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Abstract. In order to obtain a global principle for modeling closed
surfaces of arbitrary genus, first hyperbolic geometry and then discrete
groups of motions in planar geometries of constant curvature are studied.
The representation of a closed surface as an orbifold leads to a natural
parametrization of the surfaces as a subset of one of the classical geome-
tries S

2, E
2 and H

2. This well known connection can be exploited to
define spline function spaces on abstract closed surfaces and use them
e. g. for approximation and interpolation problems.

§1. Geometries of Constant Curvature

We are going to define three geometries consisting of a set of points, a set
of lines, and a group of congruence transformations: The geometry of the
euclidean plane E2, the geometry of the unit sphere S2 of euclidean E3, and
the geometry of the hyperbolic plane H2. The geometries of E2 and S2 are
well known: the hyperbolic plane will be presented in the next subsections.
For more details, see for instance (Alekseevskij et al., 1988).

It is possible to define hyperbolic geometry in a completely synthetic way.
We could use a system of axioms for euclidean geometry and then negate the
parallel postulate or one of its equivalents. Any structure satisfying the axioms
would be called a model of hyperbolic geometry. We would have to verify that
all models, including the classical ones, the Poincaré and the Klein model, are
isomorphic. We start from a different point of view: We first define a set of
points, lines and congruence transformations, as linear as possible, and then
show some structures isomorphic to it. The reader then will see the difference
to euclidean or spherical geometry.
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Fig. 1. Projective model of H
2: (a) points and non-intersecting lines,

(b) hyperbolic reflection κ.

1.1 The Projective Model of Hyperbolic Geometry

Consider the real projective plane P 2 equipped with a homogeneous coordi-
nate system, where a point with homogeneous coordinates (x0 : x1 : x2) has
affine coordinates (x1/x0, x2/x0). We will not distinguish between the point
and its homogeneous coordinate vectors. Every time when a coordinate vec-
tor of a point appears in a formula, it is tacitly understood that any scalar
multiple of this coordinate vector could be there as well.

We define an orthogonality relation between points: Let β be a symmetric
bilinear form defined in IR3, and let β have two negative squares, for instance

β(x, y) = x0y0 − x1y1 − x2y2.

An equivalent formulation is β(x, x) = xT Jx, J being the diagonal matrix
with entries 1, −1 and −1. We call x and y orthogonal, if β(x, y) = 0. Points
with β(x, x) = 0 are called ideal points. The set of all ideal points is a conic
and will be called the ideal circle. If we choose β as above, the ideal circle is
nothing but the euclidean unit circle.

Now a point x ∈ P 2 shall belong to the hyperbolic plane H2 if it is
contained in the interior of the ideal circle,

x ∈ H2 ⇐⇒ β(x, x) > 0.

The lines of the hyperbolic plane are the intersections of projective lines with
H2. We define two lines to be parallel if they have no point in common. It is
now obvious that for all lines l and all non-incident points p, there are a lot
of lines parallel to l and containing p. A picture of the projective model can
be found in Figure 1.

So far we have dealt with the incidence structure of the hyperbolic plane.
We now come to metric properties. We define the hyperbolic distance d(x, y)
between points x and y of H2 by

coshd(x, y) =
|β(x, y)|√

β(x, x)β(y, y)
.
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We leave the verification of the fact that always β(x, x)β(y, y) ≤ β(x, y)2 to
the reader. This metric satisfies the triangle inequality and is compatible with
the definition of lines, in the sense that they are precisely the geodesic curves
with respect to this metric.

Hyperbolic congruence transformations will be those projective
transformations, which map H2 onto H2 and preserve hyperbolic distances.
For this reason and also because it is shorter, we will call them isometries or
motions. We express the isometric property in matrix form: for each projec-
tive transformation κ there is a matrix such that in homogeneous coordinates

κ(x) = A · x.

It is easy to see that the condition d(x, y) = d(κ(x), κ(y)) for all x ∈ H2 is
equivalent to

AT JA = λJ with λ > 0,

and that there are the following types of hyperbolic isometries:

1) the identity transformation;

2) hyperbolic reflections, which leave the points on a hyperbolic line fixed
and reverse orientation (see Figure 1b);

4) hyperbolic translations, which preserve orientation and leave no
point of H2 fixed, but a hyperbolic line is mapped onto itself;

5) hyperbolic rotations, which leave one point of H2 fixed and preserve ori-
entation (for a picture in a different model, see Figure 3);

6) ideal hyperbolic transformations which leave no point of H2 fixed, and no
line is mapped to itself, but orientation is preserved;

7) the remaining hyperbolic isometries reverse orientation and are the prod-
uct of a hyperbolic reflection by one of the above.

The model of the hyperbolic plane just described is called the projective

or Klein model. In this model hyperbolic geometry appears as a subset of
projective geometry: the point set is a subset of the projective point set, the
lines are the appropriate subsets of projective lines, and hyperbolic isometries
can be expressed in matrix form.

What remains to be defined is the hyperbolic angle. We will do this in a
different model, which will also explain the name “hyperbolic”.

1.2 The Hyperboloid Model of Hyperbolic Geometry

In IR3, β(x, x) = 0 is the equation of a quadratic cone with apex at the origin,
and β(x, x) = 1 is the equation of a two-sheeted hyperboloid, which can be
seen as the unit sphere with respect to the pseudo-euclidean scalar product
β. We call the “upper sheet” of this unit sphere the hyperbolic plane:

x ∈ H2 ⇐⇒ β(x, x) = 1 and x0 > 0.

There is an obvious one-to-one correspondence between the hyperbolic plane
defined in Section 1.1 and the hyperbolic plane defined in this subsection.
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Fig. 2. The hyperboloid model X ⊂ IR3 of H
2 and the correspondence

between hyperboloid and projective model, which appears as a unit disk
tangent to X.

Given a projective point, its uniquely defined coordinate vector x with
β(x, x) = 1 and x0 > 0 defines the corresponding point of the hyperboloid
model. It is easy to transfer lines and hyperbolic isometries to the hyperboloid
model: Hyperbolic lines have linear equations and therefore are intersections
of H2 with two-dimensional linear subspaces of IR3. A picture of the hyper-
boloid model is given in Figure 2.

In the projective model, a hyperbolic isometry given by its matrix A is
equivalently described by any scalar multiple of A. Now scale A such that

AT JA = J.

Then the unit hyperboloid β(x, x) = 1 is invariant under multiplication by
A. Conversely, as scalar products can be expressed in terms of distances,
the invariance of the unit hyperboloid implies AT JA = J . If A interchanges
the two sheets of the unit hyperboloid, multiply A by −1. Thus, without
loss of generality, we call all linear automorphisms of IR3 which map H2 onto
itself hyperbolic isometries and this definition is compatible with the definition
given in Section 1.1.

A scalar product β always defines an angle between vectors x and y: In
IR3 the pseudo-euclidean angle 6 (x, y) is partially defined by

λ =
β(x, y)√

β(x, x)β(y, y)
if β(x, x)β(y, y) > 0

cos 6 (x, y) = λ if |λ| ≤ 1

cosh 6 (x, y) = |λ| if |λ| ≥ 1
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Fig. 3. Conformal model: hyperbolic rotation.

In every case where we will calculate an angle it has to be verified that β(x, x)·
β(y, y) > 0. In most cases we leave this verification to the reader. It is
clear that the pseudo-euclidean angle of vectors x and y corresponds to the
hyperbolic distance defined in Section 1.1. The hyperbolic angle between lines
meeting in x is defined as the pseudo-euclidean angle of tangent vectors at x.
Because all vectors v tangent to H2 in a point x satisfy β(v, v) < 0, the angle
between them is defined.

We define the geodesic distance between points x and y on a smooth
surface X in IRn as the infimum of the arc-lengths of smooth curves c joining
x and y in X. Arc-lengths are measured by means of the scalar product β:
We can define the norm of a vector by ‖x‖2 = |β(x, x)| and measure the arc
length by

∫
‖ċ(t)‖dt. It is easy to see that for H2 we can explicitly find the

curves for which the infimum, actually then the minimum, is attained: The
geodesic distance is the arc-length of the unique hyperbolic line joining x and
y and equals the hyperbolic distance d(x, y).

1.3 The Conformal Model of Hyperbolic Geometry

Distorting the projective model leads to a new model of hyperbolic geometry
with some other special metric properties: Let H2 be the interior of the unit
circle and define σ : H2 → H2 in affine coordinates by

(x, y) 7→
1

1 −
√

1 − x2 − y2
(x, y).

Thus points will be moved a bit towards the origin. Hyperbolic lines will
be σ-images of hyperbolic lines defined in Section 1.1. If κ is a hyperbolic
isometry as defined in Section 1.1, then σκσ−1 shall be a congruence trans-
formation. This geometry which is obviously isomorphic to the projective
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and the hyperboloid model is called the conformal or Poincaré model of the
hyperbolic plane. It has the following interesting properties:

1) Hyperbolic lines appear as euclidean circular arcs or straight line seg-
ments which intersect the ideal circle orthogonally.

2) The hyperbolic angle appears as the euclidean angle between circular arcs
or straight line segments. This is why the model is called conformal (see
Figure 3).

3) Hyperbolic reflections appear as inversions. The group of hyperbolic
isometries is generated by the hyperbolic reflections, so in the conformal
model it appears as the subgroup of Möbius transformations which map
H2 onto itself.

Because the euclidean radius of hyperbolic distance circles with center in
the origin is smaller in the conformal model than it is in the projective model,
usually the conformal model is used for illustrations. In Figure 3b you can
see an iterated hyperbolic rotation in the conformal model.

The conformal properties of this model have also been exploited by the
Dutch artist M. C. Escher in some of his famous drawings. One of them is
depicted in Figure 4.

1.4 An Overview

We can assume that the reader is familiar with the geometry of the euclidean
plane E2 and the unit sphere S2. In this section we will present these two
together with hyperbolic geometry from a unified point of view. S2 and H2

will in some places be dual to each other, whereas euclidean geometry does
sometimes not fit so nicely into the description. Also the generalizations of
S2, E2 and H2 to higher dimensions are obvious: En is euclidean n-space,
Sn and Hn are the unit spheres with respect to a scalar product in IRn+1

with zero or n negative squares, respectively. It may be stated that almost
everything in this paper, except, of course, the classification of surfaces in
Section 2.5, holds for any dimension with only slight notational changes.

• Linear incidence structure: For each of the three geometries there is a
model as a subset X of IR3 such that lines in the geometry are intersec-
tions of two-dimensional linear subspaces with X. For X we can choose
the unit sphere, the plane with coordinate x0 = 1, and the upper sheet
of the hyperboloid described in Section 1.2.

• Linear model and metric: Given a scalar product β in IR3, then dependent
on the number of negative squares, the unit sphere will be an ellipsoid,
a one-sheeted hyperboloid, a two-sheeted hyperboloid, or empty. If β
is positive definite, the unit sphere carries the structure of a spherical
geometry. If β has two negative squares, then each of the two connected
components (sheets) of the unit sphere carries the structure of a hyper-
bolic geometry. Distances of points are given in terms of angles between
the corresponding vectors, as are angles between tangent vectors. The
geodesic distance in X equals the distance previously defined.
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Fig. 4. M. C. Escher’s ”Circle Limit IV”, (c) 1997 Cordon Art – Baarn
– Holland. All rights reserved.

• Congruence transformations: In the linear models X ⊂ IR3 of S2 and
H2, the group of motions or isometries consists of the restrictions L|X of
those linear automorphisms L of IR3 which map X onto itself.

• Curvature: The sphere, the euclidean plane and the hyperbolic plane
are Riemannian manifolds of constant Gaussian curvature, the value of
which is 1, 0 and −1, respectively. From the Gauss-Bonnet theorem it
then follows that the angle sum in a triangle is greater than, equal to, or
less than π, respectively. Moreover, the absolute value of the difference
is the area of the triangle as of a Riemannian manifold.

§2. Discrete Motion Groups and Orbifolds

In this section we define the factor orbifold X/H where X is one of E2, S2

or H2, and H is a discrete transformation group acting on X. X will always
denote one of the three geometries, and its motion group will be denoted by
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Fig. 5. The torus as an orbifold.

G. We will not be able to present a complete theory, and we simplify some
notions in some places.

For a detailed presentation, see for instance (Ratcliffe, 1994), (Vinberg
and Shvartsman, 1988) or (Zieschang et al., 1980). For a well illustrated book
which is easy to read, see for instance (Week, 1985).

2.1 Discrete Transformation Groups

We will consider groups H of motions acting on X, which means that each
h ∈ H is an isometry h : X → X and h1(h2(x)) = (h1 · h2)(x). The identity
transformation will always be denoted by e. We write h(x) for the h-image of
an x ∈ X and h(K) for the h-image of a subset K ⊂ X. We call a group H
acting on X discrete if for every compact set K the intersection K ∩ h(K) is
nonempty only for finitely many h ∈ H. This implies that the orbit {h(x), h ∈
H} of a point x is discrete, i. e., it has no accumulation point. An example for
this is the group H = ZZ2 acting as a group of translations on the euclidean
plane: The pair (i, j) of integers acts on X = E2 by (x, y) 7→ (x + i, y + j). It
is only a change in notation if we consider H as a subgroup of the euclidean
motion group. A picture can be seen in Figure 5.

For a group H acting on X, the stabilizer Hx of x is the subgroup of all
those h ∈ H with h(x) = x. If H is discrete, obviously Hx is finite. The
order of x is the cardinality of its stabilizer. In the example given above all
stabilizers are trivial. We call such actions free.

If x and y are not antipodal points of the sphere, the unique shortest
segment joining them is called their convex hull, and a set C is called convex,
if for all x, y ∈ C the convex hull of x and y is in C. Then a convex polygon

is defined as the convex hull of a finite non-collinear set of points. Edges and
vertices are defined in the obvious way. Note that a convex polygon is always
the closure of its interior.

2.2 Fundamental Domains

A fundamental domain F of a discrete motion group H is a set which is
the closure of its interior and fulfills the following conditions: 1) the sets
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h(F ), h ∈ H cover X, and 2) if h1(F ) and h2(F ) have an interior point in
common, then h1 = h2. There are discrete groups of motions which have no
convex polygons as fundamental domains, for instance the discrete group of
translations along integer multiples of one fixed vector in E2. We will not
try to generalize the notion of polygon such that it covers all discrete motion
groups (which is possible), but we restrict ourselves to groups which possess
convex fundamental polygons.

We denote the edges of the fundamental polygon F by s0, . . . , sn−1, sn =
s0. The intersection of edges si ∩ si+1 is a vertex vi. By subdividing finitely
many edges and introducing new vertices it is possible to achieve that the in-
tersection of F with any h(F ) is either empty or an edge. We call the uniquely
defined motion h ∈ H for which F ∩ h(F ) = si the adjacency transformation

of the edge sj . We call a sequence h1(F ), . . . , hn(F ) a chain of polygons, if
the intersection hi(F ) ∩ hi+1(F ) is an edge. Because any two h ∈ H can be
connected by a chain, the group H is entirely generated by the finitely many
adjacency transformations of one fundamental polygon.

If an adjacency transformation maps si to sj , then we write si = s′j .
Obviously then the inverse adjacency transformation maps sj to si, so s′i = sj .
For the example given above, the adjacency transformations are indicated in
Figure 5.

2.3 Defining Relations

We write hs for the adjacency transformation with F ∩hs(F ) = s. A sequence
hs1

, . . . , hsn
of adjacency transformations with hs1

· . . . · hsn
= e corresponds

to a chain F0 = F, F1 = hs1
(F ), F2 = hs1

(hs2
(F )), . . . , Fn = F0 of polygons.

Such a chain is called a cycle.
Let s, s′ be edges with hs(s

′) = s and hs′(s) = s′. Then obviously
hshs′ = e and F, hs(F ), hshs′(F ) = F is a cycle. Formally, we write

ss′ = e.

Also for all vertices v there is a cycle of polygons consisting of all polygons
containing v in the order in which they are encountered when cycling v. The
corresponding sequence hs1

, . . . , hsn
of adjacency transformations gives the

formal relation
s1s2 . . . sn = e,

which is called a Poincaré relation. The importance of the Poincaré relations
is shown by the following

Theorem. Let H be a group with a convex fundamental polygon. Denote

its set of edges by S and the set of relations ss′ = e together with all Poincaré

relations with R. Then the abstract group with generator set S and relations

R is isomorphic to H.

In the example given above, all adjacency transformations are trans-
lations. They correspond to the edges s0, s1, s2, s3 and s′0 = s2, s′1 = s3
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(see Figure 5). The four Poincaré relations are s0s1s2s3 = e, s1s2s3s0 = e,
s2s3s0s1 = e and s3s0s1s2 = e. Obviously s2s0 = e and s1s3 = e. So we can
eliminate s2 and s3. Each Poincaré relation implies the other three. It follows
that H as an abstract group is isomorphic to the group with generators s0, s1

and the single relation s0s1s
−1
0 s−1

1 = e, or, equivalently, s0s1 = s1s0. This
means that H is a free abelian group with free generators s0 and s1.

A natural question to ask now is: Given a convex polygon F and for
each edge s an adjacency transformation hs, such that (a) F ∩ hs(F ) = s,
(b) hs(s

′) = s implies hs′(s) = s′, and (c) hshs′ = e. Suppose further that
(d) for each vertex v of F there are adjacency transformations hs1

, . . . hsn

such that their product equals e and the polygons hs1
hs2

. . . hsi
(F ) form a

“circuit” around v. Does there exist a discrete group of motions having F as
fundamental polygon and hs as adjacency transformations? The answer, due
to Poincaré, is yes.

2.4 Orbifolds

Let H be a discrete group of motions in one of the three geometries E2, S2 or
H2. By identifying all points h(x), h ∈ H, we get the points of the orbifold

X/H. This definition, however, gives only the orbifold as a set, without addi-
tional structures. They are to be defined by means of the canonical projection

p : X → X/H which maps an x ∈ X to its orbit. The topology on X/H is
defined as the final topology of p: U is open if and only if p−1(U) is open.
The incidence structure is directly mapped by p: A line segment in X/H is
the p-image of a line segment of X. The distance between x, y in X/H is the
minimum of distances of points in p−1(x) and p−1(y) measured in X.

An example for an orbifold which is very well known, but, in some sense
is not typical, is the torus. It appears as the orbifold X/H if X = E2 and
H is the discrete group of translations along integer multiples of two basis
vectors e1 and e2 (see Figure 5). The order of all points x equals 1, and so
for all y in p−1(x) there is a neighborhood of y which is mapped isometrically
(and, of course, homeomorphically) to X/H. This need not be the case, and
happens if and only if some h ∈ H has a fixed point. These orbifolds have
metric singularities and could also be used for modeling surfaces, but we will
omit them in order to keep the presentation simple.

2.5 Surfaces

Our aim is to find discrete groups H in a geometry X of constant curvature
such that the corresponding orbifold X/H is a compact surface, orientable or
nonorientable, of arbitrary genus g. It is well known that the compact surfaces
without boundary are precisely the spheres with g handles and the spheres
with g crosscaps. For the classification of surfaces from the topological, dif-
ferentiable, or combinatorial viewpoint, see textbooks of algebraic topology,
differential topology or combinatorial topology, for instance (Hirsch, 1976) or
(Kinsey, 1993).
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Fig. 8. Klein bottle.

It is well known that the following discrete transformation groups H in
various geometries X lead to all compact surfaces:

• The sphere: S2 itself as the orientable surface of genus 0 is one of the
primitive geometries. Formally, let X = S2 and H = {e}.

• The projective plane: P 2 is obtained by identifying antipodal points in
S2. If s denotes the antipodal map, then P 2 = S2/H with H = {e, s}.
A fundamental polygon is the upper hemisphere.

• The torus: Letting X = E2 and H equal the group generated by the
translations along two linearly independent vectors gives the torus, which
is the orientable surface of genus 1. A fundamental polygon is the paral-
lelogram spanned by a lattice basis.

• The Klein bottle: Letting X = E2 and H equal the group generated
by the adjacency transformations depicted in Figure 8 gives the nonori-
entable surface of genus 2, which is called the Klein bottle.

• Orientable surfaces of higher genus: In the conformal model of the hyper-
bolic plane, consider the points (r cos(2kπ/l), r sin(2kπ/l)) with l = 4g,
g ≥ 2 and k = 0, . . . , l− 1. The convex hull F of these points is a regular
4g-gon, with interior hyperbolic angles α depending on the value of r (see
Figure 9). It is easily seen that α tends to 0 as r tends to 1, and α tends
to π − 2π/l as r tends to 0. By continuity, for all l there is a value of r
such that the interior angle α equals 2π/l. Now denote the edges of F by
a1, b1, a

′
1, b

′
1, . . . , ag, bg, a

′
g, b

′
g and define orientation-preserving adjacency

transformations which map ak to a′
k, bk to b′k and vice versa, for all k.

Then the Poincaré relations will be equivalent to the relation

a1b1a
′
1b

′
1a2b2a

′
2b

′
2 . . . agbga

′
gb

′
g = e.
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Fig. 9. Regular octogon as fundamental domain (a) of a group whose
orbifold is an orientable surface of genus 2 (b) of a group whose orbifold
is a non-orientable surface of genus 4.

This shows that the group H generated by the adjacency transformations
defined above is, as an abstract group, isomorphic to the group with
generators a1, b1, . . . , ag, bg and the single relation

a1b1a
−1
1 b−1

1 . . . agbga
−1
g b−1

g = e.

The order of all vertices is 1, and therefore X/H is a manifold. Gluing
those edges of the fundamental polygon together which are mapped onto
each other by adjacency transformations, gives precisely X/H. From the
gluing construction it is clear that X/H is a sphere with g handles. A
picture of the gluing for g = 2 can be seen in Figure 11a. This shows
that the orientable surface of genus g with g > 1 is an orbifold, even a
manifold, of the form X/H where X is the hyperbolic plane and H is the
group generated by the adjacency transformations defined above. The
torus fits into this description, if we set g = 1 but instead of a polygon
in H2 use a euclidean square.

• Nonorientable surfaces of higher genus: In analogy to the previous con-
struction, construct a regular 2g-gon (g ≥ 3) in the hyperbolic plane with
angles π/g. Denote the edges by a1, a

′
1, . . . , ag, a

′
g. To the edge ak corre-

sponds the uniquely determined adjacency transformation which reverses
orientation and maps ak to a′

k, and for a′
k vice versa (see Figure 9). Then

all Poincaré relations are equivalent to the relation a2
1a

2
2 . . . a2

g = e. Thus
the discrete motion group H generated by these adjacency transforma-
tions is, as an abstract group, isomorphic to the group with generators
a1, . . . , ag and the single relation

a2
1 . . . a2

g = e.
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The order of all vertices equals 1, and therefore X/H is a manifold. It
is nonorientable because H contains orientation reversing motions. From
the gluing construction it is clear that X/H is a sphere with g crosscaps.

The Klein bottle (g = 2) and the projective plane (g = 1) fit into this
formalism, if we choose a euclidean square or a spherical 2-gon (such as
the northern hemisphere) instead.

§3. Functions on Surfaces

3.1 Group-Invariant Functions

We call a function f̃ : X → R invariant with respect to the group H, if

f̃(h(x)) = f̃(x) for all x ∈ X,h ∈ H.

If p : X → X/H denotes the canonical projection, an H-invariant function
directly leads to a function f whose domain is the factor orbifold:

f : X/H → R, f(p(x)) = f̃(x)

and vice versa: a function f defined on X/H gives rise to an H-invariant
function

f̃ : X → R, f̃(x) = f ◦ p(x).

If the range R is the real number field IR and f̃ is a function defined on X,
then we can build an H-invariant function g̃ from f̃ by letting

g̃(x) =
∑

h∈H

f̃(h(x)).

Of course it has to be verified that this sum makes sense. If X is the sphere,
every discrete motion group is finite, and the sum above is finite. So every
property of f which is invariant with respect to finite sums is preserved, so
for instance continuity or differentiability.

If f has compact support, then for all x there is a neighborhood U of x
such that the sum defined above is finite in U , by discreteness of H. So all
local properties which are invariant with respect to finite sums are preserved,
for instance continuity or differentiability.

If X/H is a manifold, it is clear that f : X/H → IR is continuous (differ-

entiable, of class Cr, of class C∞) if and only if the corresponding f̃ : X → IR
has this property. If X/H is an orbifold with metric singularities, we avoid
difficulties by defining that an f defined on X/H is differentiable (of class Cr,
of class C∞) if the corresponding f̃ has this property.

The above sum can make sense even if f does not have compact support.
It is sufficient that f decreases fast enough. An example for a summable
function whose sum is of class C∞ is the Gaussian f̃(x) = exp(−d(x,m)2) in

E2 and H2 (note that in S2 f̃ is not differentiable everywhere).
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3.2 Polynomial and Rational Functions

For each of the three geometries S2, E2 and H2 we have found a model as a
subset X of IR3. This enables us to define polynomial or rational functions
on X as the restriction of polynomial or rational functions defined in IR2 to
X. It is well known that both S2 and H2 possess rational parametrizations
which can be given by stereographic projections: The mapping σ defined by

σ : IR2 → S2 \ {(−1, 0, 0)}, (p, q) 7→
1

1 + p2 + q2
(1 − p2 − q2, 2p, 2q)

is one-to-one. Also, the mapping σ defined by

σ : D → H2, (p, q) 7→
1

1 − p2 − q2
(1 + p2 + q2, 2p, 2q)

with D being the interior of the unit circle, is one-to-one. If f is a polynomial
defined in IR3, then f ◦ σ is a rational function defined in the domain of σ.

We want to indicate how modeling of closed surfaces with the aid of
piecewise rational functions is possible. First we give an easy example which
shows how to proceed in the not so trivial cases: The B-spline basis functions
on the real line are well known, and so are tensor product B-splines in E2.
We define a knot sequence on the x1-axis which is periodic and has period 1.
This means that if t is a knot, then t + k is a knot for every integer k. The
same we do for the x2-axis, and then we consider the B-spline basis functions
Bi(x1) and Bj(x2) which correspond to this knot sequences. Their products
Bij(x1, x2) defined in the plane form a partition of unity. There are finitely
many functions Bij(x1, x2) such that all others can be expressed in the form
B(x1, x2) = Bij(h(x1, x2)) where h is an element of the translation group H
generated by translations along the unit vectors in x1- and x2-direction. All
Bij ’s are compactly supported, so the functions

C̃ij(x) =
∑

h∈H

Bij(h(x))

are well defined, are group-invariant, and form a partition of unity. Thus
there are finitely many functions Cij defined on the torus E2/H such that

Cij(p(x)) = C̃ij(x) and
∑

Cij(p(x)) = 1 for all x ∈ E2,

where p is the canonical projection which maps a point x = (x1, x2) to its
orbit.

The preceding paragraph contained nothing new. It could be said that it
is a complicated formulation of the simple fact that “closing” B-spline curves
is also possible in the plane, and analogously to closed curves which can be
viewed as defined on the circle, this closing operation yields a closed surface
defined on the torus. On other surfaces the process of making a function
group-invariant may be more complicated, but the principle is the same and
has been shown in Section 3.1.
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3.3 Simplex Splines and a DMS-Spline Space

It is well known that the restriction of homogeneous B-splines to the sphere
leads to spline spaces of functions whose domain are subsets of the surface of
the sphere, see e. g. (Alfeld et al., 1996). We want to show that the concept
of simplex spline is not restricted to the sphere and that there is a natural
generalization to abstract surfaces of higher genus.

Choose a basis b1, . . . , bn ∈ IRn. Then for all v ∈ IRn there is a unique
linear combination v1b1+· · ·+vnbn equal to v. For all n-tuples k = (k1, . . . , kn)
of integers we define the function

Bk : IRn → IR, v 7→
(k1 + . . . + kn)!

k1! . . . kn!
vk1

1 . . . vkn

n ,

which is called a homogeneous Bernstein basis polynomial of degree

|k| = k1 + · · · + kn. Any linear combination of homogeneous Bernstein basis
polynomials of the same degree is called a homogeneous Bernstein polyno-

mial. For such a polynomial p =
∑

|k|=d ckBk the equation p(λv) = λdp(v)

holds. If X is the linear model of one of the three geometries S2, E2 or
H2, the restrictions p|X are called spherical, planar or pseudo-spherical Bern-
stein polynomials. Note that the planar Bernstein polynomials are just the
well-known triangular Bernstein polynomials in the plane.

Also the notion of simplex spline has a natural meaning in the linear
model of S2, E2 and H2. We recall that the homogeneous simplex spline
MB : IRn → IR is well defined for a set B = {b1, . . . , bm} of vectors as follows:

MB(v) = χB(v)/det(b1, . . . , bn)

MB(v) =
∑

b∈T

λbMB\b(v)

if |B| = n

if |B| > n and v =
∑

b∈T

λbb.

Here χB(v) equals 1 if all coordinates λi with respect to the basis B are
positive and zero if at least one is negative. T denotes an arbitrary n-element
subset of B which is a basis of IRn. This defines the simplex spline in IRn

except in some subspaces. Now extend the simplex spline continuously. This
gives a Cm−n function. It is natural to define spherical, planar or pseudo-
spherical simplex splines as the restriction MB |X of simplex splines MB .

This allows the definition of a spline space analogous to the DMS-spline
spaces introduced in (Dahmen et al., 1992). This is of theoretical interest,
because it shows the existence of a spline space consisting of piecewise rational
functions of arbitrary finite differentiability defined on a surface of genus g over
an arbitrary triangulation. The planar and the spherical variant of the DMS-
spline space have already been defined, for instance in (Pfeifle and Seidel,
1994).

Simplex splines are most easily made group-invariant if they are defined
over a group-invariant triangulation. Here group-invariant means that every
motion h ∈ H maps the triangulation onto itself. One possibility to construct
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Fig. 10. Group-invariant tesselation.

such a triangulation is the following: Choose a set V of vertices in a funda-
mental domain of the group H and consider the set Ṽ = {h(v), h ∈ H, v ∈ V }.
Then apply an algorithm which finds the edges of a triangulation with ver-
tex set Ṽ and is designed such that it uses only information which can be
expressed in terms of the geometry, for instance distance. Then a congru-
ence transformation κ applied to Ṽ must result in edges which are just the
κ-images of the previous ones. Now it is clear that if Ṽ is group-invariant, so
is the whole triangulation. An example of a triangulation which is invariant
with respect to the group corresponding to the orientable surface of genus 2
is shown in Figure 10.

A function defined by means of the triangulation and the geometry alone
then is group-invariant. This is especially true for all functions which are de-
fined by means of one of the linear models X ⊂ IR3 and are linearly dependent
on the coordinate vectors of the vertices. One example of this is given by the
simplex splines defined above.

3.4 Approximation, Interpolation, Visualization

These tools can be used for approximation and interpolation of functions
defined on a compact surface and also for visualizing such surfaces. This has
been pointed out by Ferguson and Rockwood (1993). The spherical, euclidean
or hyperbolic area dµ̃ defines a measure in X. If we assume that the boundary
of the fundamental domain F has measure zero, dµ̃ naturally defines a measure
dµ on X/H and we can define the space L2(X/H) with the scalar product

(f, g) =

∫

X/H

fgdµ =

∫

F

f̃ g̃dµ̃
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Fig. 11. (a) Gluing the boundary of an octogon together yields a surface
of genus 2, (b) C

∞-approximation of a polyhedron.

in the well known way. The resulting norm will be denoted by ‖f‖2. One
typical problem now is the following: Given a finite set B = {b1, . . . , bn} of
basis functions and a function f on X/H, we seek a linear combination of the
bi such that

‖f −
∑

λibi‖2 → min .

This is a classical least squares problem and can easily be solved: If the bi

are orthonormal, λi = (f, bi) is the solution. If not, apply the Gram-Schmidt
orthogonalization process. For interpolation we for instance introduce the
space L2

∆(X/H) with the scalar product

(f, g)∆ =

∫

X/H

∆f∆gdµ,

where ∆ is the Laplace-Beltrami operator on X/H which is inherited from X.
This allows us to find in the linear solution space of the interpolation problem∑

λibi(xj) = cj a solution of minimal energy. It is also possible to extend
interpolation schemes which have been successfully employed for sphere-like
surfaces to the linear models of the S2, E2 and H2, for instant the hybrid
patch of (Liu and Schumaker).

Modeling and visualization of compact surfaces is possible in the following
way: A closed surface in IR3 can be seen as an embedding (or, at least, an
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immersion) of an abstract closed surface X/H into IR3. For each abstract
point p ∈ X/H three coordinate values x1(p), x2(p) and x3(p) are given. This
means that we have three real functions x1, x2 and x3 whose domain is X/H.
Equivalently, we have three H-invariant functions x̃i whose domain is X. They
have the property that the (x1, x2, x3)-image of X/H is homeomorphic to
X/H. Thus approximation, interpolation and modeling of surfaces is nothing
but approximation, interpolation and modeling of three separate coordinate
functions.

Suppose we are given a polyhedron with vertices p1, . . . , pn and we seek
a C∞ approximation to it. We describe our solution to this problem, which is
typical for the sort of problems arising in this context. The algorithm is the
following:
1) Cut the polyhedron along four closed curves passing through one fixed

base point, such that the resulting surface becomes simply connected.
An example of such a cutting is shown in Figure 11a. The cuts are in
correspondence to the fundamental polygon which is shown in Figure 9a.

2) Find finitely many points q1, . . . , qn in the fundamental octogon corre-
sponding to the appropriate group H with the following property: If we
construct a group-invariant triangulation with vertices h(qi), i = 1, . . . , n,
h ∈ H, then this triangulation, when factored to the orbifold, is combi-
natorically equivalent to the triangulation of the polyhedron.

This triangulation need not necessarily consist of triangles, it can also
be a tesselation with n-gons of different shape and different number of
vertices. The vertices do not necessarily have to lie inside the fundamental
polygon. The cuts and the 8-gon are merely a guide where to put the
qi. For instance the tesselation shown in Figure 10 after factoring is
combinatorically equivalent to the polyhedron shown in Figure 11 after
subdividing each of the squares in four parts.

3) Optimize the triangulation/tesselation with respect to appropriate crite-
ria. For instance we can try to optimize the shape of the faces of the
triangulation/tesselation. In our case, the faces of the polyhedron are
squares, so we want the faces of the tesselation be as square-like as pos-
sible. Because not for all vertices the number of faces containing this
vertex equals four, we have to compromise.

4) Find a one-to-one correspondence between X/H and the polyhedron, or,
equivalently, find a covering map from X to the polyhedron which is
compatible with the triangulation. In our case this is done easily by
mapping the 4-gons of the tesselation to the squares of the polyhedron
in the obvious way.

5) To each point of X we assign the three coordinate values x1, x2, x3 of
its corresponding point on the polyhedron. This defines three continuous
H-invariant functions on X.

6) Approximate the xi by functions yi which are linear combinations of C∞

basis functions, for instance Gaussians.

7) Use the three functions y1, y2 and y3 as coordinate functions of a surface
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in IR3 whose parameter domain is X/H or X depending on the level of
abstraction. This is how Figure 11b was made.

If the correspondence between the points q1, . . . , qn of X/H and the vertices
p1, . . . , pn is established, interactive modeling of polyhedra of similar shape
is easy. We can construct the correspondence between X/H a further poly-
hedron P of the same shape by finding a correspondence between the model
polyhedron and P . This is especially trivial if P combinatorically is just a
refinement of the model polyhedron. The approximation problem for P is
then just the problem of approximation of three new coordinate functions.

If the basis functions bi are already orthonormal, approximation can be
done very quickly. Moving the vertices of the polyhedron, which can now be
seen as control points of the surface, influences the approximant surface. De-
pending on the type of basis function, the influence will be local or global. As
Gaussians decrease rapidly, and in addition can be multiplied by compactly
supported bump functions to become compactly supported without essentially
changing their global shape, we have local control. For implementation pur-
poses, the basis functions with compact support are very convenient, because
the handling of infinite sums can be avoided completely.

Modeling of Cr surfaces with polynomial coordinate functions is possible
if we choose the bi as simplex splines or homogeneous DMS-splines. This
gives an algorithm which makes it possible to model surfaces of arbitrary
differentiability, of arbitrary genus, over an arbitrary triangulation, without
any boundary and gluing conditions. A more detailed theory and further
examples of this can be found in (Wallner, 1996).
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