ver-
tices stay on a given surface or, if desired, just close to it.
Figs. 1, 7 show a remeshing example.

Fair parameterization. Fair webs may also be applied to
surface parameterization. Most known parameterization al-
gorithms aim at isometry, and since this is in general not
achievable, at angle preservation, area preservation or rea-
sonable trade-offs between those [12,13]. We would like to
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Fig. 12 Architectural design with a fair polygon network that avoids the given obstacles. The small balls in the left hand figure represent
interpolation conditions.

point to [30], where isosurfaces are parameterized via spe-
cial curve networks. Parameterization via fair webs maps
chosen line families of the parameter domain to fair curves
on a surface. For applications such as mapping regular tex-
ture onto a surface, this fairness criterion plays an important
role. For instance, it is easy to wind a visually pleasing tex-
tured band around an object (Fig. 9) or to compute a fair
parameterization of a surface over a simpler object of arbi-
trary topology, e.g., a cube (Fig. 8) or a polycube [39]. Fig. 7
may be seen as reparametrization over a domain of cylinder
topology.

Surface restoration and editing. Surface restoration in 3D
models has a number of applications such as completion
of an incomplete scan, 3D model beautification, or surface
blending. Several variational formulations for the solution of
this problem have been proposed, see [6,35,43]. Fair webs
are well suited for this purpose. We do not just incorporate
continuity conditions at the boundary of the hole, but take a
larger web, which partially lies in the original surface. There,
it picks up the surface behavior around the hole and there-
fore fills the hole in a natural manner (Fig. 10). Control han-
dles for editing fair webs (i.e., surfaces) are the placement of
fixed knots, the temporary introduction of new fixed knots,
and the location of obstacles (Fig. 12).

Fair surface design in the presence of obstacles. Although
limited design space is a practical issue, only recently there
has been some research on the design of fair curves in the
presence of obstacles [14,27]. Fair webs provide a simple
approach to the design of fair surfaces which avoid given
obstacles (Fig. 12).

Surface approximation with guaranteed error bounds. By
deleting an admissible strip around a surface Φ from Rd

and considering the rest as an obstacle, we can approximate
Φ within guaranteed error bounds (see Fig. 11). We have

successfully employed fair polyline networks for smoothing
digital terrain elevation data with guaranteed error bounds
[15].

4.3 Conclusion and Future Research

In this paper we contribute results on energy-minimizing
curve and polygon networks which are either constrained to
lie in a given surface or are to avoid obstacles. We illustrate
our theoretical results by means of several examples that in-
dicate the possible applications of fair webs and fair polygon
networks. In future research we plan to investigate the use of
constraints putting a penalty on heavy distortions such as ac-
cumulations of network curves (see Fig. 8), or pushing away
of network curves from feature regions.
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